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SYSTEM PIPELINE

METHOD

PRIMP: A probabilistic learning-from-demonstration method
Given a set of demonstrated trajectories (6D pose), the goal is to compute a 
probability distribution of the given demonstrations as a reference to guide the future 
executions of the robot for a similar task.
1.  Temporally align multiple trajectories using Globally-Optimal Reparameterization 
Algorithm (GORA) [2], by solving the variational calculus problem
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2.  Approximate relative pose distributions using Lie-theoretic method. For 𝑚𝑚 samples,
 Mean 𝜇𝜇𝑖𝑖 satisfies ∑𝑘𝑘=1𝑚𝑚 log 𝜇𝜇𝑖𝑖−1𝑔𝑔𝑖𝑖

(𝑘𝑘) = 𝕆𝕆; 
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3. Encode initial mean and covariance as a joint distribution of the whole trajectory
 Joint distribution: 𝜌𝜌 𝑔𝑔1,𝑔𝑔2, … ,𝑔𝑔𝑛𝑛 = ∏𝑖𝑖=0
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4. Adaptation to novel situations
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Demonstrations from LASA dataset [3]. Bolded blue curves are the encoded mean trajectory

Workspace-STOMP: A guided motion planning algorithm
The learned trajectory distribution is used to guide 
STOMP, an optimization-based motion planner, for 
collision avoidance. A novel cost function based on 
𝑆𝑆𝑆𝑆(3) metric for the end-effector pose is proposed:
 𝑚𝑚𝑟𝑟 reference trajectories are sampled from the learned distribution;
 For each time step 𝑖𝑖 of each joint-space trajectory rollout 𝒒𝒒, the cost is defined as
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Affordance learning using physics-based simulation
Object affordance is learned to obtain the key poses for each task. The key poses are 
treated as the via-point poses for PRIMP.
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CONCLUSION
1. PRIMP only requires a few or even a single demonstration, and is able to adapt to:
 novel via-point poses (i.e., start, goal and any point in between);
 a change of viewing frame;
 robot-specific workspace density.

2. Workspace-STOMP avoids unseen obstacles, guided by the learned workspace 
trajectory distribution. 
3. A novel robotic system is proposed with the study of object affordance.
4. Future work: 
Fuse demonstrations into the robot imagination module; 
Add velocity and/or acceleration into the state vector;
 Integrate force information in the probabilistic model.
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INTRODUCTION
We propose PRIMP [1], a learning-from-demonstration method using probability densities on the full 6-
dimensional workspaces of robot manipulators:
 PRIMP generates workspace trajectory distribution for basic motion primitives using Lie theories;
 Workspace-STOMP keeps the shape of the trajectory similar while maintaining the feasibility of the 

motion plan;
 A novel robotic system that combines LfD, motion planning, and affordance learning via simulation is 

proposed and physically demonstrated in a robot manipulator platform.

Features
 Adaptation to new situations: novel via-point poses with uncertainty, a change of viewing frame;
 Robot-agnostic: skills can be easily transferred to another robot;
 Avoid unseen obstacles while maintaining key features of the learned skills;
 Combine with a robot imagination method that learns object affordances via simulation to learn tool use.

Illustration for the general idea. The robot arm is asked to use a spoon to scoop from a bowl in a household 
environment. With the help of human demonstrations, imagination of object affordance, learning skills from the 
demonstrations and motion planning, the robot fulfills the task in a novel scene with unseen obstacles.

For more details, please visit:
https://chirikjianlab.github.io/primp-page/

BENCHMARKS

Guided motion planning
Baseline methods: (1) STOMP [6], (2) Cartesian-STOMP [7]
Dataset: Real-world tasks
Metrics: (1) Planning time, (2) Success rate, (3) Similarity with reference trajectory

Legend
(X-axis labelling at each figure)
 Left: Workspace-STOMP
 Middle: STOMP
 Right: Cartesian-STOMP
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Learning from demonstration
Baseline methods: (1) ProMP [4], (2) KMP [5]
Dataset: (1) LASA handwriting, (2) Simulated motions, (3) Real-world tasks (6D pose)
Metrics: (1) Similarity with demonstrations, (2) Closeness to the desired via-point poses
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