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Abstract

In this paper we present a novel method to describe the pose (posi-
tion and orientation) distribution of amino acid residue pairs within a
protein, which are proximal in space and distal in sequence.While the
Ramachandran plot provides information of protein conformations
using the φ and ψ angles between sequentially proximal residues,
our method can offer six-dimensional relative pose information. Dis-
tribution data are visualized in the form of continuous distributions
by using Gaussian distribution functions on SO(3) and R

3. Hence,
we discuss how the classical Gaussian functions can be generalized
to capture both positional and orientational data. The method is ap-
plied to 168 protein structures in the Protein Data Bank and results
are discussed.

KEYWORDS—interaction between residues, 6D relative pose,
protein data, data visualization, Gaussian function, axis-angle
representation, computational tool, continuous distribution

1. Introduction

More than 30 years ago, Ramachandran and Sasisekharan
(1968) showed that a sequence of amino acids comprising a
protein must have certain geometries, which do not allow cer-
tain relative positions and orientations between sequentially
adjacent pairs. In this formulation, the allowed/disallowed re-
gions are represented in thephi–psi (φ–ψ) plane. (See Fig-
ure 2 for the graphical definition ofφ,ψ angles.) In this paper,
we examine a related research issue: given a protein, we first
affix a frame of reference to the alpha-carbon atom (Cα) of
each amino acid in the structure. Then we record all possi-
ble positions and orientations between amino acids that are
proximal in space and distal in sequence, i.e., within certain
spatial/sequential distance cutoffs. Hence, in essence we seek

The International Journal of Robotics Research
Vol. 24, No. 2–3, February–March 2005, pp. 183-210,
DOI: 10.1177/0278364905050353
©2005 Sage Publications

a six-dimensional Ramachandran-like plot for sequentially
distant residue pairs.

There have been several studies on backbone–backbone,
backbone–side-chain and side-chain–side-chain interactions
in protein structures. Bahar and Jernigan (1996) studied the
statistical distribution of interactions between residues in
polypeptides and presented the existence of preferred distri-
butions for a given residue type.

Banavar, Maritan, and Seno (2002) showed that the distri-
bution of relative orientations of amino acids exhibits peaks at
specific angles. The relative orientation is represented by the
angle between two vectors, each of which joins next-nearest-
neighbor Cα atoms along the polypeptide chain. Therefore,
the vector for theith amino acid,C(i), connectsC(i−1) and
C(i + 1).

In three recent papers, Buchete, Straub, and Thirumalai
(2004a, 2004b, 2004c) describe orientational potentials for
protein simulations. They studied three types of interactions
(side-chain–side-chain, side-chain–backbone, and backbone–
backbone) with local reference frames of side chains and a
virtual interaction center on the backbone in the middle of the
peptide link.

The significant difference between our approach and
those previous related works is that we examine the three-
dimensional rotational data of the rigid-body displacement
relating the two local reference frames in addition to three-
dimensional positional (distance and direction) data in space.
We therefore provides full six-dimensional probability den-
sities, whereas others have focused on lower-dimensional
marginal densities.

Statistical probabilities using geometrical information of
orientation, position, or distance in polypeptide chains could
be a useful tool to develop efficient computational methods
for protein fold recognition and protein structure prediction,
and also for simulations of coarse-grained models of proteins.

Our statistical analysis of pose (position and orientation)
data of polypeptides also may be helpful for modeling protein

183



184 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / February–March 2005

structures.A relevant work by Kemp and Chen (1998) presents
worm-like polymer chains which model the low-temperature
protein structures. The worm-like polymer chains are used
to reproduce a helix ground state (coil–helix transition). The
paper discusses three parameters to measure the degree of
helicity within the chain.

Trovato, Ferkinghoff-Borg, and Jensen (2003) proposed a
model for a protein with two different interactions that mimic
the hydrophobic effect and the angular dependence of hydro-
gen bonding. The results in this paper could provide a guide-
line for generating new models of polypeptide chains. Pose
information can be extracted from new models and compared
with the results in our paper.

In our analysis, the pose data appear like a cloud in the
group of three-dimensional rigid-body motions, and we would
like to visualize this cloud in such a way that relative pose
relations can be understood clearly. In order to achieve this,
we plot “two-dimensional slices” of relative position data and
other slices of orientation data. Any “holes” in these plots
represent poses that one amino acid does not attain relative
to its neighbors. As a result, plots like Ramachandran’sφ–
ψ plot are formed. Now, however, the data are in a higher
dimension than the two-dimensionalφ–ψ plane, and the data
are for sequentially distant yet spatially proximal residues
rather than sequentially proximal residues. In order to apply
this study broadly, a large amount of data should be taken
from various proteins in the Protein Data Bank (PDB; Berman
et al. 2000). Hence, interpreting the large amount of data is a
significant problem.

When presented with a large set of point data, there are
two issues related to smoothing or filtering of the original
data. First, in order to visualize the data, it makes sense to
replace the original discrete points with a continuous density
or distribution. This distribution can be found by dividing up
the domain on which the data are located to form a histogram,
or by replacing each data point with a distribution. Then the
distribution for the whole data set is the sum of distribution
functions for each data point. Using this distribution method
is often preferable from the point of view of data visualiza-
tion because the result does not have the discontinuities that
are artifacts of histogram methods. On the other hand, it can
be more computationally intensive to use distribution meth-
ods. Another reason for replacing each individual data point
with a distribution is that the initial data may have some as-
sociated measurement error, and replacing each point with a
normalized distribution reflects this error. In contrast to the
other statistical analysis approaches in Bahar and Jernigan
(1996), Banavar, Maritan, and Seno (2002), Buchete, Straub,
and Thirumalai (2004a, 2004b, 2004c), our approach is able
to smooth data and reflect potential measurement errors in a
very natural way.

The second issue related to smoothing and filtering is re-
lated to the selection of proper distributions. In the case of data
on the line or in multidimensional Cartesian coordinates, the

Gaussian distribution is a popular choice because of its nice
properties and the physical nature of its origins. Hence, part of
this paper is about how the classical Gaussian functions can be
generalized to capture both positional and orientational data,
and then the application of these ideas to real protein data.

2. Review of Terminology and Notation from
Molecular Biophysics

Proteins are composed of 20 different amino acids: alanine
(Ala); arginine (Arg); asparagine (Asn); aspartic acid (Asp);
cysteine (Cys); glutamine (Gln); glutamic acid (Glu); glycine
(Gly); histidine (His); isoleucine (Ile); leucine (Leu); lysine
(Lys); methionine (Met); phenylalanine (Phe); proline (Pro);
serine (Ser); threonine (Thr); tryptophan (Trp); tyrosine (Tyr);
valine (Val). Amino acids are classified into three groups: the
hydrophobic group has Ala, Ile, Leu, Met, Phe, Pro, and Val;
the charged group hasArg,Asp, Glu, and Lys; the polar group
has Asn, Cys, Gln, His, Ser, Thr, Trp, and Tyr (Branden and
Tooze 1999).

Each amino acid can be divided into two parts: main-chain
atoms and side chains. The main-chain part has a central car-
bon atom (Cα) which is attached to a hydrogen atom (H), an
amino group (NH2), and a carboxyl group (COOH). How-
ever, the side chain bound to the Cα atom is different for each
different amino acid (Branden and Tooze 1999). See Figure 1.

A protein is a polypeptide chain consisting of amino acid
residues. These residues are what remains from amino acids
that have bonded by releasing a water molecule (one H and
one OH from each joining pair). Figure 2 shows a method
to separate a polypeptide chain into repeating units (Branden
and Tooze 1999). That is, a polypeptide chain is divided into
peptide units that go from one Cα atom to the next Cα atom.
Two “torsion angles” calledphi (φ) andpsi (ψ) provide a way
to characterize conformational information of protein back-
bones since bond lengths and bond angles are relatively fixed.
The rotation angle around the N–Cα bond is calledphi (φ)
and the rotation angle around the Cα–C′ bond from the same
Cα atom is calledpsi (ψ). Ramachandran and Sasisekharan
(1968) introduced a planar plot, now called the Ramachandran
plot, where the angles,φ andψ , are the axes, and allowable
regions in this plane are shaded.

Although the overall structure of a protein molecule can be
irregular, within each protein so-called secondary structures
show regularity. The secondary structures usually consist of
two types:alpha (α) helices or beta (β) sheets. They are char-
acterized by many consecutive residues with similar phi (φ),
psi (ψ) angles.

The alpha helix is a significant component of secondary
structures. Residues comprising an alpha helix have a phi an-
gle of about−60◦ and a psi angle of about−50◦ (Branden
and Tooze 1999). The alpha helix has 3.6 residues per turn,
which corresponds to 5.4 Å rise along the helical axis (1.5 Å
per residue; Branden and Tooze 1999). The second impor-
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Fig. 1. Schematic diagram of an amino acid. A central carbon atom (Cα) is attached to an amino group (NH2), a carboxyl
group (COOH), a hydrogen atom, and a side chain (R). This also shows how a local reference frame [ux , uy , uz] is determined
using Cα, C, and O (vectorscc andcv).

Fig. 2. Two peptide units. Each peptide unit has the Cα atom and the C′ = O group of amino acidn in addition to the NH
group and the Cα atom of amino acidn+1. Each such unit is planar and more or less rigid.

tant secondary structure is the beta (β) sheet. This structure
is constructed from a combination of several regions of the
polypeptide chain. These regions are calledβ strands. Beta
strands are generally from five to ten residues long and they
are found in the upper-left quadrant of the Ramachandran plot
(Branden and Tooze 1999). There are two types ofβ sheets:
parallel and antiparallel. In parallelβ sheets, the amino acids
in the alignedβ strands can all run in the same biochemical di-
rection. In antiparallelβ sheets, the amino acids in successive
strands can have alternating directions.

Whereas the Ramachandran plot is now a standard method
for describing constraints between adjacent amino acid
residues, no such tool exists for examining correlations be-

tween sequentially distant but spatially proximal residues.
Before attempting to generate Ramachandran-like plots with
six-dimensional pose data for residues that are sequentially
distant and spatially proximal, we first need to affix a local
coordinate frame to each amino acid. The origin of the local
frame resides at the Cα atom and the frame orientation is spec-
ified by three atoms, Cα, C, and O. In Figure 1, thex-axis of
the frame is obtained from a vectorcc that connects Cα and C.
The cross product ofcc andcv determines thez-axis, where
cv is a vector connecting Cα and O. Therefore, the unit vectors
pointing along thex-axis andz-axis are

ux = cc
||cc|| , uz = cc × cv

||cc × cv|| .
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By the cross product,uz×ux , the remainingy-axis is
determined.

3. Gaussian Functions for SO(3)

In this section we present a Gaussian function forSO(3), the
group of rotations in three-dimensional space. This is similar
to the folded normal density solution on the circle discussed
in the following subsection. This presentation builds on the
work of Chirikjian and Chétalet (2002) and Chirikjian and
Kyatkin (2000).

3.1. Gaussian Functions on the Line and Circle

Here we examine a distribution which is useful for smoothing
discrete data on the line and circle. A natural way to perform
smoothing is through diffusion.

The heat equation on the real line is

∂F

∂t
= K

∂2F

∂x2

whereF(x, t) is the temperature in a material. HereK is a
constant

√
k/(σρ) determined by the thermal conductivityk,

specific heatσ , and the densityρ of the material. The solution
of this equation subject to the initial conditionF(x,0) =
δ(x − 0) is known as a Gaussian or normal distribution, and
is given in Kreyszig (1999) by

F(x, t) = 1

2
√
πKt

e−x2/4Kt . (1)

A natural question may be how the Gaussian distribution
is generalized to spaces other than the real line. The next eas-
iest one-dimensional case is the unit circle. It may be shown
that the solution to the heat equation on the circle is obtained
by “wrapping” the solution of the heat equation on the line
around the circle, i.e., shifting all intervals on the line of the
form [2πn,2π(n+ 1)] for n ∈ Z to the interval[0,2π ], and
superposing the values of the function. This is written as

f (θ, t) =
∞∑

n=−∞
F(θ − 2πn, t). (2)

A nice feature of the expansion in eq. (2) is that whenKt is
small, only one or at most a few terms in the expansion need
to be retained since the Gaussian function decays so rapidly.
In the next subsection we discuss an analogous folded normal
distribution forSO(3).

3.2. Folded Normal Density Solution for SO(3)

If the axis direction and the angle of a rotation are denoted as
n = [n1, n2, n3]T ∈ S2 andθ ∈ [−π, π ], respectively, then

a rotation matrix can be written as (Murray, Li, and Sastry
1994; Chirikjian and Kyatkin 2000)

ROT[n, θ ] = exp(θN).

Here,S2 is the unit sphere andN is the skew-symmetric matrix
such thatNx = n × x for everyx ∈ R

3 and||n|| = 1. The
vectorn is called the dual vector ofN .

A natural way to define a Gaussian function forSO(3) is
as the solution of the heat equation, just as was done for the
line and circle in the previous subsection. That is, we seek the
solution of the equation

∂F

∂t
= K∇2

SO(3)F (3)

with an initial conditionF(R,0) = δ(R). The Laplacian op-
erator forSO(3) is written in the axis-angle parametrization
as (Varshalovich, Moskalev, and Khersonskii 1988; Chirikjian
and Kyatkin 2000)

∇2
SO(3) = ∂2

∂θ2
+ cotθ/2

∂

∂θ
(4)

+ 1

4 sin2 θ/2

(
∂2

∂λ2
+ cosλ

∂

∂λ
+ 1

sin2 ν

∂2

∂ν2

)
,

whereλ andν are spherical coordinates for the vectorn =
n(λ, ν).

We seek a solution that is a class function onSO(3) since
such functions have the useful property that they commute
under convolution with all other functions. Since every class
function forSO(3) is a function only of the angle of rotation
θ , eq. (3) simplifies to

∂F

∂t
= K

(
∂2F

∂θ2
+ cotθ/2

∂F

∂θ

)
. (5)

Chirikjian and Chétalet (2002) proposed one possible gen-
eralization of the concept of a Gaussian function for the group
SO(3). This solution is analogous to the folded normal density
solution (2) on the circle. This candidate Gaussian function is
modified in Lee (2002) as

F(θ, t) = C
eKt/4

(πKt)3/2

θ

sinθ/2
e−θ2/4Kt , (6)

which is folded around the circle defined by−π ≤ θ ≤ π , as
in eq. (2). This produces the Gaussian forSO(3), whereθ is
the angle from the axis-angle parametrization ofSO(3). The
scaling factorC is the mass we choose to give eachSO(3)-
Gaussian distribution. Ways of choosing this value are dis-
cussed in the next subsection, as are reasons for using this
function for representing orientational data.

3.3. Why Using the Usual Gaussian is Not Sufficient for
Orientational Averaging

The space of all vectorsx = θn(λ, ν), is often used to rep-
resentSO(3) as a solid ball of radiusπ in R

3 with antipodal
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points identified. For any parametrization(q1, q2, q3)of SO(3)
(including (x1, x2, x3), (θ, λ, ν) and Euler angles(α, β, γ )),
integration is performed as

∫
SO(3)

f (R)d(R) =
∫

q∈Q

f (R(q)) w(q)dq1 dq2 dq3

where w(q) is proportional to the Jacobian determinant
|det(J (R(q))| where the Jacobian matrixJ (R(q)) relates
rates of change inq to angular velocity andQ is the region
defined by all values ofq required to coverSO(3) once. In
the context of the parametrizations discussed in the previous
subsection,

|det(J (R(θ, λ, ν))| = 4 sin2(θ/2) sinν and

|det(J (R(x))| = 2(1 − cos‖x‖)
‖x‖2

(7)

wherex = θn(λ, ν) are the parameters we have used to dis-
play the data.

If one wants to displaySO(3) data as if they are data inR3,
then one needs to normalize correctly.That is, if one observes a
distributionρobs(R(q)) = ρ̃obs(q), one needs to recognize that
this has a built-in bias, and is related to the actual underlying
probability density as

ρ̃obs(q) = ρ̃act (q) w(q).

When there are discrete observed data, this relationship is
equivalent to the following:

ρ̃obs(q) = 1

n

n∑
i=1

δ(q − qi ) and

ρ̃act (q) = 1

n

n∑
i=1

δ(q − qi )/w(qi ). (8)

When smoothing orientational data, it is not sufficient to
replace each Dirac delta functionδ(q) in eq. (8) with a kernel
k(q) such as a Cartesian Gaussian function because this would
not preserve the mass contributed by each of the original data
points. However, a smoothing and renormalization of the form

δ(q − qi )/w(qi ) → k(q − qi )∫
q∈Q k(q − qi )w(q)dq

would preserve mass.
TheSO(3)Gaussian function effectively has this geometric

normalization built in already, and so no additional normal-
ization is required. It also has the added feature that when it is
shifted asf (R(q)) → f (RT (qi )R(q)) it does not distort in
SO(3), whereas a transformation of the formk(q) → k(q−qi )
potentially can lead to significant distortions inSO(3) as the
variance of the kernel becomes large.

We now address the minor issue of how to chooseC, which
involves a normalization that depends on a subjective choice
rather than being dictated by geometry. Integrating the folded
version of eq. (6) overSO(3) yields

π∫
θ=−π

π/2∫
ν=0

2π∫
λ=0

f (θ, t)4 sin2(θ/2) sinνdγ dvdθ = 16C.

Therefore, a choice ofC = 1/16 will ensure that theSO(3)-
Gaussianf (θ, t) has unit mass under this definition ofSO(3)
integral. However, often theSO(3) integral is normalized so
that

∫
SO(3)

1 dR = 1 rather than 8π2, which is what is obtained
when usingw(θ, ν, λ) = 4 sin2(θ/2) sinν (Chirikjian and
Kyatkin 2000). If this is done, one would usew(θ, ν, λ) =
(1/2π2) sin2(θ/2) sinν. In this case, one should defineC =
π2/2 in order for each Gaussian to have unit mass. Of course,
if one wants the contribution fromn points to be a probability
density, an additional division byn would be required.

4. Analysis of Protein Pose Statistics Using
Generalized Gaussian Functions

The PDB (Berman et al. 2000) is a huge collection of infor-
mation about the structure (x–y–z position of atoms) within
thousands of different proteins. Various experimental meth-
ods are used to determine these structures, and some methods
have larger error than others. The statistical analysis presented
here is based on some of the most accurate data.

Table 1 lists the PDB codes for 168 structures used in our
analysis. All together there are 37,971 residues in these pro-
teins. Table 2 shows the number of residues for each amino
acid type. These 168 are a subset of the structures used by
Chakrabarti and Debnath (2001). The structures were chosen
from the PDB at the Research Collaboratory for Structural
Bioinformatics (RCSB; http://www.rcsb.org/pdb/).

The resolution of the structures is 2.0 Å or better, and the
R-factor is less than 20%. The resolution of the diffraction
data depends on how well ordered the crystals are. In the pro-
cess of crystallographic refinement of a model, the model is
changed to minimize the difference between the experimen-
tally observed diffraction amplitudes and those calculated for
a hypothetical crystal containing the model instead of the real
molecule. This difference is expressed as an R-factor (Bran-
den and Tooze 1999). In general, 2.0 Å resolution and 20%
R-factor are considered sufficiently good. The maximum se-
quence identity between any two of the polypeptide chains is
≤25% (Branden and Tooze 1999). This ensures that our statis-
tics are not biased because we sample a set of non-homologous
proteins.

4.1. Distributions of Relative Orientation Between Residues

Figures 3–8 show plots of relative orientation data between
two local coordinate frames affixed to the Cα of amino acids.
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Table 1. PDB Codes for the Structures Used in Our Analysis of Relative Pose

153L 16PK 1A3C 1A48 1A6M 1A7S 1A8D 1A8E
1ABA 1ADS 1AK1 1AMF 1AMM 1AQB 1ARU 1AUN
1AWD 1AXN 1AYL 1AZO 1B0Y 1B6G 1BDO 1BEA
1BEC 1BFD 1BFG 1BG6 1BGF 1BJ7 1BK0 1BM8
1BRT 1BS9 1BTN 1BXA 1BY1 1BY2 1C3D 1C52
1CEO 1CEX 1CFB 1CNV 1CPO 1CPQ 1CSH 1CV8
1CVL 1DCS 1DHN 1DIN 1DUN 1ECD 1EDG 1EUS
1EZM 1FIT 1FNA 1FUS 1G3P 1GCI 1GKY 1GOF
1GSA 1HFC 1HKA 1HOE 1HXN 1IAB 1IXH 1JDW
1JER 1KNB 1KOE 1LAM 1LCL 1LIS 1LKI 1LOU

1MDC 1MLA 1MML 1MOQ 1MRJ 1MSK 1MUN 1NAR
1NIF 1NKR 1NLR 1NLS 1NOX 1NP4 1NPK 1OAA
1OPY 1PBE 1PGS 1PHF 1PLC 1PNE 1POA 1POC
1PPN 1PTY 1RCF 1REC 1RHS 1RIE 1RZL 1SFP
1SKF 1SMD 1SRA 1SUR 1SVY 1TCA 1TIB 1TML
1VHH 1VID 1VLS 1VNS 1WAB 1WHI 1WHO 1XNB
1YCC 1YGE 2A0B 2ABK 2ACY 2AYH 2CBP 2CTC
2DRI 2DTR 2EBN 2END 2GAR 2GDM 2HBG 2HFT
2ILK 2PII 2PTH 2PVB 2QWC 2RN2 2SAK 2SNS
3CHY 3CLA 3CYR 3ENG 3GRS 3LZT 3PTE 3SEB
3SIL 3TDT 3TSS 3VUB 5P21 6CEL 7RSA 8ABP

Table 2. Number of Residues for Each Amino Acid Type

Ala Arg Asn Asp Cys Gln Glu Gly His Ile

3218 1720 1882 2231 601 1415 2128 3029 834 1960
(8.47 %) (4.53 %) (4.96 %) (5.88 %) (1.58 %) (3.73 %) (5.60 %) (7.98 %) (2.20 %) (5.16 %)

Leu Lys Met Phe Pro Ser Thr Trp Tyr Val

3108 2143 729 1502 1893 2522 2315 616 1495 2630
(8.19 %) (5.64 %) (1.92 %) (3.96 %) (4.99 %) (6.64 %) (6.10 %) (1.62 %) (3.94 %) (6.93 %)

Here amino acids are sequentially distant and spatially proxi-
mal. Two cutoff values are used so that the sequential distance
of residue pairs is three or higher and the spatial distance of
residue pairs is less than 10.0 Å.

Each figure consists of two plots. The left plot displays rel-
ative orientation data in the form of discrete points on a planar
slice. The coordinates of each point are the three components
of θn wheren = [n1, n2, n3]T is the rotation axis andθ is
the rotation angle. Both plots are planar slices that are cut at
the origin and perpendicular to the axis ofn3. Note that, in
general, the slice atθn3 = 0 is the most populated one. The
thickness of each slice isπ/10.

In addition to visualization with points, the relative ori-
entation data are visualized with a continuous distribution
function, which is the sum of Gaussian functions forSO(3)
described in Section 3.2. In this approach each dot on the left
plot is considered as a heat source, i.e., the initial condition

in the form of the delta function. Then the distribution for all
the points is the sum of distribution functions for each data
point. Note that a scaled version of eq. (6) was used to produce
plots and the scaling value was 0.1. Here, the parameterKt

in eq. (6) was set to 0.05. The right plot of each figure illus-
trates the sum of diffusions of each heat source in the form of
contours. Each contour is labeled as a number. Higher num-
bers mean that points (heat sources) are concentrated. We ob-
serve in each figure that locations of clusters in both plots are
identical.

Most hydrophobic–hydrophobic pairs appear to have mul-
tiple clusters on the slice. In particular, pairs associated with
valine have clusters near the center of the slice. Figure 3
displays the distribution of relative orientation data of the
leucine–valine pair.

Every charged–charged pair is found to have multiple sym-
metrical clusters near the center along a line. This is due to
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(a) (b)

Fig. 3. Distribution of relative orientation data of the leucine–valine pair.

pairs within the sameα helix, which is shown in Figures 10
and 12(d). For instance, Figure 4 is the plot for the arginine–
glutamic acid pair.

No common attribute is observed in polar–polar amino
acid pairs. Figure 5 shows the distribution for the glutamine–
threonine pair. One larger clump is found near the center.

Many of the hydrophobic–charged pairs are found to have
multiple clusters. Figure 6 displays the distribution for the
alanine–glutamic acid pair where four symmetric clusters are
seen along the line. This plot appears quite similar to the plot
of the arginine–glutamic acid pair, which is in Figure 10(a).
The alanine–glutamic acid pair will be revisited later with
plots of relative orientational data for several values ofθn3,
which are in Figure 9.

In polar–charged pairs, pairs associated with glutamine
show two symmetrical clusters along a line. For instance, Fig-
ure 7 is for the glutamine–glutamic acid pair. This plot also
looks similar to the plot of the alanine–glutamic acid pair, but
the plot of glutamine–glutamic acid pair appears sparser.

No common attribute is found in polar–hydrophobic amino
acid pairs. Figure 8 shows the distribution for the tyrosine–
isoleucine pair where we see concentrated areas near the cen-
ter of the slice.

A set of plots in Figure 9 displays how the relative orienta-
tion data of the alanine–glutamic acid pair appear as the value
of θn3 changes from−0.94 to 1.26. Clusters appear to move
from upper right to lower left asθn3 increases, and they are
not seen in the slices atθn3 ≤ −0.94 orθn3 ≥ 0.94.

Now we discuss the sources of such clusters in distribu-
tion plots of relative orientation data in order to extract more

detailed information about clusters. In particular, residues in
secondary structures, i.e., helices or sheets, draw more atten-
tion. We also examine if clusters are related to the sequential
distance of residue pairs. Since we use the number two for the
cutoff value in the sequential distance, pairs that have the se-
quential distance of 3, 4, 5 were investigated more thoroughly.

For orientation data, we take the arginine–glutamic acid
pair for example. Figure 10 illustrates distribution plots of
relative orientation of the pair whenθn3 = 0.0. It is observed
in Figure 10(a) that four clusters labeled as a–d exist near the
center of the slice. In Figure 10(b), we can find that those clus-
ters are from residue pairs within the sameα helix. However,
contributions of other secondary structures like 310 helices or
β sheets to the clusters are negligible, and thus they are omit-
ted. If we observe Figures 10(c) and 10(d), clusters a and d
are from pairs with the sequential distance of 3 and clusters b
and c are from pairs with the sequential distance of 4.

Those four clusters in Figure 10(a) are examined in another
way. The mean of relative orientation matrices of each cluster
is calculated and is displayed in Figure 11. The mean for each
cluster is obtained by finding a rotation matrixRm to minimize
the following cost function

C(Rm) =
n∑
i=1

‖Rm − Ri‖2

whereRm,Ri ∈ SO(3). Gradient descent onSO(3) is used
to solve forRm. In analogy with the definition of the par-
tial derivative (or directional derivative) of a scalar function
of R

N -valued argument, we can define differential operators
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(a) (b)

Fig. 4. Distribution of relative orientation data of the arginine–glutamic acid pair.

(a) (b)

Fig. 5. Distribution of relative orientation data of the glutamine–threonine pair.
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(a) (b)

Fig. 6. Distribution of relative orientation data of the alanine–glutamic acid pair.

(a) (b)

Fig. 7. Distribution of relative orientation data of the glutamine–glutamic acid pair.
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(a) (b)

Fig. 8. Distribution of relative orientation data of the tyrosine–isoleucine pair.

which act on functions of rotation-valued argument. Refer
to Chirikjian and Kyatkin (2000) and Lee, Fichtinger, and
Chirikjian (2002) for the definition of differential operators
and a specific example of the gradient descent method. The
three column vectors ofRm = [u, v,w] are illustrated in Fig-
ure 11.

It is observed thatRm of cluster a andRm of cluster b
are nearly equal to the inverse ofRm of cluster d and the
inverse ofRm of cluster c, respectively. This is explained by
recalling that clusters a and d are made from some pairs with
the same sequential distance and clusters b and c are from
other pairs with the same sequential distance. In general, the
pose distribution of residue pairs(i, j) that are sequentially
apart by+n (i − j = +n) is related to the pose distribution
of pairs that are sequentially apart by−n by the following
expression

fij (g) = fji(g
−1),

whereg ∈ SE(3) andfij (g) is the pose probability density
of a frame attached atj relative to a frame attached ati.
If g = (R,b) whereR ∈ SO(3) and b ∈ R

3, this can be
written asfij (R,b) = fji(R

T,−RTb). Note that integrating
over position yieldsfij (R) = fji(R

T), whereas integrating
over orientation does not yield any useful relationship.

Residue pairs in secondary structures are examined in more
detail. The set of plots in Figure 12 displays distributions
of relative orientation data of all the residue pairs that are
within the sameα helix. Hereθn3 varies from 0.0 to 0.94.
Note in Figure 12(d) (θn3 = 0.0) that a symmetry exists in
the clusters. In fact, we can picture a distribution plot for a
negative value ofθn3 easily using the symmetry and the plot

for the corresponding positiveθn3. We see from these plots
that clusters move to the lower-left area and disappear asθn3

grows.
As shown in Figure 13(a), the relative orientation data of

pairs that are in differentα helices are distributed widely. In
other cases where pairs are either within the same 310 helix
or in different parallel/antiparallel strands, clusters are found.
See Figures 13(b), 13(c), and 13(d). We excluded pairs that
are either in different 310 helices or within the same paral-
lel/antiparallel strands because their portions are negligibly
small.

Residue pairs that are both sequentially and spatially prox-
imal are now discussed. The sequential distance of every pair
is either 1 or 2, and the spatial distance is less than 10.0Å. The
distribution of relative orientation data of all types of pairs is
displayed in Figure 14. The value ofθn3 varies from 0.0 to
1.26. Several clusters appear in each plot and they can be dif-
ferentiated by the sequential distance. For example, clusters
labeled as a, c, e in Figure 14(a) have the sequential distance
of 2, while the sequential distance of clusters b and d is 1. In
Figure 14(d), the sequential distance of clusters b and c is 1
and that of cluster a is 2. We observe that concentrated areas
with the sequential distance of 1 become larger as the value
of θn3 grows.

4.2. Distributions of Relative Position between Residues

Now we begin to discuss the distribution of relative position
data of residue pairs whose sequential distance is 3 or higher
and whose spatial distance is less than 10.0 Å. Figures 15–20
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(a) θn3 = -0.94 (b) θn3 = -0.63

(c) θn3 = -0.31 (d) θn3 = 0.00

Fig. 9. Distribution of relative orientation data of the alanine–glutamic acid pair asθn3 varies (continued on next page).
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(e) θn3 = 0.31 (f) θn3 = 0.63

(g) θn3 = 0.94 (h) θn3 = 1.26

Fig. 9. (continued from previous page).
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(a) All types of pairs (b) Pairs within the same α helix

(c) Pairs with the sequential distance of 3 (d) Pairs with the sequential distance of 4

Fig. 10. Distribution of relative orientation data of the arginine–glutamic acid pair atθn3 = 0.0.
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(a) Cluster a (b) Cluster b

(c) Cluster c (d) Cluster d

Fig. 11. Mean of orientation of clusters of the arginine–glutamic acid pair atθn3 = 0.0.
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(a) θn3 = 0.0 (b) θn3 = 0.31

(c) θn3 = 0.63 (d) θn3 = 0.94

Fig. 12. Distribution of relative orientation data of all types of pairs that are within the sameα helix.
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(a) θn3 = 0.0 (b) θn3 = 0.0

(c) θn3 = 0.0 (d) θn3 = 0.0

Fig. 13. Distribution of relative orientation data: (a) all types of pairs in differentα helices; (b) all types of pairs within the
same 310 helix; (c) all types of pairs in different parallel strands; (d) all types of pairs in different antiparallel strands.
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(a) θn3 = 0.0 (b) θn3 = 0.31

(c) θn3 = 0.94 (d) θn3 = 1.26

Fig. 14. Distribution of relative orientation data of all types of pairs that are both sequentially and spatially proximal.
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show plots of relative position data between the local coordi-
nate frames of two amino acids. The left plot of each figure
displays the relative position data in the form of points. The
plots are planar slices that are cut at the origin and perpendic-
ular to thez-axis. The thickness of each slice is 1.0 Å. Note
that the overall shape of each plot appears like a ring. This is
because steric effects limit amino acids from coming to close
to each other.

In order to visualize the positional data with a continu-
ous distribution function, we use the usual three-dimensional
Gaussian function which is the three-dimensional version of
eq. (1). Here the parameterKt is set to a value between 0.3
and 0.9.

Most hydrophobic–hydrophobic pairs appear to have mul-
tiple clusters on the slice. Since hydrophobic residues make
non-specific interactions, this result confirms the expectation.
In particular, pairs associated with valine have three or four
clusters along a circle whose radius is about 5.0 Å, i.e., half
of the cutoff value. For example, Figure 15 displays the dis-
tribution of relative position data of the leucine–valine pair.

Every charged–charged pair is found to have two clusters
along a circle with the radius of about 5.0 Å. In this case,
electrostatic interactions are specific, so preferred orientations
are shown. The radius of 5.0 Å is thought to be related to the
distance above which salt bridges are unstable (Kumar and
Nussinov 1999). Figure 16 is for the glutamic acid–lysine
pair.

In polar–polar amino acid pairs, only pairs with glutamine
show two clusters. The distribution for asparagine–glutamine
pair is illustrated in Figure 17. This plot looks similar to the
plot of glutamic acid–lysine pair. In terms of hydrophobic-
ity scales, the hydrophobicity of glutamine and asparagine is
adjacent to that of glutamic acid and lysine (Lesk 2001).

Some of the charged–hydrophobic pairs are found to have
several clusters. Since the charged residues may have aliphatic
side chains, they form non-specific hydrophobic interactions
with the hydrophobic interaction. Figure 18 shows the distri-
bution for the arginine–valine pair. This plot looks similar to
that of the leucine–valine pair in Figure 15 but the plot of the
arginine–valine pair looks sparser. This is because the number
of residues for arginine is much smaller than that for leucine
in the data set used in this analysis (see Table 2).

In polar–charged pairs, pairs with glutamine show two
small clusters along a circle whose radius is about 5.0 Å. For
instance, Figure 19 shows the distribution for the glutamine–
lysine pair. This also seems to be related to the hydrophobicity
of the residues.

In hydrophobic–polar pairs, strong clusters are not found.
Figure 20 displays the distribution for the proline–threonine
pair. Note that although proline belongs to the hydrophobic
group, it is the least hydrophobic in the group.

A set of plots in Figure 21 displays how the relative position
data of the glutamic acid–lysine pair are distributed as the
value ofz changes from−3.0 to 2.0 Å. Clusters appear to

move from upper right to lower left by clockwise rotation as
z increases. This is thought to be related to helix geometry
because helices are the largest contributor to clusters in this
residue pair, which is explained more clearly in Figure 22.

As we did for orientation data earlier, we discuss sources
of clusters in distribution plots of relative position data to
extract more detailed information about clusters. Again, more
attention was paid to residues in secondary structures. We
also examined the relationship between sequential distance
and each cluster. Pairs that have the sequential distance of 3,
4, 5 were investigated thoroughly. For instance, we take the
relative position data of the glutamic acid–lysine pair.

Figure 22 illustrates distribution plots of the relative po-
sition of the pair whenz = 0.0. From Figure 22(a), we see
that two clusters labeled as a and b exist along a circle whose
radius is about 5.0 Å. Looking at Figure 22(b), we understand
that the major contributors of those clusters are residue pairs
within the sameα helix. However, contributions of other sec-
ondary structures like 310 helices orβ sheets to the clusters
are negligible, and thus they were not included in the plots.
If we observe Figures 22(c) and 22(d), clusters a and b are
mostly from pairs with the sequential distance of 4.

A set of plots in Figure 23 displays distribution plots of
relative position of the pair whenz = −3.0 Å. From Figure
23(a), we can find one bigger cluster labeled as a and one
smaller cluster labeled as b. From Figure 23(b), we see that
those clusters are from residue pairs within the sameα helix.
Looking at Figures 23(c) and 23(d), cluster a is from pairs
with the sequential distance of 3 and cluster b is mostly from
pairs with the sequential distance of 5.

Residue pairs in secondary structures are examined in more
detail. A set of plots in Figure 24 displays distributions of
relative position data of all types of pairs that are within the
sameα helix. Herez varies from 0.0 to 4.0 Å. We see from
these plots that most clusters are concentrated in the lower
left area and disappear asθn3 grows.

Figure 25(a) shows that the relative position data of pairs
that are in differentα helices is distributed widely. For other
types of pairs, clusters are found in the distribution of rela-
tive position data. In particular, we observe similar patterns in
the distributions of relative position of pairs in different par-
allel strands (Figure 25(c)) and pairs in different antiparallel
strands (Figure 25(d)). We excluded pairs that are either in
different 310 helices or within the same parallel/antiparallel
strands because their portions are negligibly small.

Residue pairs which are both sequentially and spatially
proximal are now discussed. Again, the sequential distance of
every pair is either 1 or 2 and the spatial distance is less than
10.0 Å. A set of plots in Figure 26 displays how the relative
position data of all types of pairs are distributed as the value
of z changes from 0.0 to 5.0 Å. It is notable that clusters
can be separated by the sequential distance of residue pairs.
In Figures 26(a), 26(b), and 26(c), the sequential distance of
inner clusters is 1 and that of outer clusters is 2. Clusters with



Lee and Chirikjian / Alpha-Carbons in Proteins 201

(a) (b)

Fig. 15. Distribution of relative position data of the leucine–valine pair.

(a) (b)

Fig. 16. Distribution of relative position data of the glutamic acid–lysine pair.
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(a) (b)

Fig. 17. Distribution of relative position data of the asparagine–glutamine pair.

(a) (b)

Fig. 18. Distribution of relative position data of the arginine–valine pair.
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(a) (b)

Fig. 19. Distribution of relative position data of the glutamine–lysine pair.

(a) (b)

Fig. 20. Distribution of relative position data of the proline–threonine pair.
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(a) z = -3.0 (b) z = -1.0

(c) z = 0.0 (d) z = 2.0

Fig. 21. Distribution of relative position data of the glutamic acid–lysine pair as the value ofz varies.
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(a) All types of pairs (b) Pairs within the same α helix

(c) Pairs with the sequential distance of 4 (d) Pairs with the sequential distance of 5

Fig. 22. Distribution of relative position data of the glutamic acid–lysine pair atz = 0.0.
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(a) All types of pairs (b) Pairs within the same α helix

(c) Pairs with the sequential distance of 3 (d) Pairs with the sequential distance of 5

Fig. 23. Distribution of relative position data of the glutamic acid–lysine pair atz = −3.0 Å.



Lee and Chirikjian / Alpha-Carbons in Proteins 207

(a) z = 0.0 (b) z = 1.0

(c) z = 2.0 (d) z = 4.0

Fig. 24. Distribution of relative position data of all types of pairs that are within the sameα helix.
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(a) z = 0.0 (b) z = 0.0

(c) z = 0.0 (d) z = 0.0

Fig. 25. Distribution of relative position data: (a) all types of pairs in differentα helices; (b) all types of pairs within the same
310 helix; (c) all types of pairs in different parallel strands; (d) all types of pairs in different antiparallel strands.
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(a) z = 0.0 (b) z = 2.0

(c) z = 3.0 (d) x = 5.0

Fig. 26. Distribution of relative position data of all types of pairs that are both sequentially and spatially proximal.

the sequential distance of 1 are no longer seen in the plot of
z = 5.0 in Figure 26(d).

5. Conclusion

In this paper patterns in the relative position and orientation
between alpha-carbons in proteins in the PDB were sought.
Quantitative methods for characterizing such patterns may
have applications in protein structure prediction and drug de-
sign. We have presented a new visualization method to de-
scribe pose distribution of amino acid pairs that are proximal
in space and distal in sequence. Distribution data were visual-

ized in the form of continuous distributions by using Gaussian
distribution functions onSO(3) andR

3. Hence, we discussed
how the classical Gaussian functions can be generalized to
capture both positional and orientational data. The method
was applied to 168 proteins in the PDB, whose resolution is
2.0 Å or better and whose R-factor is less than 20%. Two cut-
off values were used so that the sequential distance of residue
pairs is 3 or higher and the spatial distance of residue pairs is
less than 10.0 Å.

The pose distribution for each amino acid pair type was
examined, and characteristics for each group type (e.g.,
hydrophobic–hydrophobic) were discussed. Multiple clus-
ters were found in many group types and sources of such
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clusters in distribution plots were also discussed. In sev-
eral cases, hydrophobicity and electrostatic properties of
residue types are found to be important factors. For exam-
ple, multiple clusters in the distribution of positional data for
hydrophobic–hydrophobic pairs are due to the fact that hy-
drophobic residues make non-specific interactions. In the case
of charged–charged pairs, preferred orientations are shown
because electrostatic interactions are specific.

It was also found that residues in secondary structures, i.e.,
helices or sheets, made significant contributions. We exam-
ined intensively amino acid pairs with the sequential distance
of 3, 4, 5. The largest parts of clusters were found to be from
residue pairs within the sameα helix. For comparison, residue
pairs which are both sequentially and spatially proximal were
investigated. Distribution plots of relative orientation data of
all types of pairs were also displayed. It was found that several
clusters appeared in each plot and they could be differentiated
by the sequential distance. The mathematical techniques of
pose analysis have been a useful tool to characterize the dis-
tribution of relative position and orientation of residue pairs.

Developing statistical potentials using our analysis of pose
data in proteins will be explored in future work. This is ex-
pected to be a useful tool to develop efficient computational
methods for protein fold recognition and protein structure pre-
diction, and also for simulations of coarse-grained models of
protein conformational fluctuations. The results in our pa-
per could be helpful as a guideline for generating new mod-
els of polypeptide chains. Pose information can be extracted
from new models and compared with the results in our paper.
We are also interested in extending the results by applying
the approach of pose analysis to side chains in proteins and
also developing an effective computer software tool for three-
dimensional data visualization.
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