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Abstract

In this paper we present a novel method to describe the pose (posi-
tionand orientation) distribution of amino acid residue pairswithina
protein, which areproximal in spaceand distal in sequence. Whilethe
Ramachandran plot provides information of protein conformations
using the ¢ and v angles between sequentially proximal residues,
our method can offer six-dimensional relative poseinformation. Dis-
tribution data are visualized in the form of continuous distributions
by using Gaussian distribution functions on SO(3) and R3. Hence,
we discuss how the classical Gaussian functions can be generalized
to capture both positional and orientational data. The method is ap-
plied to 168 protein structuresin the Protein Data Bank and results
are discussed.

KEY WORDS—interaction between residues, 6D relative pos
protein data, data visualization, Gaussian function, axis-an 5
representation, computational tool, continuous distribution

1. Introduction

Pose Analysis of

Alpha-Carbonsin

Protelins

a six-dimensional Ramachandran-like plot for sequentially
distant residue pairs.

There have been several studies on backbone—backbone,
backbone-side-chain and side-chain—side-chain interactions
in protein structures. Bahar and Jernigan (1996) studied the
statistical distribution of interactions between residues in
polypeptides and presented the existence of preferred distri-
butions for a given residue type.

Banavar, Maritan, and Seno (2002) showed that the distri-
bution of relative orientations of amino acids exhibits peaks at
specific angles. The relative orientation is represented by the
angle between two vectors, each of which joins next-nearest-
neighbor G atoms along the polypeptide chain. Therefore,
the vector for théth amino acid( (i), connect€ (i — 1) and
CG+1).

' In three recent papers, Buchete, Straub, and Thirumalai
004a, 2004b, 2004c) describe orientational potentials for
protein simulations. They studied three types of interactions
(side-chain—side-chain, side-chain—backbone, and backbone—
backbone) with local reference frames of side chains and a

More than 30 years ago, Ramachandran and SasisekhaY%ual interaction center on the backbone in the middle of the
' ptide link.

(1968) showed that a sequence of amino acids comprisiné)g S .
protein must have certain geometries, which do not allow cer- The S|gr1|f|cant difference .between our approach and
ose previous related works is that we examine the three-

tain relative positions and orientations between sequentiaﬁ ional rotational data of the ridid-bodv disol ‘
adjacent pairs. In this formulation, the allowed/disallowed re= mensional rotational cata of the Tgid-body displacemen

. . S . relating the two local reference frames in addition to three-
gions are represented in tphei—ps (¢—)) plane. (See Fig- : o . o :
ure 2 for the graphical definition @, - angles.) In this paper, dimensional positional (distance and direction) data in space.

we examine a related research issue: given a protein, we f|Y¥§ the\:\c/erfo:e provtlg ers fllf]" \?lx-fdlmenzlon:ll p\:\?t;aé)i'rl:ynd?nr; |
affix a frame of reference to the alpha-carbon atory) @ stiies, whereas others have focused on lowe ensiona

each amino acid in the structure. Then we record all posgnag%;r:?It%Z?SI:fk)Séb'I't'e sing geometrical information of
ble positions and orientations between amino acids that are i ItSI P i 5 Ids' ltJ N9 9 I : t'dl hai ! Id
proximal in space and distal in sequence, i.e., within certag{'en ation, position, or distance in polypeptide chains cou

spatial/sequential distance cutoffs. Hence, in essence we s a usgful tool to deyglop efficient gomputatlonal mgthods
or protein fold recognition and protein structure prediction,

and also for simulations of coarse-grained models of proteins.
Our statistical analysis of pose (position and orientation)
data of polypeptides also may be helpful for modeling protein
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structures. A relevant work by Kemp and Chen (1998) presen&aussian distribution is a popular choice because of its nice
worm-like polymer chains which model the low-temperatur@roperties and the physical nature of its origins. Hence, part of
protein structures. The worm-like polymer chains are usedlis paperis about how the classical Gaussian functions can be
to reproduce a helix ground state (coil-helix transition). Thgeneralized to capture both positional and orientational data,
paper discusses three parameters to measure the degreanofthen the application of these ideas to real protein data.
helicity within the chain.

Trovato, Ferkinghoff-Borg, and Jensen (2003) proposeda pe iy of Terminol ogy and Notation from
model for a protein with two different interactions that mimic

the hydrophobic effect and the angular dependence of hydljgl—OI ecular Biophysics

gen bonding. The results in this paper could provide a guideroteins are composed of 20 different amino acids: alanine
line for generating new models of polypeptide chains. Pog@la); arginine (Arg); asparagine (Asn); aspartic acid (Asp):
information can be extracted from new models and comparggsteine (Cys); glutamine (GIn); glutamic acid (Glu); glycine
with the results in our paper. (Gly); histidine (His); isoleucine (lle); leucine (Leu); lysine

In our analysis, the pose data appear like a cloud in tlfeys): methionine (Met); phenylalanine (Phe); proline (Pro);
group of three-dimensional rigid-body motions, and we woulderine (Ser); threonine (Thr); tryptophan (Trp); tyrosine (Tyr);
like to visualize this cloud in such a way that relative posealine (Val). Amino acids are classified into three groups: the
relations can be understood clearly. In order to achieve thigydrophobic group has Ala, lle, Leu, Met, Phe, Pro, and Val;
we plot “two-dimensional slices” of relative position data andhe charged group has Arg, Asp, Glu, and Lys; the polar group
other slices of orientation data. Any “holes” in these plotsias Asn, Cys, GIn, His, Ser, Thr, Trp, and Tyr (Branden and
represent poses that one amino acid does not attain relatitgoze 1999).
to its neighbors. As a result, plots like Ramachandrgr's Each amino acid can be divided into two parts: main-chain
¥ plot are formed. Now, however, the data are in a higheftoms and side chains. The main-chain part has a central car-
dimension than the two-dimensiongty plane, and the data bon atom (C) which is attached to a hydrogen atom (H), an
are for sequentially distant yet spatially proximal residuesmino group (NH), and a carboxyl group (COOH). How-
rather than sequentially proximal residues. In order to appbyer, the side chain bound to the &om is different for each
this study broadly, a large amount of data should be takefifferent amino acid (Branden and Tooze 1999). See Figure 1.
fromvarious proteins in the Protein Data Bank (PDB; Berman A protein is a polypeptide chain consisting of amino acid
et al. 2000). Hence, interpreting the large amount of data is@sidues. These residues are what remains from amino acids
significant problem. that have bonded by releasing a water molecule (one H and

When presented with a large set of point data, there age OH from each joining pair). Figure 2 shows a method
two issues related to smoothing or filtering of the originalo separate a polypeptide chain into repeating units (Branden
data. First, in order to visualize the data, it makes sense 4ad Tooze 1999). That is, a polypeptide chain is divided into
replace the original discrete points with a continuous densipeptide units that go from one,@tom to the next Catom.
or distribution. This distribution can be found by dividing upTwo “torsion angles” calleghi (¢) andpsi () provide a way
the domain on which the data are located to form a histograme, characterize conformational information of protein back-
or by replacing each data point with a distribution. Then thbones since bond lengths and bond angles are relatively fixed.
distribution for the whole data set is the sum of distributioThe rotation angle around the Nz®ond is calledphi (¢)
functions for each data point. Using this distribution methoend the rotation angle around the-€ bond from the same
is often preferable from the point of view of data visualizaC, atom is calledpsi (v). Ramachandran and Sasisekharan
tion because the result does not have the discontinuities tf{#968) introduced a planar plot, now called the Ramachandran
are artifacts of histogram methods. On the other hand, it cpiot, where the angleg andvs, are the axes, and allowable
be more computationally intensive to use distribution methregions in this plane are shaded.
ods. Another reason for replacing each individual data point Although the overall structure of a protein molecule can be
with a distribution is that the initial data may have some aseregular, within each protein so-called secondary structures
sociated measurement error, and replacing each point witlslaow regularity. The secondary structures usually consist of
normalized distribution reflects this error. In contrast to thewo types:lpha («) helicesor beta (8) sheets. They are char-
other statistical analysis approaches in Bahar and Jernigaeterized by many consecutive residues with similar phi (
(1996), Banavar, Maritan, and Seno (2002), Buchete, Strayisi (/) angles.
and Thirumalai (2004a, 2004b, 2004c), our approach is able The alpha helix is a significant component of secondary
to smooth data and reflect potential measurement errors istuctures. Residues comprising an alpha helix have a phi an-
very natural way. gle of about—60° and a psi angle of about50° (Branden

The second issue related to smoothing and filtering is rand Tooze 1999). The alpha helix has 3.6 residues per turn,
lated to the selection of proper distributions. In the case of datehich corresponds to 5.4 A rise along the helical axis (1.5 A
on the line or in multidimensional Cartesian coordinates, thger residue; Branden and Tooze 1999). The second impor-
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Fig. 1. Schematic diagram of an amino acid. A central carbon atqofigGttached to an amino group (MHa carboxyl
group (COOH), a hydrogen atom, and a side chain (R). This also shows how a local reference: frame]] is determined
using G, C, and O (vectorsc andcv).
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Fig. 2. Two peptide units. Each peptide unit has thea@m and the C= O group of amino acidh in addition to the NH
group and the Catom of amino acish+1. Each such unit is planar and more or less rigid.

tant secondary structure is the befd §heet. This structure tween sequentially distant but spatially proximal residues.
is constructed from a combination of several regions of thRefore attempting to generate Ramachandran-like plots with
polypeptide chain. These regions are calfedtrands. Beta six-dimensional pose data for residues that are sequentially
strands are generally from five to ten residues long and thdistant and spatially proximal, we first need to affix a local
are found in the upper-left quadrant of the Ramachandran plordinate frame to each amino acid. The origin of the local
(Branden and Tooze 1999). There are two types sheets: frame resides at the,Gtom and the frame orientation is spec-
parallel and antiparallel. In parallglsheets, the amino acids ified by three atoms, £ C, and O. In Figure 1, the-axis of
in the aligne@s strands can all run in the same biochemical dithe frame is obtained from a vectarthat connects Cand C.
rection. In antiparalleB sheets, the amino acids in successiv&he cross product afc andcv determines the-axis, where
strands can have alternating directions. cvis avector connectingfand O. Therefore, the unit vectors
Whereas the Ramachandran plot is now a standard methmminting along thec-axis andz-axis are
for describing constraints between adjacent amino acid cc CC X CV

residues, no such tool exists for examining correlations be- u, =——, U=—"—/——-°.
g llccl| llce x o]
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By the cross productu,xu,, the remainingy-axis is a rotation matrix can be written as (Murray, Li, and Sastry
determined. 1994; Chirikjian and Kyatkin 2000)

ROT[N, 0] = exp(ON).

3. Gaussian Functionsfor SO(3) Here,S?isthe unit sphere amd is the skew-symmetric matrix

In this section we present a Gaussian functionda(3), the ~SUCh thatVx = n x x for everyx < R*and||n|| = 1. The
group of rotations in three-dimensional space. This is similyectornis called the dugl vector CN', . )

to the folded normal density solution on the circle discussed A Natural way to define a Gaussian function &(3) is

in the following subsection. This presentation builds on th@S the solution of the heat equation, just as was done for the
work of Chirikjian and Chétalet (2002) and Chirikjian and“ne and circle in the previous subsection. That is, we seek the

Kyatkin (2000). solution of the equation
JIF

. . . . — = KV F 3)
3.1. Gaussian Functions on the Line and Circle or

with an initial conditionF (R, 0) = §(R). The Laplacian op-

Here we examine a distribution which is useful for smoothin . . . ) .
%rator forSO(3) is written in the axis-angle parametrization

dlscrete_ daFa on the Img anq circle. A natural way to perforrgs (Varshalovich, Moskalev, and Khersonskii 1988; Chirikjian
smoothing is through diffusion.

The heat equation on the real line is and Kyatkin 2000)

02 ]
2 _
E _ aZ_F VS)(3) = ﬁ =+ C0t9/2£ (4)
ot dx?
1 2 N d 1 92
where F (x, r) is the temperature in a material. Hekeis a + 4sirfg/2 \ 9:2 + €08, 9 + Sirey 9v2 /)

constant,/k /(o p) determined by the thermal conductivity
specific heatr, and the density of the material. The solution
of this equation subject to the initial conditiafi(x, 0) =
8(x — 0) is known as a Gaussian or normal distribution, an
is given in Kreyszig (1999) by

wherei andv are spherical coordinates for the vectoe

n, v).

d We seek a solution that is a class functionS(3) since
such functions have the useful property that they commute
under convolution with all other functions. Since every class

1 ) function for SO(3) is a function only of the angle of rotation
F(x,1) = c——=e"/"" (D) 6, eq. (3) simplifies to
2Kt + €4 P
. . S dIF 0%F oF
A natural question may be how the Gaussian distribution — =K | 5 tcotd/2—|. (5)
is generalized to spaces other than the real line. The next eas- ot 96 96

iest one-dimensional case is the unit circle. It may be shown Chirikjian and Chétalet (2002) proposed one possible gen-
that the solution to the heat equation on the circle is obtainegalization of the concept of a Gaussian function for the group
by “wrapping” the solution of the heat equation on the lineSO(3). This solution is analogous to the folded normal density
around the circle, i.e., shifting all intervals on the line of th&olution (2) on the circle. This candidate Gaussian function is
form [2nn, 2 (n 4+ 1)] for n € Z to the interval0, 27 ], and modified in Lee (2002) as

superposing the values of the function. This is written as

Fe.n =5 O (6)
> T T (wK1)¥2sing)/2 ’
0,1) = F6 — 2rn,t). 2 . : !
F6.0 ;O ( . 1) @ which is folded around the circle defined byr <6 < &, as

in eq. (2). This produces the Gaussian (3), whereé is
A nice feature of the expansion in eq. (2) is that whénis  the angle from the axis-angle parametrizatior80{3). The
small, only one or at most a few terms in the expansion nesdaling factorC is the mass we choose to give e&H(3)-
to be retained since the Gaussian function decays so rapidBaussian distribution. Ways of choosing this value are dis-
In the next subsection we discuss an analogous folded nornealssed in the next subsection, as are reasons for using this
distribution forS0O(3). function for representing orientational data.

3.3. Why Using the Usual Gaussian is Not Sufficient for
Orientational Averaging

If the axis direction and the angle of a rotation are denoted ase space of all vectors = On(x, v), is often used to rep-
N = [n1, ny, n3]" € S?2 andd € [—mn, 7], respectively, then resentS0(3) as a solid ball of radius in R® with antipodal

3.2. Folded Normal Density Solution for SO(3)
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points identified. For any parametrizati@n, ¢», gs) of SO(3) We now address the minor issue of how to cha@sehich
(including (x4, x5, x3), (0, A, v) and Euler anglesx, 8, ¥)), involves a normalization that depends on a subjective choice
integration is performed as rather than being dictated by geometry. Integrating the folded
version of eq. (6) oveBO(3) yields
/ f(R)d(R) = / f(R(@)) w(q) dg1 dg» dgs m 72 2
0E) qeQ / / / (6, )4sirf(8/2) sinvdydvdt = 16C.

O=—m v=021=0

where w(q) is proportional to the Jacobian determinant ] )

|det(J (R(q))| where the Jacobian matrix(R(q)) relates 1herefore, a choice af' = 1/16 will ensure that th&0(3)-
rates of change i to angular velocity and is the region Gaussiary (6, ¢) has unit mass under this definition®D(3)
defined by all values off required to coveSO(3) once. In integral. However, often th80(3) integral is normalized so

the context of the parametrizations discussed in the previoti@t /s 1 dR = 1rather than 82, which is what s obtained

subsection, when usingw (@, v, 1) = 4sirf(9/2) sinv (Chirikjian and
Kyatkin 2000). If this is done, one would us&®, v, A) =
|det(J (R(O, A, v))| = 4sirf(#/2) sinv and (1/27?) sirf(#/2) sinv. In this case, one should defide=

w2/2 in order for each Gaussian to have unit mass. Of course,
w (7) if one wants the contribution frompoints to be a probability

|det(J (R(X))| = > . o - .
1] density, an additional division bywould be required.

wherex = 6n(x, v) are the parameters we have used to dis-
play the data. 4. Analysis of Protein Pose Statistics Using
If one wants to displaggO(3) data as if they are dataR®, Generalized Gaussian Functions
then one needsto normalize correctly. Thatis, if one observes a
distributionp,,, (R(Q)) = p.»(q), One needs to recognize thatThe PDB (Berman et al. 2000) is a huge collection of infor-
this has a built-in bias, and is related to the actual underlyingation about the structure-{y—z position of atoms) within

probability density as thousands of different proteins. Various experimental meth-
ods are used to determine these structures, and some methods
Pobs (A) = Paer () w(C). have larger error than others. The statistical analysis presented

. . ) _ here is based on some of the most accurate data.
When there are discrete observed data, this relationship isTaple 1 lists the PDB codes for 168 structures used in our

equivalent to the following: analysis. All together there are 37,971 residues in these pro-
R teins. Table 2 shows the number of residues for each amino

Bovs (@) = 1 Z‘S(q —q) and acid type. These 168 are a subset of the structures used by

n ‘= Chakrabarti and Debnath (2001). The structures were chosen

from the PDB at the Research Collaboratory for Structural
Bioinformatics (RCSB; http://www.rcsb.org/pdb/).
The resolution of the structures is 2.0 A or better, and the
R-factor is less than 20%. The resolution of the diffraction
When smoothing orientational data, it is not sufficient talata depends on how well ordered the crystals are. In the pro-
replace each Dirac delta functiérg) in eq. (8) with a kernel cess of crystallographic refinement of a model, the model is
k(g) such as a Cartesian Gaussian function because this wodlthnged to minimize the difference between the experimen-
not preserve the mass contributed by each of the original dagdly observed diffraction amplitudes and those calculated for
points. However, a smoothing and renormalization of the form hypothetical crystal containing the model instead of the real
molecule. This difference is expressed as an R-factor (Bran-

1 n
Pur(@) = =3 0@ —A)/w(@). ()
i=1

5(q — q)/w(Q) — k(@ —a) den and Tooze 1999). In general, 2.0 A resolution and 20%

Joco k(@ —a)w(g) dg R-factor are considered sufficiently good. The maximum se-

guence identity between any two of the polypeptide chains is
would preserve mass. <25% (Branden and Tooze 1999). This ensures that our statis-

TheSO(3) Gaussian function effectively has this geometrigics are not biased because we sample a set of non-homologous
normalization built in already, and so no additional ”Ormalproteins.

ization is required. It also has the added feature that when itis
shifted asf(R(qQ)) — f(RT(g;,)R(qQ)) it does not distort in
0(3), whereas atransformation of the fokity) — k(q—q;)
potentially can lead to significant distortions3®(3) as the Figures 3-8 show plots of relative orientation data between
variance of the kernel becomes large. two local coordinate frames affixed to the &f amino acids.

4.1. Distributions of Relative Orientation Between Residues
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Table 1. PDB Codesfor the Structures Used in Our Analysis of Relative Pose

153L 16PK 1A3C 1A48 1A6M 1A7S 1A8D 1A8E
1ABA 1ADS 1AK1 1AMF 1AMM 1AQB 1ARU 1AUN
1AWD 1AXN 1AYL 1AZO 1BOY 1B6G 1BDO 1BEA
1BEC 1BFD 1BFG 1BG6 1BGF 1BJ7 1BKO 1BM8
1BRT 1BS9 1BTN 1BXA 1BY1 1BY2 1C3D 1C52
1CEO 1CEX 1CFB 1CNV 1CPO 1CPQ 1CSH 1Cv8
1CVL 1DCS 1DHN 1DIN 1DUN 1ECD 1EDG 1EUS
1EZM 1FIT 1FNA 1FUS 1G3P 1GCl 1GKY 1GOF
1GSA 1HFC 1HKA 1HOE 1HXN 1IAB 1IXH 1JDW
1JER 1KNB 1KOE 1LAM 1LCL 1LIS 1LKI 1LOU
1MDC IMLA IMML 1IMOQ 1IMRJ IMSK 1IMUN INAR
INIF INKR INLR INLS 1INOX 1INP4 INPK 10AA
10PY 1PBE 1PGS 1PHF 1PLC 1PNE 1POA 1POC
1PPN 1IPTY 1RCF 1REC 1RHS 1RIE 1RZL 1SFP
1SKF 1SMD 1SRA 1SUR 1svy 1TCA 1TIB 1TML
1VHH 1VID 1VLS 1VNS 1IWAB 1IWHI 1WHO 1XNB
1YCC 1YGE 2A0B 2ABK 2ACY 2AYH 2CBP 2CTC
2DRI 2DTR 2EBN 2END 2GAR 2GDM 2HBG 2HFT
2ILK 2P 2PTH 2PVB 20wcC 2RN2 2SAK 2SNS
3CHY 3CLA 3CYR 3ENG 3GRS 3LZT 3PTE 3SEB
3SIL 3TDT 3TSS 3VUB 5pP21 6CEL 7RSA 8ABP
Table 2. Number of Residuesfor Each Amino Acid Type
Ala Arg Asn Asp Cys GIn Glu His lle
3218 1720 1882 2231 601 1415 2128 3029 1960
(8.47%) (453%) (4.96%) (5.88%) (1.58%) (3.73%) (5.60%) (7.98%) (2.20%) (5.16 %)
Leu Lys Met Phe Pro Ser Thr Trp Tyr Val
3108 2143 729 1502 1893 2522 2315 616 1495 2630
(8.19%) (5.64%) (1.92%) (3.96%) (4.99%) (6.64%) (6.10%) (1.62%) (3.94%) (6.93%)

Here amino acids are sequentially distant and spatially proxir the form of the delta function. Then the distribution for all
mal. Two cutoff values are used so that the sequential distartbe points is the sum of distribution functions for each data
of residue pairs is three or higher and the spatial distance dint. Note that a scaled version of eq. (6) was used to produce
residue pairs is less than 10.0 A. plots and the scaling value was 0.1. Here, the paraniéter
Each figure consists of two plots. The left plot displays relin eq. (6) was set to 0.05. The right plot of each figure illus-
ative orientation data in the form of discrete points on a plan#mates the sum of diffusions of each heat source in the form of
slice. The coordinates of each point are the three componentsitours. Each contour is labeled as a number. Higher num-
of 6n wheren = [n,, n,, ns]" is the rotation axis and is  bers mean that points (heat sources) are concentrated. We ob-
the rotation angle. Both plots are planar slices that are cutsgrve in each figure that locations of clusters in both plots are
the origin and perpendicular to the axismf Note that, in identical.
general, the slice d@n; = 0 is the most populated one. The Most hydrophobic—hydrophobic pairs appear to have mul-
thickness of each slice 18/10. tiple clusters on the slice. In particular, pairs associated with
In addition to visualization with points, the relative ori-valine have clusters near the center of the slice. Figure 3
entation data are visualized with a continuous distributiodisplays the distribution of relative orientation data of the
function, which is the sum of Gaussian functions 8¥3) leucine—valine pair.
described in Section 3.2. In this approach each dot on the left Every charged—charged pair is found to have multiple sym-
plot is considered as a heat source, i.e., the initial conditianetrical clusters near the center along a line. This is due to
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Fig. 3. Distribution of relative orientation data of the leucine—valine pair.

pairs within the same helix, which is shown in Figures 10 detailed information about clusters. In particular, residues in
and 12(d). For instance, Figure 4 is the plot for the argininesecondary structures, i.e., helices or sheets, draw more atten-
glutamic acid pair. tion. We also examine if clusters are related to the sequential

No common attribute is observed in polar—polar amindistance of residue pairs. Since we use the number two for the
acid pairs. Figure 5 shows the distribution for the glutamineeutoff value in the sequential distance, pairs that have the se-
threonine pair. One larger clump is found near the center. quential distance of 3, 4, 5 were investigated more thoroughly.

Many of the hydrophobic—charged pairs are found to have For orientation data, we take the arginine—glutamic acid
multiple clusters. Figure 6 displays the distribution for thegair for example. Figure 10 illustrates distribution plots of
alanine—glutamic acid pair where four symmetric clusters arelative orientation of the pair whein; = 0.0. It is observed
seen along the line. This plot appears quite similar to the plot Figure 10(a) that four clusters labeled as a—d exist near the
of the arginine—glutamic acid pair, which is in Figure 10(a)center of the slice. In Figure 10(b), we can find that those clus-
The alanine—glutamic acid pair will be revisited later withters are from residue pairs within the sambelix. However,
plots of relative orientational data for several value®f, contributions of other secondary structures likglgelices or
which are in Figure 9. B sheets to the clusters are negligible, and thus they are omit-

In polar—charged pairs, pairs associated with glutamirted. If we observe Figures 10(c) and 10(d), clusters a and d
show two symmetrical clusters along a line. For instance, Figre from pairs with the sequential distance of 3 and clusters b
ure 7 is for the glutamine—glutamic acid pair. This plot alsand ¢ are from pairs with the sequential distance of 4.
looks similar to the plot of the alanine—glutamic acid pair, but Those four clusters in Figure 10(a) are examined in another
the plot of glutamine—glutamic acid pair appears sparser. way. The mean of relative orientation matrices of each cluster

No common attribute is found in polar—hydrophobic amings calculated and is displayed in Figure 11. The mean for each
acid pairs. Figure 8 shows the distribution for the tyrosineeluster is obtained by finding a rotation mati to minimize
isoleucine pair where we see concentrated areas near the abp-following cost function
ter of the slice.

A set of plots in Figure 9 displays how the relative orienta-
tion data of the alanine—glutamic acid pair appear as the value
of On; changes from+-0.94 to 1.26. Clusters appear to move
from upper right to lower left agn; increases, and they arewhereR,,, R, € SO(3). Gradient descent 080(3) is used
not seen in the slices ak; < —0.94 orfn; > 0.94. to solve forR,,. In analogy with the definition of the par-

Now we discuss the sources of such clusters in distribijal derivative (or directional derivative) of a scalar function
tion plots of relative orientation data in order to extract moref R -valued argument, we can define differential operators

C(R,) =Y IR, — R|?

i=1
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which act on functions of rotation-valued argument. Refefor the corresponding positiven;. We see from these plots
to Chirikjian and Kyatkin (2000) and Lee, Fichtinger, andhat clusters move to the lower-left area and disappeénas
Chirikjian (2002) for the definition of differential operatorsgrows.
and a specific example of the gradient descent method. TheAs shown in Figure 13(a), the relative orientation data of
three column vectors at,, = [u, v, w] are illustrated in Fig- pairs that are in different helices are distributed widely. In
ure 11. other cases where pairs are either within the sampé&dix

It is observed that?, of cluster a andr,, of cluster b orin different parallel/antiparallel strands, clusters are found.
are nearly equal to the inverse &, of cluster d and the See Figures 13(b), 13(c), and 13(d). We excluded pairs that
inverse ofR,, of cluster c, respectively. This is explained byare either in different 3 helices or within the same paral-
recalling that clusters a and d are made from some pairs witk/antiparallel strands because their portions are negligibly
the same sequential distance and clusters b and c are fremall.
other pairs with the same sequential distance. In general, theResidue pairs that are both sequentially and spatially prox-
pose distribution of residue paits j) that are sequentially imal are now discussed. The sequential distance of every pair
apart by+n (i — j = +n) is related to the pose distribution is either 1 or 2, and the spatial distance is less than 10.0A. The
of pairs that are sequentially apart by: by the following distribution of relative orientation data of all types of pairs is
expression displayed in Figure 14. The value 6fi; varies from 0.0 to

fi(@) = fu(g™, 1.26. Several clusters appear in each plot and they can be dif-

whereg € SE(3) and f;,(g) is the pose probability density ferentiated by the_ sequential distance. For examp!e, c]usters
of a frame attached ayt relative to a frame attached at labeled asa,c,ein F|gure _14(a) have the sequential @stance
If ¢ = (R,b) whereR ¢ SO(3) andb ¢ R?, this can be of 2, while the sequential distance of clusters b and d is 1. In
written asf, (R, b) = f,,(R", —R"b). Note that integrating Figure 14(d), the sequentlal distance of clusters b and cis 1
over position yieldsf,,(R) = f,(RT), whereas integrating ar_1d that of cluste_r ais 2. We observe that concentrated areas
over orientation does not yield any useful relationship. with the sequential distance of 1 become larger as the value

Residue pairs in secondary structures are examinedin m&ief/11s grows.
detail. The set of plots in Figure 12 displays distributions
of_ rglative orientatior_l data of all th<=T residue pairs that arg > pistributions of Relative Position between Residues
within the samex helix. Hereén; varies from 0.0 to 0.94.
Note in Figure 12(d)qn; = 0.0) that a symmetry exists in Now we begin to discuss the distribution of relative position
the clusters. In fact, we can picture a distribution plot for @ata of residue pairs whose sequential distance is 3 or higher
negative value ofin; easily using the symmetry and the plotand whose spatial distance is less than 10.0 A. Figures 15-20
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show plots of relative position data between the local coordimove from upper right to lower left by clockwise rotation as
nate frames of two amino acids. The left plot of each figure increases. This is thought to be related to helix geometry
displays the relative position data in the form of points. Thbecause helices are the largest contributor to clusters in this
plots are planar slices that are cut at the origin and perpendiesidue pair, which is explained more clearly in Figure 22.
ular to thez-axis. The thickness of each slice is 1.0 A. Note As we did for orientation data earlier, we discuss sources
that the overall shape of each plot appears like a ring. Thisa$ clusters in distribution plots of relative position data to
because steric effects limit amino acids from coming to closextract more detailed information about clusters. Again, more
to each other. attention was paid to residues in secondary structures. We

In order to visualize the positional data with a continualso examined the relationship between sequential distance
ous distribution function, we use the usual three-dimensionahd each cluster. Pairs that have the sequential distance of 3,
Gaussian function which is the three-dimensional version df 5 were investigated thoroughly. For instance, we take the
eg. (1). Here the parametét: is set to a value between 0.3relative position data of the glutamic acid-lysine pair.
and 0.9. Figure 22 illustrates distribution plots of the relative po-

Most hydrophobic—hydrophobic pairs appear to have musition of the pair whery = 0.0. From Figure 22(a), we see
tiple clusters on the slice. Since hydrophobic residues makeat two clusters labeled as a and b exist along a circle whose
non-specific interactions, this result confirms the expectatioradius is about 5.0 A. Looking at Figure 22(b), we understand
In particular, pairs associated with valine have three or fodhat the major contributors of those clusters are residue pairs
clusters along a circle whose radius is about 5.0 A, i.e., halfithin the samex helix. However, contributions of other sec-
of the cutoff value. For example, Figure 15 displays the dissndary structures like,3 helices org sheets to the clusters
tribution of relative position data of the leucine—valine pair. are negligible, and thus they were not included in the plots.

Every charged—charged pair is found to have two clustelswe observe Figures 22(c) and 22(d), clusters a and b are
along a circle with the radius of about 5.0 A. In this casanostly from pairs with the sequential distance of 4.
electrostatic interactions are specific, so preferred orientationsA set of plots in Figure 23 displays distribution plots of
are shown. The radius of 5.0 A is thought to be related to threlative position of the pair when= —3.0 A. From Figure
distance above which salt bridges are unstable (Kumar agd(a), we can find one bigger cluster labeled as a and one
Nussinov 1999). Figure 16 is for the glutamic acid-lysinemaller cluster labeled as b. From Figure 23(b), we see that
pair. those clusters are from residue pairs within the sarhelix.

In polar—polar amino acid pairs, only pairs with glutamind.ooking at Figures 23(c) and 23(d), cluster a is from pairs
show two clusters. The distribution for asparagine—glutamingith the sequential distance of 3 and cluster b is mostly from
pair is illustrated in Figure 17. This plot looks similar to thepairs with the sequential distance of 5.
plot of glutamic acid-lysine pair. In terms of hydrophobic- Residue pairsin secondary structures are examined in more
ity scales, the hydrophobicity of glutamine and asparagine detail. A set of plots in Figure 24 displays distributions of
adjacent to that of glutamic acid and lysine (Lesk 2001). relative position data of all types of pairs that are within the

Some of the charged—hydrophobic pairs are found to hasameo helix. Herez varies from 0.0 to 4.0 A. We see from
several clusters. Since the charged residues may have aliph#ttiese plots that most clusters are concentrated in the lower
side chains, they form non-specific hydrophobic interactiorieft area and disappear &s; grows.
with the hydrophobic interaction. Figure 18 shows the distri- Figure 25(a) shows that the relative position data of pairs
bution for the arginine—valine pair. This plot looks similar tathat are in differentx helices is distributed widely. For other
that of the leucine—valine pair in Figure 15 but the plot of théypes of pairs, clusters are found in the distribution of rela-
arginine—valine pair looks sparser. This is because the numliige position data. In particular, we observe similar patterns in
of residues for arginine is much smaller than that for leucinae distributions of relative position of pairs in different par-
in the data set used in this analysis (see Table 2). allel strands (Figure 25(c)) and pairs in different antiparallel

In polar—charged pairs, pairs with glutamine show twatrands (Figure 25(d)). We excluded pairs that are either in
small clusters along a circle whose radius is about 5.0 A. Fdifferent 3, helices or within the same parallel/antiparallel
instance, Figure 19 shows the distribution for the glutaminestrands because their portions are negligibly small.
lysine pair. This also seems to be related to the hydrophobicity Residue pairs which are both sequentially and spatially
of the residues. proximal are now discussed. Again, the sequential distance of

In hydrophobic—polar pairs, strong clusters are not foun@very pair is either 1 or 2 and the spatial distance is less than
Figure 20 displays the distribution for the proline—threonin@0.0 A. A set of plots in Figure 26 displays how the relative
pair. Note that although proline belongs to the hydrophobigosition data of all types of pairs are distributed as the value
group, it is the least hydrophobic in the group. of z changes from 0.0 to 5.0 A. It is notable that clusters

Asetof plotsin Figure 21 displays how the relative positiortan be separated by the sequential distance of residue pairs.
data of the glutamic acid-lysine pair are distributed as tHe Figures 26(a), 26(b), and 26(c), the sequential distance of
value ofz changes from-3.0 to 2.0 A. Clusters appear to inner clusters is 1 and that of outer clusters is 2. Clusters with
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Fig. 26. Distribution of relative position data of all types of pairs that are both sequentially and spatially proximal.

the sequential distance of 1 are no longer seen in the plotiaéd in the form of continuous distributions by using Gaussian
z = 5.0 in Figure 26(d).

5. Conclusion

distribution functions or80(3) andR3. Hence, we discussed

how the classical Gaussian functions can be generalized to
capture both positional and orientational data. The method
was applied to 168 proteins in the PDB, whose resolution is
2.0 A or better and whose R-factor is less than 20%. Two cut-

In this paper patterns in the relative position and orientatio®ff values were used so that the sequential distance of residue
between alpha-carbons in proteins in the PDB were sougRgirs is 3 or higher and the spatial distance of residue pairs is
Quantitative methods for characterizing such patterns mégss than 10.0 A.

have applications in protein structure prediction and drug de- The pose distribution for each amino acid pair type was
sign. We have presented a new visualization method to dexamined, and characteristics for each group type (e.g.,
scribe pose distribution of amino acid pairs that are proxim&lydrophobic-hydrophobic) were discussed. Multiple clus-
in space and distal in sequence. Distribution data were visués were found in many group types and sources of such
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clusters in distribution plots were also discussed. In sev- 2000. The protein data bankucleic Acids Research

eral cases, hydrophobicity and electrostatic properties of 28:235-242.

residue types are found to be important factors. For exarBranden, C., and Tooze, J. 199&roductionto Protein Sruc-

ple, multiple clusters in the distribution of positional data for ture, 2nd edition, Garland Publishing, New York.
hydrophobic—hydrophobic pairs are due to the fact that hBuchete, N.-V., Straub, J. E., and Thirumalai, D. 2004a.
drophobic residues make non-specific interactions. In the caseOrienatation-dependent coarse-grained potentials by sta-
of charged—charged pairs, preferred orientations are showntistical analysis of molecular structural databagel/mer
because electrostatic interactions are specific. 45:597-608.

It was also found that residues in secondary structures, i.Buchete, N.-V., Straub, J. E., and Thirumalai, D. 2004b. Orien-
helices or sheets, made significant contributions. We exam- atational potentials extracted from protein structures im-
ined intensively amino acid pairs with the sequential distance prove native fold recognitiorfProtein Science 13:862—874.
of 3, 4, 5. The largest parts of clusters were found to be froBuchete, N.-V., Straub, J. E., and Thirumalai, D. 2004c.
residue pairs within the saraehelix. For comparison, residue  Development of novel statistical potentials for protein
pairs which are both sequentially and spatially proximal were fold recognition.Current Opinion in Sructural Biology
investigated. Distribution plots of relative orientation data of 14:1-8.
all types of pairs were also displayed. It was found that sever@hakrabarti, P., and Debnath, P. 2001. The interrelationships
clusters appeared in each plot and they could be differentiatedof side-chain and main-chain conformations in proteins.
by the sequential distance. The mathematical techniques ofProgressin Biophysics and Molecular Biology 76:1-102.
pose analysis have been a useful tool to characterize the di¥iirikjian, G. S., and Chétalet, O. 2002. Sampling and con-
tribution of relative position and orientation of residue pairs. volution on motion groups using generalized Gaussian

Developing statistical potentials using our analysis of pose functions.Electronic Journal of Computational Kinemat-
data in proteins will be explored in future work. This is ex- ics1(1).
pected to be a useful tool to develop efficient computation&lhirikjian, G. S., and Kyatkin, A. B. 200@&ngineering Ap-
methods for protein fold recognition and protein structure pre- plications of Noncommutative Harmonic Analysis, CRC
diction, and also for simulations of coarse-grained models of Press, Boca Raton, FL.
protein conformational fluctuations. The results in our pakemp, J. P., and Chen, Z. Y. 1998. Formation of helical
per could be helpful as a guideline for generating new mod- states in wormlike polymer chainBhysics Review Let-
els of polypeptide chains. Pose information can be extracted ters 81:3880—3883.
from new models and compared with the results in our papétreyszig, E. 1999Advanced Engineering Mathematics, 8th
We are also interested in extending the results by applying edition, Wiley, New York.
the approach of pose analysis to side chains in proteins akdmar, S., and Nussinov, R. 1999. Salt bridge stability
also developing an effective computer software tool for three- in monomeric proteinsJournal of Molecular Biology

dimensional data visualization. 293:1241-1255.
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