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Interhelical Angle and Distance Preferences in Globular Proteins

Sangyoon Lee and Gregory S. Chirikjian

Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland

ABSTRACT Orientational preferences between interacting helices within globular proteins have been studied extensively over
the years. A number of classical structural models such as “knobs into holes” and “ridges into grooves” were developed
decades ago to explain perceived preferences in interhelical angle distributions. In contrast, relatively recent works have
examined statistical biases in angular distributions which result from spherical geometric effects. Those works have concluded
that the predictions of classical models are due in large part to these biases. In this article we perform an analysis on the largest
set of helix-helix interactions within high-resolution structures of nonhomologous proteins studied to date. We examine the
interhelical angle distribution as a function of spatial distance between helix pairs. We show that previous efforts to normalize
angle distribution data did not include two important effects: 1), helices can interact with each other in three distinct ways which
we refer to as “line-on-line,” “endpoint-to-line,” and “endpoint-to-endpoint,” and each of these interactions has its own
geometric effects which must be included in the proper normalization of data; and 2), all normalizations that depend on
geometric parameters such as interhelical angle must occur before the data is binned to avoid artifacts of bin size from biasing
the conclusions. Taking these two points into account, we find that there are very pronounced preferences for helices to interact
at angles of approximately =160 and +20° in the line-on-line case. This pattern persists when the closest a-carbons in the
helices vary from 4 to 12 A. The endpoint-to-line and endpoint-to-endpoint cases also exhibit distinct preferences when the data
is normalized properly. Analysis of the local structural interactions which give rise to these preferences has not been studied

here and is left for future work.

INTRODUCTION

The protein folding problem has been a central topic in
biophysics and structural biology for more than a quarter
century (Anfinsen, 1973; Creighton, 1992). A number of ab
initio methods for predicting the fold of a protein have been
proposed (Srinivasan and Rose, 1995; Bonneau and Baker,
2001). And although it is believed that the principles driving
protein folding are known (Baldwin and Rose, 1999a,b), the
issue of exactly what chemical potentials to use to capture
the behavior of proteins has been the subject of some debate.
Proposed potentials have ranged from all-atom empirical
models and explicit solvent (Weiner and Kollman, 1981) to
those in which the mediating effects of solvent are built in
implicitly (Maiorov and Crippen, 1992; Cheung et al., 2002),
and to those derived from coarse-grained analysis of
structures deposited in the Protein Data Bank (Miyazawa
and Jernigan, 1985, 1996; Sippl, 1995). Any of these
potentials can then be used together with energy minimiza-
tion, conformational sampling, or dynamics techniques
(Brooks et al., 1983; Skolnick and Kolinski, 1999; Abagyan,
1993) to try to predict the fold of a protein.

Although methods for protein secondary structure pre-
diction are relatively reliable, developing methods for
tertiary structure prediction based on first principles remains
a challenging topic. Determining how elements of secondary
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structure assemble into proteins is therefore a critical inter-
mediate step in solving the folding problem.

Given that the a-helix is a common and well-characterized
secondary structure, and motifs built from «-helices form
key elements of protein tertiary structure, many researchers
have sought to determine principles for predicting the
aggregation and contact patterns in a-helices (Crick, 1953;
Levitt and Chothia, 1976; Richmond and Richards, 1978;
Chothia et al., 1977, 1981; Finkelstein and Ptitsyn, 1987;
Murzin and Finkelstein, 1988). Classical works have sought
to explain helix-helix packing angle preferences in proteins
based on models of steric fit and optimal packing of helices
around hydrophobic cores. These models include ‘‘knobs-
into-holes” (Crick, 1953), ‘“‘ridges-into-grooves’’ (Chothia
et al., 1977, 1981), and ‘“‘polyhedral helix globule’ (Fink-
elstein and Ptitsyn, 1987; Murzin and Finkelstein, 1988). In
contrast, recent works have analyzed entries in the Protein
Data Bank (PDB) (Berman et al., 2000) to look for patterns
in the way helices interact in globular and membrane
proteins (Lin et al., 1995; Lesk, 2001; Adamian and Liang,
2001; Bowie, 1997a,b; Fleming and Richards, 2000;
Fleishman and Ben-Tal, 2002). Other works have compared
the forces which stabilize globular and membrane proteins as
a way to predict their assembly (Eilers et al., 2002; Walther
et al.,, 1996; Robinson and Sligar, 1993; Efimov, 1979;
Weaver, 1992; MacKenzie and Engelman, 1998; Zhou et al.,
2000).

Database-driven approaches have the appeal that one can
examine helix-helix pairs in a very large set of proteins,
examine their crossing angle, and presumably make pre-
dictions based on these observations. Recently, however,
several works have modeled the inherent statistical bias in
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distributions of interhelical angle due to spherical geometric
effects (Bowie, 1997a) and fundamental differences in inter-
actions between infinite and finite helix axes (Walther et al.,
1998). Other works have examined the distribution of
interhelix distance in interacting pairs (Reddy and Blundell,
1993). Most recently, a new analysis of helix-helix angle
preferences has been performed in Trovato and Seno (2003).
However, to our knowledge no prior work has investigated
the joint distribution of interhelix distance and angle in
proteins.

Bowie (1997a) and Walther et al. (1998) have shown in
recent articles that several effects of orientational statistics
naturally bias the number of observed structures to be
greatest when a-helices cross near right angles. That is not to
say that a peak in angular distributions of interacting helices
is observed at =90°, but rather that observations without the
proper normalization are biased toward those angles. In both
Bowie (1997a) and Walther et al. (1998) it is reasoned that if
one bins helix-helix angles to form a histogram, that this
histogram should then be normalized by a histogram
generated by all random noninteracting helix pairs to get
an unbiased histogram. The core ideas in these articles are
significant contributions to the statistical analysis of
structural data in the PDB, though as shall be explained
shortly, the particular implementations (and hence the
resulting conclusions) must be reexamined for several
reasons. In particular, while the amount of data available
on helix-helix pairs in the PDB is substantial, it is not
sufficient to generate robust histograms with very small bins.
In fact, in Bowie (1997a) and Walther et al. (1998) the bin
size used is 10° to generate the histogram of interhelical
angle before normalization. Those works then normalize this
histogram by the histogram generated by the bias (which is
of the form sin B and sin® B, in those articles, respectively).
The problem with this approach is that it depends on the size
of the bins used. As we shall show, this leads to the incorrect
inference that antiparallel helix packings at 180° are pre-
ferred when the bias is removed.

Our modifications to the conceptual contributions in
Bowie (1997a) and Walther et al. (1998) are that: 1), the
correct normalization should be applied to each measure-
ment before it is binned rather than after; and 2), all possi-
ble types of interactions (not only line-on-line) should be
captured. Whereas no distinction between contact classes
was made in Bowie (1997a), only line-on-line contacts were
considered in Walther et al. (1998). There are two other
contact classes which must be considered: endpoint-to-line
and endpoint-to-endpoint. Each of these classes requires its
own different normalization, and each class should be treated
separately from the others. A detailed explanation of the
importance of the effects of proper normalization and bin-
ning is given in the Appendix.

In addition, each measurement should be replaced with
a probability density function (we use a Gaussian kernel) to
account for measurement error to avoid binning artifacts
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altogether. A second modification results from the fact that
there is another bias that should be removed which has not
been observed in previous articles. Namely, the number of
ways that helices can interact depends on the distance
separating them, and therefore distance-dependent biases
must be removed in addition to the previously observed
orientation-dependent biases. All of these biases must be
negated before binning is performed. In principle, if the
amount of available experimental data were tremendously
larger than it is, it would be possible to make very fine bins
and follow the procedures outlined in Bowie (1997a) and
Walther et al. (1998), but with the amount of data currently
available, normalization must precede binning to avoid
artifacts due to the size and location of bins.

The emphasis in our article is different for several reasons,
including those listed above. In part this is because we are
interested in examining how interhelical angle distributions
vary with the relative spatial distance between the helices. In
other words, one of our goals is to determine how persistent
the angle preferences are as the spatial distance between
helices is varied. We also explain statistical effects not
accounted for in prior works that reveal clear preferences in
helix-helix angles.

METHODS

We examine 1290 protein structures which have been
resolved to 2.0 A or better and possess <20% of their
sequences in common. This data is obtained from Wang and
Dunbrack (2003). Within these structures there are 12,207
helices (the vast majority of which are a-helices) and there
are 90,438 helix-helix pairs (many of which do not represent
helices in direct contact). We examine the distribution of
helix-helix angle over all of these pairs. The full angular
distribution is broken down according to the spatial distance
that separates helices from each other. Interhelical distance is
measured in two ways: 1), along the shortest line segment
connecting each finite helix axis; and 2), by finding the
minimal distance between every pair of a-carbons in the two
helices under consideration. These two methods for
measuring interhelical distance are illustrated in Fig. 1.

The angle distributions examined here are over the range
of (—180, 180°), corresponding to helix axes with di-
rectionality. We number residues and helices sequentially in
the usual way, starting at the N-terminus. We assign a unit
vector along the helix axis (choosing the direction
representing an increase in sequence number over the
direction representing decrease in sequence number). The
angle between two helices is considered to be positive if
helix 2 is rotated clockwise relative to helix 1 by an angle
between 0 and 180° about the unique line segment pointing
from the axis of helix 1 to that of helix 2 and intersects both
axes at right angles. This convention does not depend on the
numbering of the helices after the direction of the helix unit
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FIGURE 1 Definition of interhelical distance, R, between helix axes and
distance, D, between helices as measured between closest a-carbons.

vector is established. Such a line of closest approach will
always exist for infinitely long helix axes. In contrast, a-
helices have finite length, and so a distinction must be made
between the axis of the helix and that finite part of the axis
which lies inside the helix. We reiterate the distinction made
in Walther et al. (1998) and call the ideal case an infinite axis
and the actual case a finite axis. There are three very different
scenarios that are possible: 1), the line of closest contact
between infinite axes intersects both finite axes at right
angles, in which case a line-on-line contact is made; 2), the
line of closest contact between two finite axes meets one helix
at its end and the other at a right angle, in which case an
endpoint-to-line contact results; and 3), both helices interact
only at their ends, in which case an end-to-end contact results.

We break the discussion into the three cases. In the case
when the helices interact by crossing such that the line of
closest approach in Fig. 1 intersects the interior of both finite
axes, then the distances R and D are on average related as R
= D + 2a where a is the average radius of an a-helix (as
measured from its axis to the «-carbons). As has been
observed (Reddy and Blundell, 1993), a-helices interact
over a range of interhelical distances.

An implicit assumption in the study of helix-helix
interactions is that a-helices are essentially rigid objects.
The relative position and orientation between rigid bodies
can be expressed with a pair (A, a) where A is a rotation
matrix and a is a translation vector. To be more precise,
assume two bodies have reference frames attached to them in
some canonical way. We define the relative motion that will
take the frame of reference attached to body 1 into the frame
of reference attached to body 2 to be (A, a). Then from the
perspective of body 2, the relative motion that it would need
to undergo for its frame to become coincident with frame 1
would be (A”, —ATa). The set of all such rigid-body motions
forms a manifold, and the operation of composing two rigid-
body motions endows this manifold with the structure of
a Lie group. It is convenient to think of this Lie group as the
set of all 4 X 4 homogeneous transformation matrices of the
form
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in which case, matrix multiplication corresponds to the group
operation and

H[A,,a|H[A,,a,) = H[(A},a,)°(As,a,)]
= H[(A/A,A 2, + a))].

Two special kinds of homogeneous transformations are
pure rotations and pure translations along the axes of local
coordinate systems,

ror(e,, 0) (R;)(f’) ‘1’)

and

I xe
trans(e;,x) = (OT ) >

It is well-known (see Chirikjian and Kyatkin, 2001) that
the Lie group of rigid-body motions in three-dimensional
space possesses a unique bi-invariant integration measure.
That is, there is only one correct way to integrate over rigid-
body motions. In particular, given a function f(A, a)
describing the relative pose (position and orientation) of
the frame of reference attached to body 2 relative the frame
of reference attached to body 1, if the parameters defining A
and those defining a are independent, then there is only one
correct way to integrate it as

I= J J f(A a)dadA.
Aes0(3) Jacr?

Here SO(3) is the group of rotations in three-dimensional
space and dA is its bi-invariant integration measure. If A =
A(a, B, y) is the common ZXZ Euler-angle parameterization,
then (Chirikjian and Kyatkin, 2001):

dA = Lzsinﬁda dgdy.
8

It is this orientational volume element (which is fundamen-

tally the same as that for the unit sphere) which, by itself,

leads to orientational normalizations such as in Bowie

(1997a). In contrast, if the position of the origin of frame 2 is

described in Cartesian coordinates relative to frame 1, then

da = dxdyd:.

For the three cases shown in Fig. 2, spatial rigid-body
motions of helix 2 relative to helix 1 are parameterized in
three different ways. And it is not obvious a priori what the
correct integration measure should be as a function of the
parameters describing each of those models. Determining
this is essential to correctly account for the statistical biases
inherent in the three data sets. For this reason, the general
method for determining the volume element for integrating
over rigid-body motions is derived here. The results for all
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three cases in Fig. 2 are then given. The explicit calculations
are contained in the Appendix.
For “‘small’’ rigid-body motions,

Q v
H~I+Qf0)m @)

where the matrix () is skew-symmetrically defined as () =
—QF | It describes an infinitesimal orientational displace-
ment. In fact, the angular velocity vector w can be extracted
from the matrix () to describe the rotational part of the
displacement as

vect(Q)) = w.
That is, if
0 —W3 Wy
Q= ws 0 —-w ], o=(w w w3)T.
—W, W 0

Since the second term in Eq. 2 consists mostly of zeros, it is
common to extract the information necessary to describe the

motion as
Q v\’ w
(o) = (%) ®

This six-dimensional vector is called an infinitesimal screw
motion or infinitesimal twist.

Given a homogeneous transform consisting of motions
that are not necessarily small,

H(q) = (Aég) aly) )

parameterized with coordinates (g, . . . , ¢¢), Which we write
as a six-dimensional vector q, one can express the
homogeneous transform corresponding to a slightly changed
set of parameters as the truncated Taylor series

OH

H(q+8q) =H(q) + Zéqia—q_(q)- 4

This result can be shifted to the identity transformation by
multiplying on the left by H ' to define an equivalent
relative infinitesimal motion. In this case we write
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FIGURE 2 Helix-helix interaction diagrams. (a) Case 1:
line-to-line. (b) Case 2: endpoint-to-line. (¢) Case 3:
endpoint-to-endpoint.
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Here 9r(q) is a 6 X 6 matrix, and the spatial velocity vg and
special angular velocity wr are defined as

Ur (q) =

vi =A'a and g = vect(A'A).

The unique volume element for correctly integrating over
rigid-body motions in the coordinates ¢p,..., g¢ 1is
(Chirikjian and Kyatkin, 2001),

If three parameters are used to describe orientation, and
three are used to describe position, then Eq. 6 reduces to
the product of positional and orientational volume ele-
ments discussed earlier. However, in the cases shown in
Fig. 2, the six parameters describing the pose of one line
segment relative to another cannot be decoupled into those
which independently describe position and orientation.
Hence, Eqs. 5 and 6 must be computed explicitly to
determine the proper normalization of data in each case, as
shown in Fig. 2.

In cases where the two rigid bodies have symmetries (as is
the case for a line segment), and hence the function f(A, a) is
constant over certain coordinates, it makes sense to use
a parameterization which captures this fact, and then
integrate out all such coordinates. In this way marginal
probability densities on a space of reduced dimension can be
examined. Below, the form of the volume elements is given,
and the proper reductions are performed for the three cases
shown in Fig. 2.

Case 1: Line-to-line interaction

In Fig. 2 a, the series of rigid-body motions that result in the
frame attached at the base of helix 1 being moved to the base
of helix 2 parameterize the homogeneous transformation of
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FIGURE 3 Case 1: Helix-helix interactions. (@) Ribbon representation.
(b) All-atom. The helices in this figure are the third helix (21 residues with
sequence numbers 60-80) and the fifth helix (14 residues with sequence
numbers 93—106) in a protein with ID 119L.

A

H(a,z,,B,r,7v,2,) = rot(es;, a)trans(es, z, )rot(e,, B)
X trans(e,, r)rot(es, y)trans(es, z,).

)

Substitution into Eq. 5, and following the calculations in
Appendix A, this results, to within an arbitrary multiplicative
constant, in

|det 9| = sin’ B. 8)

This is the same as the normalization obtained in Walther
et al. (1998). Fig. 3 shows an example of such a pair.

Case 2: End-to-line interaction

Observing Fig. 2 b, it is clear that the rigid-body motion
taking frame 1 into frame 2 is of the form

H(p,0,r,a,x,v) = rot(e;, d)rot(e,, 0)trans(e;, r)rot(es, o)
X trans(e;, x)rot(e;,y). 9)

Following the calculations in Appendix A,
|det 9| = rsin6. (10)

Fig. 4 shows an example of such a pair.

Case 3: End-to-end interaction

Looking at Fig. 2 ¢, the sequence of concatenated rigid-body
motions that takes frame 1 to frame 2 is

H(¢p,0,r,a,B,y) = rot(es, p)rot(e,, 0)trans(es, r)
X rot(es, a)rot(e;, B)rot(es,y). (11)

Following the calculations in Appendix A,
|det Oy | = r” sin B sin 0. (12)

Fig. 5 shows an example of such a pair.
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FIGURE 4 Case 2: Helix-helix interactions. (a) Ribbon representation.
(b) All-atom. The helices in this figure are the fifth helix (11 residues with
sequence numbers 93—103) and the 18th helix (17 residues with sequence
numbers 351-367) in a protein with ID 16PK.

We consider two helices to be a candidate interacting pair
if the distance D shown in Fig. 1 is within 15 A. This
criterion is somewhat different than previous works in which
interacting helices are defined as those for which at least
several atoms from one helix are in contact with those of the
other. The reason for our choice is that having atoms in
contact is neither a necessary nor a sufficient condition for
determining the orientation between helices. In part this is
because of the articulate nature of side chains and in part
because of the long-range effects of certain kinds of
molecular forces. Our cutoff of 15 A was imposed after
examining all 90,438 helix pairs using the statistical methods
described below, and determining that for all helices outside
of this distance cutoff there is no orientational order between
helices, whereas below this threshold there is orientational
order. Since in the next section we display helix interaction
data as a function of both interhelical angle and distance, the
criteria used for defining interacting pairs is somewhat more

A B

FIGURE 5 Case 3: Helix-helix interactions. (a¢) Ribbon representation.
(b) All-atom. The helices in this figure are the first helix (nine residues with
sequence numbers 3-11) and the 10th helix (12 residues with sequence
numbers 143-155) in a protein with ID 119L.

Biophysical Journal 86(2) 1105-1117
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flexible than when one-dimensional angular histograms are
used; if our cutoff criteria were too loose, then the resulting
two-dimensional plots would have large areas with no peaks,
and if the cutoff criteria were too severe then it would be
clear by looking at the plots that peaks would be clipped.

The effects of measurement error

Two potential sources of error can be introduced in our
analysis of helix-helix interactions: 1), it is possible for
a helix pair to be misclassified; and 2), the measurement of
helix-helix angles is sensitive to the method used to define
the helix axes. Here we describe statistical techniques that
reduce the sensitivity of computed distributions to these
phenomena. A very different approach to handling measure-
ment errors is described in Trovato and Seno (2003).

The three distinct classes for helix-helix interaction
described earlier form a partition of the six-dimensional
space of rigid-body motions into three disjoint regions.
Within each of the resulting six-dimensional regions the
given parameterizations hold. If it were possible to exactly
define and measure the endpoints of the finite axis of each
a-helix in the PDB and if the backbone of every a-helix
observed ideal geometry, then the observed six-dimensional
data describing the relative pose of every pair of helices
could be normalized directly using the given factors.
However, in reality measurement errors will always exist.
For helix pairs that interact in a manner which is on the
border between any two of the different interaction classes,
it is possible that such pairs can be binned incorrectly. For
this reason, the most rigorous treatment would treat each
observation as a Gaussian distribution on the six-dimen-
sional space of rigid body motions. In this way, the effects
of an observation in one interaction class can be allowed to
bleed into others. In borderline cases, this would reduce
errors introduced by an all-or-nothing classification of each
observed helix-helix pair. Although the concept of a
Gaussian (or heat) kernel for the group of rigid-body
motions exists (Chirikjian and Kyatkin, 2001), it is
somewhat involved to implement. We have therefore taken
the time-consuming approach of examining borderline cases
and convincing ourselves that they have been classified
correctly.

The second source of error (due to sensitivity in the
definition of the helix axis) means that even when there is
confidence in the class of interaction, the exactness of
observed parameters such as angles and distances may be in
question. As an example, suppose one is interested in the
one-dimensional distribution of angle in the line-on-line
case. Then, given a set of interhelical angles in the line-on-
line case By, . ..,Bn}, one wishes to construct an estimate of
the underlying probability density that describes the
distribution from which these values are drawn. If every
measurement were exact, and N — o, then in principle this
distribution could be constructed as
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CLXB-B)  1X8(B-B)
f(B)_Ni; sinz,B _Ni; sin2[3i
_ 19 58— B
N5 (" 8(B —B;)sin’ B dp’"’

where 6() is the Dirac delta function.

However, proteins are dynamic objects and each crystal
structure provided in the PDB only represents a best estimate
of an average over an ensemble of many similar (but not
exactly the same) structures. In addition to thermal
fluctuations, factors such as the specific refinement program
that is used and the resolution of the structure all come into
play in adding some uncertainty in the structures reported in
the PDB. To make matters worse, there is no unique way to
define the axis of an a-helix within a protein. One could fit
the best-fit line to all or some windowed segment of -
carbons. One could use all the atoms in the helix. One could
construct either local helix axes or averaged local helix axis.
Or one could construct the best-fit least-squares curve to
describe a bent/curved/supercoiled helix and define the
interhelix axis in terms of tangents to these curves.

Due to uncertainties in PDB structures and inconsistencies
in the way helix angles are measured, as well as the fact that
N is finite, one would like to replace the above equation with

7 _1s k(B —Bi:1)
T80 = NG 7 k(B =B, )sin’ B'dp’’

where k(B,f) is a kernel chosen by the user to construct f B
such that ||f —f|| — 0 as the accuracy and number of
measurements both increase. A natural kernel in the current
context is that obtained by ‘““wrapping’’ the solution of the
heat equation on the line,

1 e—x2/2l
27t

hx,t) =

)

around the circle to obtain

k(B,t) = . h(B—2mn,t).

When ¢ is very small (corresponding to high confidence in
the measurement) the above is accurately approximated
when only the n = 0 term is retained.

In general, the quantity

Cot) = | (B~ posin’ ' dp

can be computed in closed form as

1 _
C(By,1) = 5 (1 — e ™ cos2B)),
and for ¢+ > O this provides some regularization which
reduces the sensitivity of dividing directly by sin® 8; when
there are uncertainties in the value B;. This is particularly
important when ; is near the singularities (0, =180°).
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Normalization of marginal probability densities

Previously in this section, the weighting functions which
would be used to normalize six-dimensional data on the
frequency of occurrence of relative position and orientation
of helices in the three different contact cases were examined.
Since it is difficult to visualize six-dimensional data, and
since the number of interacting helix pairs in high-resolution
nonhomologous protein structures is too small to form robust
statistics in such a high-dimensional space, it is advanta-
geous to view spatial relationships described by marginal
densities of the full pose distribution. Let ®; and ®,,
respectively, denote two distinct sets of pose parameters such
that the sum of their dimensions is six. Let ®; be the
parameters which are the argument of the marginal
distribution of interest, and ®, be the set of variables which
are integrated out of the pose distribution. If the unnormal-
ized density describing the relative frequency of occurrence
of observed pose is (P, P,), and the normalized density
(which is the one of interest) is p(®;, ®,), then writing
|det x| = w(P;)w(P;), one observes

F(@1, Py) = wi(P)ws (Py)p(P1, D).

The observed marginal density (i.e., that which is formed
by binning data in a grid of ®; values without regard to the
®, values) is then

Fi(@®,) = Jf(dm,cbz)dcbz — iy (®y) Jp<q>1,c1>z)w2<cb2>d¢z.
By defining

pi (1) = Jp(qbla D), (P,)d P,

it follows that the unbiased marginal density describing the
preferred values of @®; is obtained by normalizing the
marginal observed density as

P (1) = [i(DP1) /w1 (D).

In other words, when normalizing observed marginal
densities, it is not the full Jacobian determinant which is
used as a normalization factor, but rather only that part of it
which depends on the parameters which are the arguments of
the marginal density.

For example, if in case 3 we want a two-dimensional
contour plot of unbiased density on the domain parameter-
ized by (r,8), then the normalization factor would be 72 sin 3.
In contrast, if we wanted a contour plot on (8,0), the
normalization would be sinf sin6, and if one wanted
a contour plot in (a,y), no normalization factor would be
required.

In addition, the normalization for each case should be
modified to account for errors as discussed in the previous
subsection.
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RESULTS

In what follows, data is normalized with the weighting
functions computed in the previous section. In addition, each
resulting marginal density is normalized to be a probability
density so that the contour values are not sensitive to the
number of recorded data points.

Case 1: Line-to-line interaction

The number of helix pairs in this case is 5534 pairs. Fig. 6
shows a normalized contour plot of relative frequency of
occurrence of helix-helix interaxis angle 8 and distance D
between nearest a-carbons.

A regularization parameter of # = 0.01 was chosen. A high
peak at 8 = 161.0° and D = 5.1 A and three low peaks (at
approximately +20° and —165°) are found. We also in-
vestigated the effects of increasing the value of t. For
example, at the large value of + = 1.0, the peak at —20°
appears to melt away, and the peaks at —165° and +20°,
respectively, shift to —125° and +45°, and both spread over
a range of ~30°.

Note that the angle B is actually the same as the angle ()
in previous works (Bowie, 1997a; Walther et al., 1998). In
agreement with Bowie (1997a) and Eilers et al. (2002) we
find that antiparallel helix-helix interactions are more
common and are more tightly packed than parallel
interactions. Although much of the contribution to the
major peak in Fig. 6 comes from helix pairs that are
separated by a sequential distance of <10 residues, the
locations of all the peaks appear to persist when a sequential
cutoff of at least 20 intervening residues is imposed. In this
case the relative height of the peaks is redistributed more
evenly among them.
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FIGURE 6 Case 1: Normalized contour plot of relative frequency of occur-
rence of helix-helix interaxis angle 8 and distance D between nearest a-carbons.
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FIGURE 7 Case 2: Normalized contour plot of relative frequency of
occurrence of angle 6 and distance D between nearest a-carbons.

Case 2: End-to-line interaction

This case has 13,984 helix-helix pairs. In Fig. 7 the relative
frequency at which a high peak is found is at the angle 6 =
85.6° and the distance D = 6.1 A. The location of this peak
appears to persist regardless of the sequential distance
between the helices (as measured by the number of inter-
vening residues).

In case 2, other relationships can also be explored. For
example, the relative frequency of occurrence of values for the
angle « as a function of distance between closest a-carbons in
interacting helices is examined in Fig. 8. In this figure several
low peaks are found. Those which occur close to == 180° have
major contributions from helices which are separated in
sequence from each other by <10 intervening residues,
whereas the other observed peaks occur for larger values of

Distance (Angstroms)
>

o

0
-180 -120 -50 0 60 120 180
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FIGURE 8 Case 2: Normalized contour plot of relative frequency of
occurrence of angle « and distance D between nearest a-carbons.

Biophysical Journal 86(2) 1105-1117

Lee and Chirikjian

To—
— T

=

A
o
Zar

—
-
T

.

Distance (Angstroms)
(6]
B

=

e
HQ\\%

1
0 10 20 30 40 50 60
Angle theta (degrees)

FIGURE 9 Case 3: Normalized contour plot of relative frequency of
occurrence of angle 6 and distance D between nearest a-carbons.

sequential distance. We also constructed and examined two-
dimensional plots of @ and 6 without regard to interhelical
distance, but found no significant peaks in this case.

Case 3: End-to-end interaction

The number of helix pairs in this case is 8847 pairs. Fig. 9
shows a normalized contour plot of relative frequency of
occurrence of helix-helix interaxis angle 6 and distance D
between nearest a-carbons. The relationship between angle
B and distance D is illustrated in Fig. 10. In both plots, no
significant peak is found. However, in Fig. 11, a normalized
contour plot, showing relationships between angle 6 and
angle B, one high peak at § = 3.1°, B = 6.8°, and several low
peaks are found.
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FIGURE 10 Case 3: Normalized contour plot of relative frequency of
occurrence of angle 3 and distance D between nearest a-carbons.
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Angle beta (degrees)

Angle theta (degrees)

FIGURE 11 Case 3: Normalized contour plot of relative frequency of
occurrence of angle 6 and angle 8.

CONCLUSIONS

Interhelical angle distributions have been studied as
a function of spatial and sequential distance between helices
in globular proteins. Spherical geometric effects due to both
the distance and angle between interacting helices have been
used to normalize the data. When normalized in this way,
distinct preferences close to parallel (£20°) and near
antiparallel (=160°) packings emerge in the line-to-line
case. These four sets of values are consistent with the fact
that if a helix is flipped end-over-end by 180°, the ridges/
grooves are essentially the same as the original helix. It
seems plausible that any subtle differences in ridges/grooves
between a helix standing C to N vs. N to C may be accounted
for by articulation of side chains. Therefore, 20180 = —160
and 160-180 = —20 should be expected if 20 and 160 are
expected. Such angles can be expected using reasoning
similar to that behind the ridges-into-grooves formulation. In
future work we plan to examine the local structural details
which give rise to these preferences. We believe that
empirically obtained helix-helix potentials obtained from
these distributions may be useful for incorporation in protein
folding algorithms.

APPENDIX: THE CORRECT NORMALIZATION
FOR HELIX PAIR DATA

This Appendix consists of two parts. In the first part we provide the detailed
calculations required to derive the correct normalization factors for helix-
helix pair data. In the second, we show why binning before normalization
can produce substantial artifacts which depend on bin size.

A.1 Derivation of correct normalization factors

In this Appendix section the computations resulting in the volume elements
in the main part of the text are given in detail. Recall that for counter-
clockwise rotations about the es, e,, and e; axes:

1113
cos¢ —sin¢ 0 cos¢ 0 sing
Ry(¢)=| sing cosp 0 |; Ri(p)=| 0 1 0 |;
0 0 1 —sin¢ 0 cos¢d
1 0 0
R\ (¢p)=1| 0 cos¢p —sin¢
0 sing cos¢

Each of these basic rotations can be written as the matrix exponential

Ri(¢) = exp(oE)),

where
00 O 0 0 1
E=[00 —-1|; E,=| 0 0 0]
01 0 -1 0 O
0 -1 0
E,=]11 0 0
0o 0 O

Multiplication of these matrices with any vector can be expressed as
EiX =e; X X,

where ¢ is the i™ natural unit basis vector in three-dimensional space. The
above relationship is described using the notation e; = vect (E;), and since
the “‘vect’ operation is linear, it can be used to relate any three-dimensional
vector and any 3 X 3 skew-symmetric matrix.

Note that E; e; = 0 and E e, = e3, E3e; = €5, and E,e; = e;. In contrast, R;
(¢) e; = e;. Another property which is used multiple times to obtain the
results presented below is that for any 3 X 3 rotation matrix R and any 3 X 3
skew symmetric matrix (),

vect(ROR") = R vect(Q).

Case 1: Line-to-line interaction

Performing the multiplications in Eq. 7, one finds

22R3 (Q)Rl (B)e3 +
= rR3<a)el+Zle3
0o 1

(AD)

Unlike the other two cases below, in this case three variables which appear in
the translation part of the homogeneous transformation matrix do not appear
in the rotation part. This gives a block structure to the Jacobian matrix, and
makes the determinant easy to compute.

In particular, if we group the variables as q; = («, 8, y) and q, = (zy, 7,
Z,), then in this case the Jacobian will have the form

Jr 0553
I = AT Oa AT Oa
oq, oq,

Here the matrix Jg is (Chirikjian and Kyatkin, 2001),

Biophysical Journal 86(2) 1105-1117



1114

Tr(A)

T BA T aA T aA
[Vect <A 601) , Vect( 8/3) , vect <A 6y>]

sinBsiny cosy O
= | sinBcosy —siny O
cos B 0 1

Due to the block lower diagonal form of this matrix, and the fact that A is
a rotation matrix and therefore det A = +1, it is clear that

0
et 9| = |det /g ||det oo |,
oq,
and from Eq. Al it is clear that
Oa Oa Oa
8—21293; E:R3(a)e1; 8—22:R3(Q)R1(B)e3.

Therefore, a small computation shows that

det @
oq,

and since |det Jg| = sin B, it follows that

= sin g,

|det9x| = sin” B.

Case 2: End-to-line interaction

Performing the multiplications in Eq. 9, we find that

Rs(¢)R1(O)Rs(a)Ri(y)  rRs(d)Ri(6)es +
H= R ($)R, (0)Rs(c)es
0 1
(A2)

The corresponding inverse is
. (RT<7>R§<¢>§T<0>R§<a> —rRT<y>e3>_

Therefore,

<H18H)v: s e U
0d R, (Y)R; ()R, (0)EsR, (0)e; +
SR (y)R ()R (0)E:R, (0)Rs (a)e,
sinfsina
sinfcosacosy+cosfsiny
sinfcosasiny —cosfcosy
rsinfcoso
—sinf(rsinacosy +xcosasiny) +xcosfcosy

sin@(rsinasiny —xcosacosy) —xcosfsiny
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rcosasiny +xsinacosy

y 0

LoH\" -
oy [ )-

RT(?’)%

y RIT(V)%
AN -
Ja =1 e =

XRl('}’)E";el

Stacking these vectors as columns in a 6 X 6 Jacobian matrix, and taking

the determinant, results in

|detIg| =rsinb.

Case 3: End-to-end interaction

Performing the multiplications in Eq. 11,

e <R3(¢)R1(9)R3 ()R (B)R5(7y)
OT

The corresponding inverse is

rR3(¢)R,(0)e;
o)

(A3)
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FIGURE A1l Biasing effects of binning before normalizing when w(f) =
sin® 6. (a) Ideal histogram. (b) Histogram with binning before normalization.
(c) Histogram with normalization before binning.

R ()R, (B)R; ()R} (0)R(¢) —rR; (Y)R, (B)es

"= 0 1
Therefore,

’ R (V)R (B)R; ()R, (6)es
<H‘ ?Z) ............................................

Ry (y)R] (B)R; ()R (0)E;R, (6)e;
sinf(sinacos?y + cosacosBsiny) + cosfsinBsiny
—sinf(sinasiny —cosacosBcosy) + cosfsinBcosy
sinfcosasinB —cosfcosB
rsin@(cosacosy —sinacosBsiny)
—rsinf(cosasiny +sinacosBcosy)

rsinasinBsinf

1115

"Ry (Y)R,| (B)R; (@)E €3
cosacosy —sinacosf3siny

oH\ "
H'—) =
(%)

—cosasiny —sinacoscosy
sinasin3
—r(sinacosy+cosacosBsiny)

r(sinasiny —cosacosBcosy)

rcosasinf
0
H*la—H T
o) = e s
Ry ()R, (B)es
0
= | sinBsiny [;
sinfcosy
cosf
sinBsiny
< l(‘)H)V RI(V)RT(ﬁ)es sinBcos’y
H oo ) = =| cosB |;
« 0 )/ |
0
cosy
v R3('y)e1 —Sil’l’)/
<H‘E;H) = .. =l 0 |;
B o ) | ...
0

Forming the Jacobian matrix and taking its determinant, one finds

|detdx|=7"sinBsinb.

A.2 Artifacts resulting from binning
before normalizing

As has been explained in the main part of the text, as well as in the articles of
Bowie (1997a) and Walther et al. (1998), observed helix-helix packing angle
distributions must be normalized by the appropriate geometric factors to
obtain true preferences. In the previous Appendix we derived the geometric
factors for two packing types not considered in previous works, and verified
the case considered by Walther et al. (1998).

In this Appendix the biasing effects of binning before normalizing (which
is the computation performed in Bowie, 1997a, and Walther et al., 1998) is
examined. A simple closed-form example in one variable illustrates the
importance of this effect.
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In short, if () is an observed angular distribution, and w(6) is a geometric
weighting factor (e.g., sin 6 or sin” 8), then the function which describes true
preferences (in comparison with the uniformly random distribution) is p(6),
where

f(0)=w(6)p(6).

Therefore, at all points for which w(f) # 0, one can obtain the preference
distribution as

(A4)

p(0)=1(6)/w(0).

Let us define the histogram of p(#), which is piecewise constant over equal-
sized bins, as

(AS5)

n—1
[p(e)]:ZPiW(G,bi,bHI), (A6)
i=0
where
bi+
p=| o010 (A7)
bj

is the constant height of bin i, and W(8, a, b) is the window function which is
equal to the number 1 on @ = 60 = b and zero otherwise.

Note that Eqs. A5 and A6 were not used in Bowie (1997a) and Walther
et al. (1998) to generate histograms. In those works, instead of computing
[p(0)] = [f(0)/w(6)], the quantity computed was

[£(0)1/[w(0)]# £ (0)/w(B)].

The central observation of this Appendix is the fact that the above statement
is not an equality, and the magnitude of the difference of the two sides in the
above ‘‘nonequality”’ can be quite dramatic.

Consider the following example, where w(f) = sin 6, and the true
underlying angular preference is

p(@) :hl + (/’lz _hl)W(07d,d+W),

(A8)

(A9)

where iy = 1, h, =4,d = 6, and w = 10°. See Fig. A1 for more information.

Also suppose we take the bins to be defined by b; =i X 10°, and n = 18 is

the number of bins. In this example, the true peak of the preference

distribution in Eq. A9 then lies 40% in bin 1, and 60% in bin 2. If one were

presented with a plot of this p(6), one would conclude that its mode is ~12°.
After binning, the heights of the first two bins are, respectively,

1
pO:b_[hld+h2(bl —d)]
1
and

hz(d'i"W*bl)"’hl(bz*d*W)
b, —b, '

These equations are obtained by simply evaluating Eq. A9 in Eq. A7. This
is analogous to what would be computed if each observation of f(6) =
p(6) sin 6 were divided by sin 6 before being binned. Of course, the
preference expressed in p(f) is not observed directly, and so one must
resort to binning, running averages, or kernel-based density estimation
methods (Silverman, 1986) to obtain a good estimate of p(#). Using the
binning method and the numerical values in this example, bin 1 of the
histogram has a height of 2.3 and bin 2 has a height of 2.8. This
proportional splitting of the actual peak which straddles two bins is to be
expected. It is simply something that one lives with if one chooses to use
histogram methods rather than running averages or kernel methods for
density estimation.

P =
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However, if one bins first and then normalizes, a very different picture
emerges. If we bin first and then normalize, the results for the first two bins
are
(1 —cosd) + hy(cosd —cosb,)

1—cosb,

fO/WOZh

and

£ /w :hz(cosb. —cos(d+w))+h(cos(d+w)—cosbh,)

cosh; —cosb,

Using the same numbers as before, the result now is that bin 1 has a value of
2.91 and bin 2 has a value of 2.57. In other words, the results are skewed
toward bin 1, even though majority of the true peak should actually be in bin 2.

If we had used w(f) = sin® 6 instead of sin 6, the skewing of the histo-
gram toward the first bin would have been even greater: bin 1 has a value of
3.36 and bin 2 has a value of 2.34. This example explains why Walther et al.
(1998) observed peaks near the ends of their histograms rather than what we
have found. That is, there is no strong preference for helices to interact at
+180°, but there is a distribution that has a mode in the range 150-170° and
tapers to zero as 6 approaches *180°.

Of course, if a sufficiently large number of sample observations of helix-
helix interactions could be observed then bins much finer than 10° could be
used, in which case the biasing effects of binning before normalizing would
be reduced.
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