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ABSTRACT Orientational preferences between interacting helices within globular proteins have been studied extensively over
the years. A number of classical structural models such as ‘‘knobs into holes’’ and ‘‘ridges into grooves’’ were developed
decades ago to explain perceived preferences in interhelical angle distributions. In contrast, relatively recent works have
examined statistical biases in angular distributions which result from spherical geometric effects. Those works have concluded
that the predictions of classical models are due in large part to these biases. In this article we perform an analysis on the largest
set of helix-helix interactions within high-resolution structures of nonhomologous proteins studied to date. We examine the
interhelical angle distribution as a function of spatial distance between helix pairs. We show that previous efforts to normalize
angle distribution data did not include two important effects: 1), helices can interact with each other in three distinct ways which
we refer to as ‘‘line-on-line,’’ ‘‘endpoint-to-line,’’ and ‘‘endpoint-to-endpoint,’’ and each of these interactions has its own
geometric effects which must be included in the proper normalization of data; and 2), all normalizations that depend on
geometric parameters such as interhelical angle must occur before the data is binned to avoid artifacts of bin size from biasing
the conclusions. Taking these two points into account, we find that there are very pronounced preferences for helices to interact
at angles of approximately 6160 and 6208 in the line-on-line case. This pattern persists when the closest a-carbons in the
helices vary from 4 to 12 Å. The endpoint-to-line and endpoint-to-endpoint cases also exhibit distinct preferences when the data
is normalized properly. Analysis of the local structural interactions which give rise to these preferences has not been studied
here and is left for future work.

INTRODUCTION

The protein folding problem has been a central topic in

biophysics and structural biology for more than a quarter

century (Anfinsen, 1973; Creighton, 1992). A number of ab

initio methods for predicting the fold of a protein have been

proposed (Srinivasan and Rose, 1995; Bonneau and Baker,

2001). And although it is believed that the principles driving

protein folding are known (Baldwin and Rose, 1999a,b), the

issue of exactly what chemical potentials to use to capture

the behavior of proteins has been the subject of some debate.

Proposed potentials have ranged from all-atom empirical

models and explicit solvent (Weiner and Kollman, 1981) to

those in which the mediating effects of solvent are built in

implicitly (Maiorov and Crippen, 1992; Cheung et al., 2002),

and to those derived from coarse-grained analysis of

structures deposited in the Protein Data Bank (Miyazawa

and Jernigan, 1985, 1996; Sippl, 1995). Any of these

potentials can then be used together with energy minimiza-

tion, conformational sampling, or dynamics techniques

(Brooks et al., 1983; Skolnick and Kolinski, 1999; Abagyan,

1993) to try to predict the fold of a protein.

Although methods for protein secondary structure pre-

diction are relatively reliable, developing methods for

tertiary structure prediction based on first principles remains

a challenging topic. Determining how elements of secondary

structure assemble into proteins is therefore a critical inter-

mediate step in solving the folding problem.

Given that the a-helix is a common and well-characterized

secondary structure, and motifs built from a-helices form

key elements of protein tertiary structure, many researchers

have sought to determine principles for predicting the

aggregation and contact patterns in a-helices (Crick, 1953;

Levitt and Chothia, 1976; Richmond and Richards, 1978;

Chothia et al., 1977, 1981; Finkelstein and Ptitsyn, 1987;

Murzin and Finkelstein, 1988). Classical works have sought

to explain helix-helix packing angle preferences in proteins

based on models of steric fit and optimal packing of helices

around hydrophobic cores. These models include ‘‘knobs-

into-holes’’ (Crick, 1953), ‘‘ridges-into-grooves’’ (Chothia

et al., 1977, 1981), and ‘‘polyhedral helix globule’’ (Fink-

elstein and Ptitsyn, 1987; Murzin and Finkelstein, 1988). In

contrast, recent works have analyzed entries in the Protein

Data Bank (PDB) (Berman et al., 2000) to look for patterns

in the way helices interact in globular and membrane

proteins (Lin et al., 1995; Lesk, 2001; Adamian and Liang,

2001; Bowie, 1997a,b; Fleming and Richards, 2000;

Fleishman and Ben-Tal, 2002). Other works have compared

the forces which stabilize globular and membrane proteins as

a way to predict their assembly (Eilers et al., 2002; Walther

et al., 1996; Robinson and Sligar, 1993; Efimov, 1979;

Weaver, 1992; MacKenzie and Engelman, 1998; Zhou et al.,

2000).

Database-driven approaches have the appeal that one can

examine helix-helix pairs in a very large set of proteins,

examine their crossing angle, and presumably make pre-

dictions based on these observations. Recently, however,

several works have modeled the inherent statistical bias in
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distributions of interhelical angle due to spherical geometric

effects (Bowie, 1997a) and fundamental differences in inter-

actions between infinite and finite helix axes (Walther et al.,

1998). Other works have examined the distribution of

interhelix distance in interacting pairs (Reddy and Blundell,

1993). Most recently, a new analysis of helix-helix angle

preferences has been performed in Trovato and Seno (2003).

However, to our knowledge no prior work has investigated

the joint distribution of interhelix distance and angle in

proteins.

Bowie (1997a) and Walther et al. (1998) have shown in

recent articles that several effects of orientational statistics

naturally bias the number of observed structures to be

greatest when a-helices cross near right angles. That is not to

say that a peak in angular distributions of interacting helices

is observed at 6908, but rather that observations without the

proper normalization are biased toward those angles. In both

Bowie (1997a) and Walther et al. (1998) it is reasoned that if

one bins helix-helix angles to form a histogram, that this

histogram should then be normalized by a histogram

generated by all random noninteracting helix pairs to get

an unbiased histogram. The core ideas in these articles are

significant contributions to the statistical analysis of

structural data in the PDB, though as shall be explained

shortly, the particular implementations (and hence the

resulting conclusions) must be reexamined for several

reasons. In particular, while the amount of data available

on helix-helix pairs in the PDB is substantial, it is not

sufficient to generate robust histograms with very small bins.

In fact, in Bowie (1997a) and Walther et al. (1998) the bin

size used is 108 to generate the histogram of interhelical

angle before normalization. Those works then normalize this

histogram by the histogram generated by the bias (which is

of the form sin b and sin2 b, in those articles, respectively).

The problem with this approach is that it depends on the size

of the bins used. As we shall show, this leads to the incorrect

inference that antiparallel helix packings at 1808 are pre-

ferred when the bias is removed.

Our modifications to the conceptual contributions in

Bowie (1997a) and Walther et al. (1998) are that: 1), the

correct normalization should be applied to each measure-

ment before it is binned rather than after; and 2), all possi-

ble types of interactions (not only line-on-line) should be

captured. Whereas no distinction between contact classes

was made in Bowie (1997a), only line-on-line contacts were

considered in Walther et al. (1998). There are two other

contact classes which must be considered: endpoint-to-line

and endpoint-to-endpoint. Each of these classes requires its

own different normalization, and each class should be treated

separately from the others. A detailed explanation of the

importance of the effects of proper normalization and bin-

ning is given in the Appendix.

In addition, each measurement should be replaced with

a probability density function (we use a Gaussian kernel) to

account for measurement error to avoid binning artifacts

altogether. A second modification results from the fact that

there is another bias that should be removed which has not

been observed in previous articles. Namely, the number of

ways that helices can interact depends on the distance

separating them, and therefore distance-dependent biases

must be removed in addition to the previously observed

orientation-dependent biases. All of these biases must be

negated before binning is performed. In principle, if the

amount of available experimental data were tremendously

larger than it is, it would be possible to make very fine bins

and follow the procedures outlined in Bowie (1997a) and

Walther et al. (1998), but with the amount of data currently

available, normalization must precede binning to avoid

artifacts due to the size and location of bins.

The emphasis in our article is different for several reasons,

including those listed above. In part this is because we are

interested in examining how interhelical angle distributions

vary with the relative spatial distance between the helices. In

other words, one of our goals is to determine how persistent

the angle preferences are as the spatial distance between

helices is varied. We also explain statistical effects not

accounted for in prior works that reveal clear preferences in

helix-helix angles.

METHODS

We examine 1290 protein structures which have been

resolved to 2.0 Å or better and possess \20% of their

sequences in common. This data is obtained from Wang and

Dunbrack (2003). Within these structures there are 12,207

helices (the vast majority of which are a-helices) and there

are 90,438 helix-helix pairs (many of which do not represent

helices in direct contact). We examine the distribution of

helix-helix angle over all of these pairs. The full angular

distribution is broken down according to the spatial distance

that separates helices from each other. Interhelical distance is

measured in two ways: 1), along the shortest line segment

connecting each finite helix axis; and 2), by finding the

minimal distance between every pair of a-carbons in the two

helices under consideration. These two methods for

measuring interhelical distance are illustrated in Fig. 1.

The angle distributions examined here are over the range

of (�180, 1808), corresponding to helix axes with di-

rectionality. We number residues and helices sequentially in

the usual way, starting at the N-terminus. We assign a unit

vector along the helix axis (choosing the direction

representing an increase in sequence number over the

direction representing decrease in sequence number). The

angle between two helices is considered to be positive if

helix 2 is rotated clockwise relative to helix 1 by an angle

between 0 and 1808 about the unique line segment pointing

from the axis of helix 1 to that of helix 2 and intersects both

axes at right angles. This convention does not depend on the

numbering of the helices after the direction of the helix unit
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vector is established. Such a line of closest approach will

always exist for infinitely long helix axes. In contrast, a-

helices have finite length, and so a distinction must be made

between the axis of the helix and that finite part of the axis

which lies inside the helix. We reiterate the distinction made

in Walther et al. (1998) and call the ideal case an infinite axis
and the actual case a finite axis. There are three very different
scenarios that are possible: 1), the line of closest contact

between infinite axes intersects both finite axes at right

angles, in which case a line-on-line contact is made; 2), the

line of closest contact between two finite axes meets one helix

at its end and the other at a right angle, in which case an

endpoint-to-line contact results; and 3), both helices interact

only at their ends, in which case an end-to-end contact results.

We break the discussion into the three cases. In the case

when the helices interact by crossing such that the line of

closest approach in Fig. 1 intersects the interior of both finite

axes, then the distances R and D are on average related as R
¼ D 1 2a where a is the average radius of an a-helix (as

measured from its axis to the a-carbons). As has been

observed (Reddy and Blundell, 1993), a-helices interact

over a range of interhelical distances.

An implicit assumption in the study of helix-helix

interactions is that a-helices are essentially rigid objects.

The relative position and orientation between rigid bodies

can be expressed with a pair (A, a) where A is a rotation

matrix and a is a translation vector. To be more precise,

assume two bodies have reference frames attached to them in

some canonical way. We define the relative motion that will

take the frame of reference attached to body 1 into the frame

of reference attached to body 2 to be (A, a). Then from the

perspective of body 2, the relative motion that it would need

to undergo for its frame to become coincident with frame 1

would be (AT, �ATa). The set of all such rigid-body motions

forms a manifold, and the operation of composing two rigid-

body motions endows this manifold with the structure of

a Lie group. It is convenient to think of this Lie group as the

set of all 4 3 4 homogeneous transformation matrices of the

form

H ¼ A a
0T

1

� �
; (1)

in which case, matrix multiplication corresponds to the group

operation and

H½A1; a1�H½A2; a2� ¼ H½ðA1; a1Þ8ðA2; a2Þ�
¼ H½ðA1A2;A1a2 1 a1Þ�:

Two special kinds of homogeneous transformations are

pure rotations and pure translations along the axes of local

coordinate systems,

rotðei; uÞ ¼
RiðuÞ 0
0T

1

� �

and

transðei; xÞ ¼
I xei
0T

1

� �
:

It is well-known (see Chirikjian and Kyatkin, 2001) that

the Lie group of rigid-body motions in three-dimensional

space possesses a unique bi-invariant integration measure.

That is, there is only one correct way to integrate over rigid-

body motions. In particular, given a function f (A, a)
describing the relative pose (position and orientation) of

the frame of reference attached to body 2 relative the frame

of reference attached to body 1, if the parameters defining A
and those defining a are independent, then there is only one

correct way to integrate it as

I ¼
ð
A2SOð3Þ

ð
a2R3

f ðA; aÞda dA:

Here SO(3) is the group of rotations in three-dimensional

space and dA is its bi-invariant integration measure. If A ¼
A(a, b, g) is the common ZXZ Euler-angle parameterization,

then (Chirikjian and Kyatkin, 2001):

dA ¼ 1

8p
2 sinb da db dg:

It is this orientational volume element (which is fundamen-

tally the same as that for the unit sphere) which, by itself,

leads to orientational normalizations such as in Bowie

(1997a). In contrast, if the position of the origin of frame 2 is

described in Cartesian coordinates relative to frame 1, then

da ¼ dx dy dz:

For the three cases shown in Fig. 2, spatial rigid-body

motions of helix 2 relative to helix 1 are parameterized in

three different ways. And it is not obvious a priori what the

correct integration measure should be as a function of the

parameters describing each of those models. Determining

this is essential to correctly account for the statistical biases

inherent in the three data sets. For this reason, the general

method for determining the volume element for integrating

over rigid-body motions is derived here. The results for all

FIGURE 1 Definition of interhelical distance, R, between helix axes and

distance, D, between helices as measured between closest a-carbons.

Interhelical Angle and Distance Preferences 1107

Biophysical Journal 86(2) 1105–1117



three cases in Fig. 2 are then given. The explicit calculations

are contained in the Appendix.

For ‘‘small’’ rigid-body motions,

H � I1
V v
0T

0

� �
Dt; (2)

where the matrix V is skew-symmetrically defined as V ¼
�VT . It describes an infinitesimal orientational displace-

ment. In fact, the angular velocity vector v can be extracted

from the matrix V to describe the rotational part of the

displacement as

vectðVÞ ¼ v:

That is, if

V ¼
0 �w3 w2

w3 0 �w1

�w2 w1 0

0
@

1
A; v ¼ ðw1 w2 w3 ÞT:

Since the second term in Eq. 2 consists mostly of zeros, it is

common to extract the information necessary to describe the

motion as

V v
0T

0

� �_

¼ v
v

� �
: (3)

This six-dimensional vector is called an infinitesimal screw
motion or infinitesimal twist.
Given a homogeneous transform consisting of motions

that are not necessarily small,

HðqÞ ¼ AðqÞ aðqÞ
0T

0

� �
;

parameterized with coordinates (q1, . . . , q6), which we write

as a six-dimensional vector q, one can express the

homogeneous transform corresponding to a slightly changed

set of parameters as the truncated Taylor series

Hðq1 dqÞ ¼ HðqÞ1 +
6

i¼1

dqi

@H

@qi

ðqÞ: (4)

This result can be shifted to the identity transformation by

multiplying on the left by H�1 to define an equivalent

relative infinitesimal motion. In this case we write

vR

vR

� �
¼ qRðqÞ _qq where

qRðqÞ ¼ H
�1 @H

@q1

� �_

; � � � ; H
�1 @H

@q6

� �_� �
: (5)

Here qR(q) is a 63 6 matrix, and the spatial velocity vR and

special angular velocity vR are defined as

vR ¼ A
T _aa and vR ¼ vectðAT _AAÞ:

The unique volume element for correctly integrating over

rigid-body motions in the coordinates q1, . . . , q6 is

(Chirikjian and Kyatkin, 2001),

dH ¼ jdetqRjdq1 . . . dq6: (6)

If three parameters are used to describe orientation, and

three are used to describe position, then Eq. 6 reduces to

the product of positional and orientational volume ele-

ments discussed earlier. However, in the cases shown in

Fig. 2, the six parameters describing the pose of one line

segment relative to another cannot be decoupled into those

which independently describe position and orientation.

Hence, Eqs. 5 and 6 must be computed explicitly to

determine the proper normalization of data in each case, as

shown in Fig. 2.

In cases where the two rigid bodies have symmetries (as is

the case for a line segment), and hence the function f (A, a) is
constant over certain coordinates, it makes sense to use

a parameterization which captures this fact, and then

integrate out all such coordinates. In this way marginal

probability densities on a space of reduced dimension can be

examined. Below, the form of the volume elements is given,

and the proper reductions are performed for the three cases

shown in Fig. 2.

Case 1: Line-to-line interaction

In Fig. 2 a, the series of rigid-body motions that result in the

frame attached at the base of helix 1 being moved to the base

of helix 2 parameterize the homogeneous transformation of

FIGURE 2 Helix-helix interaction diagrams. (a) Case 1:

line-to-line. (b) Case 2: endpoint-to-line. (c) Case 3:

endpoint-to-endpoint.
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Hða; z1;b; r; g; z2Þ ¼ rotðe3;aÞtransðe3; z1Þrotðe1;bÞ
3 transðe1; rÞrotðe3; gÞtransðe3; z2Þ:

(7)

Substitution into Eq. 5, and following the calculations in

Appendix A, this results, to within an arbitrary multiplicative

constant, in

jdetqRj ¼ sin
2
b: (8)

This is the same as the normalization obtained in Walther

et al. (1998). Fig. 3 shows an example of such a pair.

Case 2: End-to-line interaction

Observing Fig. 2 b, it is clear that the rigid-body motion

taking frame 1 into frame 2 is of the form

Hðf; u; r;a; x; gÞ ¼ rotðe3;fÞrotðe1; uÞtransðe3; rÞrotðe3;aÞ
3 transðe1; xÞrotðe1; gÞ: (9)

Following the calculations in Appendix A,

jdetqRj ¼ r sin u: (10)

Fig. 4 shows an example of such a pair.

Case 3: End-to-end interaction

Looking at Fig. 2 c, the sequence of concatenated rigid-body
motions that takes frame 1 to frame 2 is

Hðf; u; r;a;b; gÞ ¼ rotðe3;fÞrotðe1; uÞtransðe3; rÞ
3 rotðe3;aÞrotðe1;bÞrotðe3; gÞ: (11)

Following the calculations in Appendix A,

jdetqRj ¼ r
2
sinb sin u: (12)

Fig. 5 shows an example of such a pair.

We consider two helices to be a candidate interacting pair

if the distance D shown in Fig. 1 is within 15 Å. This

criterion is somewhat different than previous works in which

interacting helices are defined as those for which at least

several atoms from one helix are in contact with those of the

other. The reason for our choice is that having atoms in

contact is neither a necessary nor a sufficient condition for

determining the orientation between helices. In part this is

because of the articulate nature of side chains and in part

because of the long-range effects of certain kinds of

molecular forces. Our cutoff of 15 Å was imposed after

examining all 90,438 helix pairs using the statistical methods

described below, and determining that for all helices outside

of this distance cutoff there is no orientational order between

helices, whereas below this threshold there is orientational

order. Since in the next section we display helix interaction

data as a function of both interhelical angle and distance, the

criteria used for defining interacting pairs is somewhat more

FIGURE 4 Case 2: Helix-helix interactions. (a) Ribbon representation.

(b) All-atom. The helices in this figure are the fifth helix (11 residues with

sequence numbers 93–103) and the 18th helix (17 residues with sequence

numbers 351–367) in a protein with ID 16PK.

FIGURE 5 Case 3: Helix-helix interactions. (a) Ribbon representation.

(b) All-atom. The helices in this figure are the first helix (nine residues with

sequence numbers 3–11) and the 10th helix (12 residues with sequence

numbers 143–155) in a protein with ID 119L.

FIGURE 3 Case 1: Helix-helix interactions. (a) Ribbon representation.

(b) All-atom. The helices in this figure are the third helix (21 residues with

sequence numbers 60–80) and the fifth helix (14 residues with sequence

numbers 93–106) in a protein with ID 119L.
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flexible than when one-dimensional angular histograms are

used; if our cutoff criteria were too loose, then the resulting

two-dimensional plots would have large areas with no peaks,

and if the cutoff criteria were too severe then it would be

clear by looking at the plots that peaks would be clipped.

The effects of measurement error

Two potential sources of error can be introduced in our

analysis of helix-helix interactions: 1), it is possible for

a helix pair to be misclassified; and 2), the measurement of

helix-helix angles is sensitive to the method used to define

the helix axes. Here we describe statistical techniques that

reduce the sensitivity of computed distributions to these

phenomena. A very different approach to handling measure-

ment errors is described in Trovato and Seno (2003).

The three distinct classes for helix-helix interaction

described earlier form a partition of the six-dimensional

space of rigid-body motions into three disjoint regions.

Within each of the resulting six-dimensional regions the

given parameterizations hold. If it were possible to exactly

define and measure the endpoints of the finite axis of each

a-helix in the PDB and if the backbone of every a-helix

observed ideal geometry, then the observed six-dimensional

data describing the relative pose of every pair of helices

could be normalized directly using the given factors.

However, in reality measurement errors will always exist.

For helix pairs that interact in a manner which is on the

border between any two of the different interaction classes,

it is possible that such pairs can be binned incorrectly. For

this reason, the most rigorous treatment would treat each

observation as a Gaussian distribution on the six-dimen-

sional space of rigid body motions. In this way, the effects

of an observation in one interaction class can be allowed to

bleed into others. In borderline cases, this would reduce

errors introduced by an all-or-nothing classification of each

observed helix-helix pair. Although the concept of a

Gaussian (or heat) kernel for the group of rigid-body

motions exists (Chirikjian and Kyatkin, 2001), it is

somewhat involved to implement. We have therefore taken

the time-consuming approach of examining borderline cases

and convincing ourselves that they have been classified

correctly.

The second source of error (due to sensitivity in the

definition of the helix axis) means that even when there is

confidence in the class of interaction, the exactness of

observed parameters such as angles and distances may be in

question. As an example, suppose one is interested in the

one-dimensional distribution of angle in the line-on-line

case. Then, given a set of interhelical angles in the line-on-

line case b1, . . . ,bNg, one wishes to construct an estimate of

the underlying probability density that describes the

distribution from which these values are drawn. If every

measurement were exact, and N ! ‘, then in principle this

distribution could be constructed as

f ðbÞ ¼ 1

N
+
N

i¼1

dðb� biÞ
sin

2
b

¼ 1

N
+
N

i¼1

dðb� biÞ
sin

2
bi

¼ 1

N
+
N

i¼1

dðb� biÞÐ p
�p

dðb9� biÞsin
2
b9 db9

;

where d(b) is the Dirac delta function.

However, proteins are dynamic objects and each crystal

structure provided in the PDB only represents a best estimate

of an average over an ensemble of many similar (but not

exactly the same) structures. In addition to thermal

fluctuations, factors such as the specific refinement program

that is used and the resolution of the structure all come into

play in adding some uncertainty in the structures reported in

the PDB. To make matters worse, there is no unique way to

define the axis of an a-helix within a protein. One could fit

the best-fit line to all or some windowed segment of a-

carbons. One could use all the atoms in the helix. One could

construct either local helix axes or averaged local helix axis.

Or one could construct the best-fit least-squares curve to

describe a bent/curved/supercoiled helix and define the

interhelix axis in terms of tangents to these curves.

Due to uncertainties in PDB structures and inconsistencies

in the way helix angles are measured, as well as the fact that

N is finite, one would like to replace the above equation with

~ff ðb; tÞ ¼ 1

N
+
N

i¼1

kðb� bi; tÞÐ p
�p

kðb9� bi; tÞsin
2
b9 db9

;

where k(b,t) is a kernel chosen by the user to construct ~ff (b)
such that jj~ff � f jj ! 0 as the accuracy and number of

measurements both increase. A natural kernel in the current

context is that obtained by ‘‘wrapping’’ the solution of the

heat equation on the line,

hðx; tÞ ¼ 1ffiffiffiffiffiffiffiffi
2pt

p e
�x

2
=2t
;

around the circle to obtain

kðb; tÞ ¼ +
‘

n¼�‘

hðb� 2pn; tÞ:

When t is very small (corresponding to high confidence in

the measurement) the above is accurately approximated

when only the n ¼ 0 term is retained.

In general, the quantity

Cðbi; tÞ ¼
ðp
�p

kðb9� bi; tÞsin
2
b9 db9

can be computed in closed form as

Cðbi; tÞ ¼
1

2
ð1� e

�2t
cos 2biÞ;

and for t [ 0 this provides some regularization which

reduces the sensitivity of dividing directly by sin2bi when

there are uncertainties in the value bi. This is particularly

important when bi is near the singularities (0, 61808).
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Normalization of marginal probability densities

Previously in this section, the weighting functions which

would be used to normalize six-dimensional data on the

frequency of occurrence of relative position and orientation

of helices in the three different contact cases were examined.

Since it is difficult to visualize six-dimensional data, and

since the number of interacting helix pairs in high-resolution

nonhomologous protein structures is too small to form robust

statistics in such a high-dimensional space, it is advanta-

geous to view spatial relationships described by marginal

densities of the full pose distribution. Let F1 and F2,

respectively, denote two distinct sets of pose parameters such

that the sum of their dimensions is six. Let F1 be the

parameters which are the argument of the marginal

distribution of interest, and F2 be the set of variables which

are integrated out of the pose distribution. If the unnormal-

ized density describing the relative frequency of occurrence

of observed pose is f(F1, F2), and the normalized density

(which is the one of interest) is r(F1, F2), then writing

jdetqRj ¼ wðF1ÞwðF2Þ, one observes

f ðF1;F2Þ ¼ w1ðF1Þw2ðF2ÞrðF1;F2Þ:

The observed marginal density (i.e., that which is formed

by binning data in a grid of F1 values without regard to the

F2 values) is then

f1ðF1Þ ¼
ð
f ðF1;F2ÞdF2 ¼ w1ðF1Þ

ð
rðF1;F2Þw2ðF2ÞdF2:

By defining

r1ðF1Þ ¼
ð
rðF1;F2Þw2ðF2ÞdF2;

it follows that the unbiased marginal density describing the

preferred values of F1 is obtained by normalizing the

marginal observed density as

r1ðF1Þ ¼ f1ðF1Þ=w1ðF1Þ:

In other words, when normalizing observed marginal

densities, it is not the full Jacobian determinant which is

used as a normalization factor, but rather only that part of it

which depends on the parameters which are the arguments of

the marginal density.

For example, if in case 3 we want a two-dimensional

contour plot of unbiased density on the domain parameter-

ized by (r,b), then the normalization factor would be r2 sinb.
In contrast, if we wanted a contour plot on (b,u), the

normalization would be sinb sin u, and if one wanted

a contour plot in (a,g), no normalization factor would be

required.

In addition, the normalization for each case should be

modified to account for errors as discussed in the previous

subsection.

RESULTS

In what follows, data is normalized with the weighting

functions computed in the previous section. In addition, each

resulting marginal density is normalized to be a probability

density so that the contour values are not sensitive to the

number of recorded data points.

Case 1: Line-to-line interaction

The number of helix pairs in this case is 5534 pairs. Fig. 6

shows a normalized contour plot of relative frequency of

occurrence of helix-helix interaxis angle b and distance D
between nearest a-carbons.

A regularization parameter of t¼ 0.01 was chosen. A high

peak at b ¼ 161.08 and D ¼ 5.1 Å and three low peaks (at

approximately 6208 and �1658) are found. We also in-

vestigated the effects of increasing the value of t. For

example, at the large value of t ¼ 1.0, the peak at �208

appears to melt away, and the peaks at �1658 and 1208,

respectively, shift to �1258 and 1458, and both spread over

a range of ;308.

Note that the angle b is actually the same as the angle V

in previous works (Bowie, 1997a; Walther et al., 1998). In

agreement with Bowie (1997a) and Eilers et al. (2002) we

find that antiparallel helix-helix interactions are more

common and are more tightly packed than parallel

interactions. Although much of the contribution to the

major peak in Fig. 6 comes from helix pairs that are

separated by a sequential distance of \10 residues, the

locations of all the peaks appear to persist when a sequential

cutoff of at least 20 intervening residues is imposed. In this

case the relative height of the peaks is redistributed more

evenly among them.

FIGURE 6 Case 1: Normalized contour plot of relative frequency of occur-

rence of helix-helix interaxis angle b and distanceD between nearest a-carbons.
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Case 2: End-to-line interaction

This case has 13,984 helix-helix pairs. In Fig. 7 the relative

frequency at which a high peak is found is at the angle u ¼
85.68 and the distance D ¼ 6.1 Å. The location of this peak

appears to persist regardless of the sequential distance

between the helices (as measured by the number of inter-

vening residues).

In case 2, other relationships can also be explored. For

example, the relative frequency of occurrence of values for the

anglea as a function of distance between closesta-carbons in

interacting helices is examined in Fig. 8. In this figure several

low peaks are found. Those which occur close to61808 have

major contributions from helices which are separated in

sequence from each other by \10 intervening residues,

whereas the other observed peaks occur for larger values of

sequential distance. We also constructed and examined two-

dimensional plots of a and u without regard to interhelical

distance, but found no significant peaks in this case.

Case 3: End-to-end interaction

The number of helix pairs in this case is 8847 pairs. Fig. 9

shows a normalized contour plot of relative frequency of

occurrence of helix-helix interaxis angle u and distance D
between nearest a-carbons. The relationship between angle

b and distance D is illustrated in Fig. 10. In both plots, no

significant peak is found. However, in Fig. 11, a normalized

contour plot, showing relationships between angle u and

angle b, one high peak at u¼ 3.18, b¼ 6.88, and several low

peaks are found.

FIGURE 9 Case 3: Normalized contour plot of relative frequency of

occurrence of angle u and distance D between nearest a-carbons.

FIGURE 10 Case 3: Normalized contour plot of relative frequency of

occurrence of angle b and distance D between nearest a-carbons.

FIGURE 8 Case 2: Normalized contour plot of relative frequency of

occurrence of angle a and distance D between nearest a-carbons.

FIGURE 7 Case 2: Normalized contour plot of relative frequency of

occurrence of angle u and distance D between nearest a-carbons.
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CONCLUSIONS

Interhelical angle distributions have been studied as

a function of spatial and sequential distance between helices

in globular proteins. Spherical geometric effects due to both

the distance and angle between interacting helices have been

used to normalize the data. When normalized in this way,

distinct preferences close to parallel (6208) and near

antiparallel (61608) packings emerge in the line-to-line

case. These four sets of values are consistent with the fact

that if a helix is flipped end-over-end by 1808, the ridges/

grooves are essentially the same as the original helix. It

seems plausible that any subtle differences in ridges/grooves

between a helix standing C to N vs. N to Cmay be accounted

for by articulation of side chains. Therefore, 20–180¼�160

and 160–180 ¼ �20 should be expected if 20 and 160 are

expected. Such angles can be expected using reasoning

similar to that behind the ridges-into-grooves formulation. In

future work we plan to examine the local structural details

which give rise to these preferences. We believe that

empirically obtained helix-helix potentials obtained from

these distributions may be useful for incorporation in protein

folding algorithms.

APPENDIX: THE CORRECT NORMALIZATION
FOR HELIX PAIR DATA

This Appendix consists of two parts. In the first part we provide the detailed

calculations required to derive the correct normalization factors for helix-

helix pair data. In the second, we show why binning before normalization

can produce substantial artifacts which depend on bin size.

A.1 Derivation of correct normalization factors

In this Appendix section the computations resulting in the volume elements

in the main part of the text are given in detail. Recall that for counter-

clockwise rotations about the e3, e2, and e1 axes:

R3ðfÞ¼
cosf �sinf 0

sinf cosf 0

0 0 1

0
B@

1
CA; R2ðfÞ¼

cosf 0 sinf

0 1 0

�sinf 0 cosf

0
B@

1
CA;

R1ðfÞ¼
1 0 0

0 cosf �sinf

0 sinf cosf

0
B@

1
CA:

Each of these basic rotations can be written as the matrix exponential

RiðfÞ ¼ expðfEiÞ;
where

E1 ¼
0 0 0

0 0 �1

0 1 0

0
B@

1
CA; E2 ¼

0 0 1

0 0 0

�1 0 0

0
B@

1
CA;

E1 ¼
0 �1 0

1 0 0

0 0 0

0
B@

1
CA:

Multiplication of these matrices with any vector can be expressed as

Eix ¼ ei 3 x;

where ei is the i
th natural unit basis vector in three-dimensional space. The

above relationship is described using the notation ei ¼ vect (Ei), and since

the ‘‘vect’’ operation is linear, it can be used to relate any three-dimensional

vector and any 3 3 3 skew-symmetric matrix.

Note that Ei ei¼ 0 and E1e2¼ e3, E3e1¼ e2, and E2e3¼ e1. In contrast, Ri

(f) ei ¼ ei. Another property which is used multiple times to obtain the

results presented below is that for any 33 3 rotation matrix R and any 33 3

skew symmetric matrix V,

vectðRVR
TÞ ¼ R vectðVÞ:

Case 1: Line-to-line interaction

Performing the multiplications in Eq. 7, one finds

H¼ R3ðaÞR1ðbÞR3ðgÞ
z2R3ðaÞR1ðbÞe31
rR3ðaÞe11z1e3

0T
1

0
B@

1
CA: (A1)

Unlike the other two cases below, in this case three variables which appear in

the translation part of the homogeneous transformation matrix do not appear

in the rotation part. This gives a block structure to the Jacobian matrix, and

makes the determinant easy to compute.

In particular, if we group the variables as q1 ¼ (a, b, g) and q2 ¼ (z1, r,

z2), then in this case the Jacobian will have the form

qR ¼
JR 0333

AT @a
@q1

AT @a
@q2

0
@

1
A:

Here the matrix JR is (Chirikjian and Kyatkin, 2001),

FIGURE 11 Case 3: Normalized contour plot of relative frequency of

occurrence of angle u and angle b.
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JRðAÞ ¼ vect A
T @A

@a

� �
; vect A

T @A

@b

� �
; vect A

T @A

@g

� �� �

¼
sinb sin g cos g 0

sinb cos g �sin g 0

cosb 0 1

0
B@

1
CA:

Due to the block lower diagonal form of this matrix, and the fact that A is

a rotation matrix and therefore det A ¼ 11, it is clear that

jdetqRj ¼ jdet JRj
����det @a@q2

����;
and from Eq. A1 it is clear that

@a
@z1

¼ e3;
@a
@r

¼ R3ðaÞe1;
@a
@z2

¼ R3ðaÞR1ðbÞe3:

Therefore, a small computation shows that

����det @a@q2

���� ¼ sinb;

and since jdet JRj ¼ sin b, it follows that

jdetqRj ¼ sin
2
b:

Case 2: End-to-line interaction

Performing the multiplications in Eq. 9, we find that

H ¼
R3ðfÞR1ðuÞR3ðaÞR1ðgÞ rR3ðfÞR1ðuÞe3 1

xR3ðfÞR1ðuÞR3ðaÞe1
0T

1

0
B@

1
CA:

ðA2Þ

The corresponding inverse is

H
�1 ¼ R

T

1ðgÞR
T

3ðfÞR
T

1ðuÞR
T

3ðaÞ �rR
T

1ðgÞe3
0T

1

� �
:

Therefore,

H
�1@H

@f

� �_

¼

R
T

1ðgÞR
T

3ðaÞR
T

1ðuÞe3
.............................................

rR
T

1ðgÞR
T

3ðaÞR
T

1ðuÞE3R1ðuÞe31

xR
T

1ðgÞR
T

3ðaÞR
T

1ðuÞE3R1ðuÞR3ðaÞe1

0
BBBB@

1
CCCCA

¼

sinusina

sinucosacosg1cosusing

sinucosasing�cosucosg

rsinucosa

�sinuðrsinacosg1xcosasingÞ1xcosucosg

sinuðrsinasing�xcosacosgÞ�xcosusing

0
BBBBBBBB@

1
CCCCCCCCA

H
�1@H

@u

� �_

¼

R
T

1ðgÞR
T

3ðaÞe1

..............................:

rR
T

1ðgÞR
T

3ðaÞE1e31

xR
T

1ðgÞR
T

3ðaÞE1R3ðaÞe1

0
BBBBBBB@

1
CCCCCCCA

¼

cosa

sinacosg

sinasing

�rsina

�rcosacosg1xsinasing

rcosasing1xsinacosg

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
;

H�1@H

@r

� �_

¼

0

.........:

R
T

1ðgÞe3

0
BB@

1
CCA¼

0

...:

0

sing

cosg

0
BBBBBBBB@

1
CCCCCCCCA
;

H
�1@H

@a

� �_

¼
R

T

1ðgÞe3
...............

xR
T

1ðgÞE3e1

0
BB@

1
CCA¼

0

sing

cosg

0

xcosg

�xsing

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

H
�1@H

@x

� �_

¼
0

......
e1

0
@

1
A;

H
�1@H

@g

� �_

¼
e1

......
0

0
@

1
A:

Stacking these vectors as columns in a 63 6 Jacobian matrix, and taking

the determinant, results in

jdetqRj¼rsinu:

Case 3: End-to-end interaction

Performing the multiplications in Eq. 11,

H¼
R3ðfÞR1ðuÞR3ðaÞR1ðbÞR3ðgÞ rR3ðfÞR1ðuÞe3

0T
1

� �
:

(A3)

The corresponding inverse is
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H
�1¼ R

T

3ðgÞR
T

1ðbÞR
T

3ðaÞR
T

1ðuÞR
T

3ðfÞ �rR
T

3ðgÞR
T

1ðbÞe3
0T

1

 !
:

Therefore,

H�1@H

@f

� �_

¼

R
T

3ðgÞR
T

1ðbÞR
T

3ðaÞR
T

1ðuÞe3

..........................................::

rRT

3ðgÞR
T

1ðbÞR
T

3ðaÞR
T

1ðuÞE3R1ðuÞe3

0
BBB@

1
CCCA

¼

sinuðsinacosg1cosacosbsingÞ1cosusinbsing

�sinuðsinasing�cosacosbcosgÞ1cosusinbcosg

sinucosasinb�cosucosb

rsinuðcosacosg�sinacosbsingÞ
�rsinuðcosasing1sinacosbcosgÞ

rsinasinbsinu

0
BBBBBBBB@

1
CCCCCCCCA

H
�1@H

@u

� �_

¼
R

T

3ðgÞR
T

1ðbÞR
T

3ðaÞe1
...........................::

rR
T

3ðgÞR
T

1ðbÞR
T

3ðaÞE1e3

0
B@

1
CA

¼

cosacosg�sinacosbsing

�cosasing�sinacosbcosg

sinasinb

�rðsinacosg1cosacosbsingÞ
rðsinasing�cosacosbcosgÞ

rcosasinb

0
BBBBBBBB@

1
CCCCCCCCA
;

H
�1@H

@r

� �_

¼
0

..................

RT

3ðgÞR
T

1ðbÞe3

0
B@

1
CA

¼

0

............

sinbsing

sinbcosg

cosb

0
BBBBBB@

1
CCCCCCA
;

H
�1@H

@a

� �_

¼
R

T

3ðgÞR
T

1ðbÞe3
..................::

0

0
@

1
A¼

sinbsing

sinbcosg

cosb

............:
0

0
BBBB@

1
CCCCA;

H
�1@H

@b

� �_

¼
R

T

3ðgÞe1
.........:

0

0
@

1
A¼

cosg

�sing

0

...::
0

0
BBBB@

1
CCCCA;

H
�1@H

@g

� �_

¼
e3

......
0

0
@

1
A:

Forming the Jacobian matrix and taking its determinant, one finds

jdetqRj¼r
2
sinbsinu:

A.2 Artifacts resulting from binning
before normalizing

As has been explained in the main part of the text, as well as in the articles of

Bowie (1997a) andWalther et al. (1998), observed helix-helix packing angle

distributions must be normalized by the appropriate geometric factors to

obtain true preferences. In the previous Appendix we derived the geometric

factors for two packing types not considered in previous works, and verified

the case considered by Walther et al. (1998).

In this Appendix the biasing effects of binning before normalizing (which

is the computation performed in Bowie, 1997a, and Walther et al., 1998) is

examined. A simple closed-form example in one variable illustrates the

importance of this effect.

FIGURE A1 Biasing effects of binning before normalizing when w(u) ¼
sin2 u. (a) Ideal histogram. (b) Histogram with binning before normalization.

(c) Histogram with normalization before binning.
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In short, if f(u) is an observed angular distribution, andw(u) is a geometric

weighting factor (e.g., sin u or sin2 u), then the function which describes true

preferences (in comparison with the uniformly random distribution) is r(u),

where

f ðuÞ¼wðuÞrðuÞ: (A4)

Therefore, at all points for which w(u) 6¼ 0, one can obtain the preference

distribution as

rðuÞ¼ f ðuÞ=wðuÞ: (A5)

Let us define the histogram of r(u), which is piecewise constant over equal-

sized bins, as

½rðuÞ�¼+
n�1

i¼0

riWðu;bi;bi11Þ; (A6)

where

ri¼
ðbi11

bi

rðuÞdu (A7)

is the constant height of bin i, andW(u, a, b) is the window function which is

equal to the number 1 on a # u # b and zero otherwise.

Note that Eqs. A5 and A6 were not used in Bowie (1997a) and Walther

et al. (1998) to generate histograms. In those works, instead of computing

[r(u)] ¼ [f(u)/w(u)], the quantity computed was

½ f ðuÞ�=½wðuÞ� 6¼½ f ðuÞ=wðuÞ�: (A8)

The central observation of this Appendix is the fact that the above statement

is not an equality, and the magnitude of the difference of the two sides in the

above ‘‘nonequality’’ can be quite dramatic.

Consider the following example, where w(u) ¼ sin u, and the true

underlying angular preference is

rðuÞ¼h11ðh2�h1ÞWðu;d;d1wÞ; (A9)

where h1¼ 1, h2¼ 4, d¼ 6, and w¼ 108. See Fig. A1 for more information.

Also suppose we take the bins to be defined by bi ¼ i 3 108, and n ¼ 18 is

the number of bins. In this example, the true peak of the preference

distribution in Eq. A9 then lies 40% in bin 1, and 60% in bin 2. If one were

presented with a plot of this r(u), one would conclude that its mode is;128.

After binning, the heights of the first two bins are, respectively,

r0¼
1

b1

½h1d1h2ðb1�dÞ�

and

r1¼
h2ðd1w�b1Þ1h1ðb2�d�wÞ

b2�b1

:

These equations are obtained by simply evaluating Eq. A9 in Eq. A7. This

is analogous to what would be computed if each observation of f (u) ¼
r(u) sin u were divided by sin u before being binned. Of course, the

preference expressed in r(u) is not observed directly, and so one must

resort to binning, running averages, or kernel-based density estimation

methods (Silverman, 1986) to obtain a good estimate of r(u). Using the

binning method and the numerical values in this example, bin 1 of the

histogram has a height of 2.3 and bin 2 has a height of 2.8. This

proportional splitting of the actual peak which straddles two bins is to be

expected. It is simply something that one lives with if one chooses to use

histogram methods rather than running averages or kernel methods for

density estimation.

However, if one bins first and then normalizes, a very different picture

emerges. If we bin first and then normalize, the results for the first two bins

are

f0=w0¼
h1ð1�cosdÞ1h2ðcosd�cosb1Þ

1�cosb1

and

f1=w1¼
h2ðcosb1�cosðd1wÞÞ1h1ðcosðd1wÞ�cosb2Þ

cosb1�cosb2

:

Using the same numbers as before, the result now is that bin 1 has a value of

2.91 and bin 2 has a value of 2.57. In other words, the results are skewed

toward bin 1, even thoughmajority of the true peak should actually be in bin 2.

If we had used w(u) ¼ sin2 u instead of sin u, the skewing of the histo-

gram toward the first bin would have been even greater: bin 1 has a value of

3.36 and bin 2 has a value of 2.34. This example explains why Walther et al.

(1998) observed peaks near the ends of their histograms rather than what we

have found. That is, there is no strong preference for helices to interact at

61808, but there is a distribution that has a mode in the range 150–1708 and

tapers to zero as u approaches 61808.

Of course, if a sufficiently large number of sample observations of helix-

helix interactions could be observed then bins much finer than 108 could be

used, in which case the biasing effects of binning before normalizing would

be reduced.
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