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INTRODUCTION

We propose PRIMP [1], a learning-from-demonstration method using probability densities on the full 6-

dimensional workspaces of robot manipulators:

» PRIMP generates workspace trajectory distribution for basic motion primitives using Lie theories;

» Workspace-STOMP keeps the shape of the trajectory similar while maintaining the feasibility of the
motion plan;

» A novel robotic system that combines LfD, motion planning, and affordance learning via simulation is
proposed and physically demonstrated in a robot manipulator platform.

Features

» Adaptation to new situations: novel via-point poses with uncertainty, a change of viewing frame;
» Robot-agnostic: skills can be easily transferred to another robot;

» Avoid unseen obstacles while maintaining key features of the learned skills;

» Combine with a robot imagination method that learns object affordances via simulation to learn tool use.
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METHOD

PRIMP: A probabilistic learning-from-demonstration method

Given a set of demonstrated trajectories (6D pose), the goal is to compute a
probability distribution of the given demonstrations as a reference to guide the future
executions of the robot for a similar task.

1. Temporally align multiple trajectories using Globally-Optimal Reparameterization
Algorithm (GORA) [2], by solving the variational calculus problem
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2. Approximate relative pose distributions using Lie-theoretic method. For m samples,
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3. Encode initial mean and covariance as a joint distribution of the whole trajectory
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Demonstrations from LASA dataset [3]. Bolded blue curves are the encoded mean trajectory

4. Adaptation to novel situations
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Workspace-STOMP: A guided motion planning algorithm

The learned trajectory distribution is used to guide
STOMP, an optimization-based motion planner, for
collision avoidance. A novel cost function based on
SE(3) metric for the end-effector pose is proposed:

» m, reference trajectories are sampled from the learned distribution;
» For each time step i of each joint-space trajectory rollout g, the cost is defined as

my
1
(g t) — 60 (t)|))

C(qi» ti) — m_ 2 (Wrot Hlogv (RT(qi' ti)R1(ﬂk) (ti)) H + Weran

" k=1

Affordance learning using physics-based simulation

Obiject affordance is learned to obtain the key poses for each task. The key poses are
treated as the via-point poses for PRIMP.
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Imagination Learning

For more detalls, please visit:
https://chirikjianlab.github.io/primp-page/

Demonstration - * NN Planning

lllustration for the general idea. The robot arm is asked to use a spoon to scoop from a bowl in a household
environment. With the help of human demonstrations, imagination of object affordance, learning skills from the
demonstrations and motion planning, the robot fulfills the task in a novel scene with unseen obstacles.

BENCHMARKS

Learning from demonstration

Baseline methods: (1) ProMP [4], (2) KMP [5]
Dataset: (1) LASA handwriting, (2) Simulated motions, (3) Real-world tasks (6D pose)
Metrics: (1) Similarity with demonstrations, (2) Closeness to the desired via-point poses
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T l L ? ' 7
= 15 g T 1.2 50'08 % =6
% 2

0.2 0.12

I
)
)

0.15

i

<11
0.15

(Translat
(Translation)

é 2 1 < 0.06 £ 5
@j 10 é . %u.g %0.05 5:: : 01 E%U.z \:0.06
£ S S 08 = 004 <o & 005 S < 00
Qs A % 0.7 é o5 1 é é % 0.02
T 0.6 ' =
lj:: = & R QﬁeQ ° QQ\QQf\ Q’\Q ¥ ic N e L0 oD O R 0 : : : o R Qﬁ?’Qoe QQ\ Q"\Q\Q \‘@ 0 @i \ ’ o O
F S o @ NRAICANCI SRS SRR’ B S 8t S @@ ¥ AN S
e e Ft e e e AR ol o T e et e e AMESE et
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Guided motion planning

Baseline methods: (1) STOMP [6], (2) Cartesian-STOMP [7]

Dataset: Real-world tasks
Metrics: (1) Planning time, (2) Success rate, (3) Similarity with reference trajectory
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CONCLUSION

1. PRIMP only requires a few or even a single demonstration, and is able to adapt to:
» novel via-point poses (i.e., start, goal and any point in between);
» a change of viewing frame;
» robot-specific workspace density.
2. Workspace-STOMP avoids unseen obstacles, guided by the learned workspace
trajectory distribution.
3. A novel robotic system is proposed with the study of object affordance.
4. Future work:
» Fuse demonstrations into the robot imagination module;
» Add velocity and/or acceleration into the state vector;
» Integrate force information in the probabilistic model.
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