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Abstract. A method for obtaining error-tolerant cyclic sequences similar to de
Bruijn sequences is presented. These sequences have a number of potential applica-
tions, including use as absolute rotary encoders. This investigation is motivated by
the desire to use a vision-based system to obtain the angular position of the wheels of
mobile robots as they rotate about their axes. One benefit of this approach is that the
actual wheel orientation is observed (as opposed to non-collocated measurements of
wheel angles via encoders on the motor shaft). As a result, ambiguities from back-
lash are eliminated. Another benefit of this system is the ability to apply it quickly
to existing systems. Several methods are developed for increasing the robustness of
these encoders. An imaging simulator is used to compare the accuracy of a variety
of encoding schemes subjected to several levels of image noise.

1 Introduction

The process of transmitting and obtaining state information has been studied from
a variety of perspectives. A practical example of this process is determining the ori-
entation of a wheel relative to a fixed frame. A number of rotary encoding strategies
have been developed to detect both relative motion and absolute position. For abso-
lute encoding, most rotary encoders fall into one of two categories: single-track and
multitrack. Most multitrack systems rely on bits that change in parallel as the wheel
turns. Single-track strategies utilize a single code, and segments of this code are of-
ten read in a serial fashion similar to a shift register. Fig. 1 provides two examples
of common absolute encoders: a Gray code and a de Bruijn sequence. A general
overview of rotary encoders can be found in [10], [2], and [11].
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(a) 4-bit binary Gray code (b) 4-bit binary de Bruijn sequence
Fig. 1 Above are two examples of codes that can are commonly used for rotary encoders.

Small circles indicate sensor locations. The multitrack Gray code (a) is read in a parallel
fashion, while the single track de Bruijn sequence (b) is read serially.
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Fig. 2 Examples of potential applications for vision-based encoders

In this paper, a new method for absolute rotary encoding that can be used in
combination with, or in place of, shaft encoders is presented based on single-track
encoding. It was developed for use with a new kind of modular reconfigurable
robotic platform, the M3 (Modular-Mobile-Multirobot) system, that is further de-
scribed in [15], [8], and [14]. In this system, the orientations of the wheels are im-
portant for module-to-module docking that occurs on the wheel surfaces. Fig. 2(a)
illustrates an initial deployment scenario in which an overhead camera is used to
measure the wheel angles, position, and orientation of multiple robotic modules.
This ability to easily capture additional state information can be important for non-
holonomic motion planning and characterization of backlash. Some issues related
to backlash and other uncertainty in nonholonomic robotic systems are discussed in
[3], [17], and [1].

The basic approach is to print a cyclic code around the circumference of the
wheel. A camera captures a visible portion of this pattern, and a decoding scheme as-
sesses the orientation of the wheel. There are numerous advantages of this approach
over traditional shaft encoding: (1) because the measurement is direct, measurement
errors that accumulate between the motor shaft and the wheel due to backlash in the
drivetrain are eliminated; (2) sensor/payload requirements on the robot are reduced
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since sensing is external; (3) a single sensor (an overhead camera) can be used to si-
multaneously assess both pose and wheel angles rather than using multiple sensors;
(4) this method can be used to supplement shaft encoders to quantify backlash at
any given time; (5) if off-board computing is being used, data bandwidth is reduced
as wheel angle information does not need to be sent from each robot to the control-
ling computer. Additionally, one of the most beneficial advantages of this encoding
scheme is its ease of application to existing systems without the need to carefully
align and mount collocated encoders and detectors.

Fig. 2(b) illustrates another potential application for the encoders presented. In
this type of application, appropriate methods must be developed for dealing with
occlusions. The robust nature of the encoding scheme allows for accurate read-
ings despite minor partial occlusion. Occlusions may also be handled using multiple
cameras.

The primary focus of this work is on error-tolerant cyclic sequences for use as sin-
gle track rotary encoders sampled through a noisy channel, computer vision in our
case. Error-tolerance here refers to error-detection and/or error-correction. Several
groups have investigated error-tolerant single-track sequences that address transition
error, errors that arise on the boundary between characters due to slight misalign-
ment of detectors [12, 13, 16]. However, we are concerned with error-tolerance from
a more information theoretic standpoint; we would like to improve the certainty
with which we make measurements by increasing the Hamming distance between
distinct positions along the code. In [6], Heiss developed error-detecting codes for
multitrack encoders where the Hamming distance between adjacent locations was
one and it was greater than one for all other pairs of distinct locations.

While this work was primarily developed for rotary encoding, portions of it are
applicable in a variety of settings. If we consider the problem of phase synchroniza-
tion of two or more systems through a noisy channel, error tolerant codes such as
those described here could be utilized. Hagita et al. further describe this in [5] while
also exploring and presenting methods for obtaining error-tolerant sequences simi-
lar to the ones developed here. However, they only provide a method for generating
error-correcting binary sequences of period 22" "2 — 1 with 2" — 2-length subse-
quences for integer values of m [5]; such sequences may not be suitable for rotary
encoders given specific design considerations.

2 Error-Tolerant Cyclic Sequences

Let S = (aj,ap,as,...ax—1,ak,a1,az,...) be a cyclic sequence with a period of K
whose elements are taken from an alphabet, A, with ¢ distinct elements. Now let
sn(i) be a subsequence of S of length n starting at the ith element of S. For example,
s5(3) = (as,a4,as,a¢,a7).

S is a de Bruijn sequence for subsequences of length # if it has a period of ¢" and
all possible n-length combinations of the elements of A appear. De Bruijn sequences
have been studied and used as absolute rotary encoders. This is done by “writing”
4" consecutive elements of the sequence around a circular object, such as a wheel.
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Taking n-sequential readings then allows the angular position to be determined to
within i[;fl radians. This is illustrated in Fig. 1(b) for ¢ =2 and n = 4.

Any cyclic sequence, S, can be used as an absolute rotary encoder in a similar
fashion provided that all n-length subsequences are unique. This can be formal-
ized further if we let dy (s,(i),s,(j)) be the Hamming distance' between subse-
quences s, (i) and s,(j). Now consider using the sequence S as an absolute encoder;
dy (sn(i),s,(j)) represents the distance between the message sent for position i and
position j. For convenience we can further define the minimum Hamming distance
between two distinct positions as

6 (S,n) = min{dy (sn (i), 50 (j)) [i,J < K,i 7 j}.

Thus, for S to be a suitable cyclic sequence for use as an absolute encoder in the
manner described above, §(S,n) must be at least 1 (i.e., no n-length subsequence
appears more than once).

If this process is viewed as transmitting an actual angular position through a
noisy channel, it may be desirable to have this minimum distance be greater than 1,
providing some degree of error-tolerance. If we assume that we only transmit and
receive elements from A, we are able to detect up to 6(S,n) — 1 errors. For error-
correction, if 6(S,n) > 2e — 1, we are able to correct up to e errors. Using vision as a
transmission channel, the data received may differ from A and thus it is less obvious
the “number” of errors we are able to detect or correct; we are more concerned with
the maximizing the mutual information. In either case, it should be clear that our
goal is to increase 0(S,n) while decreasing n for a fixed or bounded K.

For the remainder of the paper we will refer to a cyclic sequence S as an (n,d)-
sequence if 6(S,n) > d. Using this notation it is clear that all de Bruijn sequences
are (n,1)-sequences; as such, they are not well suited for use as encoders in the
presence of noise. In Sections 3 and 4 we will explore solutions to this problem.

3 Obtaining (n,d)-Sequences and the De Bruijn Graph

A de Bruijn graph, G = (V,E), for n-length subsequences on an alphabet, A, of
q characters is a directed graph where each vertex, v; € V, represents one of the
q" possible n-length code words. The edges connect vertices that represent possi-
ble sequential subsequences. Thus, a directed edge (v;,v;) € E exists if v; can be
attained by appending an element of A to the right of a left shifted version of v;.
Inasmuch, if

Vi = (avilaavﬂa s aavin)a

then
(vi,vj) €E & vj=(ay2,...,ayn—1,b) forsome beA.

For further information regarding de Bruijn graphs see [4].

! The Hamming distance for two sequences of equal length is taken to be the number of
corresponding positions at which the sequences differ.
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Table 1 Maximum length of binary (n,d)-sequences (g = 2)

nd=1d=2d=3d=4

8 3
16 4
32 10
64 15 7

128 31 14 7
256 63 16 8
512 >100 31 11
10 1024 >188 62 22

O 00 3 N L W

Cycles? of length K such that K > n within a de Bruijn graph are analogous to
(n, 1)-sequences. Given a cycle, C, of length K > n from a de Bruijn graph we can
construct a cyclic sequence, S¢, by sequentially taking the last element of the code
words represented by its first K vertices. Therefore, let

C = (Vi,Vig1,- - Vitm,Vi)

then
Sc = (avinaavi+1n> e aavi+mn)

and C =~ S¢. Thus, a Hamiltonian cycle® in G is analogous to a de Bruijn sequence.

While any cycle in G that is at least n in length represents an (n, 1)-sequence,
some cycles in G may correspond to sequences whose minimum distance is greater
than 1. Given some n and d > 1, we could obtain (n,d)-sequences by enumerat-
ing all cycles in G using methods given in [7] and [9], and removing those that
do not satisfy the constraint on d. However, for d > 1 the number of cycles with
minimum distance d is a relatively small subset of all of the cycles in G. Con-
sequently, enumerating all cycles may be inefficient; for example, is known that
on g characters there exist (q!)"n_]q_" unique de Bruijn sequences each of which
does not need to be considered when looking for such (n,d)-sequences. Therefore,
a modified cycle finding algorithm was developed. This is given in Algorithm 1
which takes in a de Bruijn graph and a minimum distance and, through a breadth-
first search, finds all cycles such that all vertices have a pairwise Hamming dis-
tance of at least d. Enforcement of this constraint during each search step elimi-
nates the need to enumerate unsuitable paths or cycles and to remove unsuitable
cycles at termination. Table 1 provides a summary of the maximum length (n,d)-
sequences that have been found for a variety of n and d combinations using a binary
alphabet.

2 Throughout the paper, the term cycle will refer only to simple cycles, those with no re-
peated vertices other than the first and last.
3 A Hamiltonian cycle is a cycle in which every vertex in a graph is visited exactly once.
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Algorithm 1 Find all (n,d)-sequences

Require: De Bruijn digraph G = (V, E) with vertices for subsequences of length n

1: procedure ALLCYCLESWITHMINDISTANCE(G,d)
2 k<0
3 U+ {}
4 for allv €V do
5: k< k+1
6 P, (v)
7 Cy < false
8 T < true
Note: Py represents a path. Cy, = true if Py is a cycle. Ty = true if P, should be further
explored.
9: while T(j) = true for some j do
10: i < argmin < j<x (7} = true)
11: y < last element in P;
12: T; < false
13: for all x € CHILDREN(y, G) do
14: if HAMMINGDIST(x, P;) > d then
15: k<—k+1
16: P, < APPEND(P;,x)
17: Cy < false
18: T < true
19: if x € P;,JU then
20: Ty < false
21: if x =v then
22: Cy < true
23: end if
24: end if
25: end if
26: end for
27: end while
28: U<+ UUv
29: end for

30: Return all P; such that C; = true
31: end procedure

32: function CHILDREN(v, G)

33: Let G = (V,E)

34: Return all w € V such that (v,w) € E
35: end function

36: function HAMMINGDIST(v, P)
37: Return minimum Hamming distance between v and all vertices in P
38: end function

39: function APPEND(P,v)

40: Let P = (p1,p2,---Pm)

41: P,<_(P17P27~~~Pm:")
42: Return P’

43: end function
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4 Multiple Parallel Sequences

Given a set of constraints on the length of the sequence, K, and the length of code
words, n, using a single sequence may not provide enough uniqueness between all
distinct positions. We can provide increased certainty by introducing additional se-
quences that are written in parallel to the first.

Let us assume that we want to use m sequences. For pairs of positions in one
sequence whose Hamming distances are close, we can attempt to ensure that those
pairwise distances are greater in the remaining sequences. Thus for two sequences

S and S@), for all i and j such that d(s,(ll)(i),s(l)(j)) =0 (S(l),n) we de-

sire d (slgz)’sgz)) > 8(S@ n). To this end, we can define a K x K distance matrix

D(S" n) as
D (s0n)] =a ()5 ()
ij

Using this notation we can easily sum distance matrices to obtain a distance matrix
whose entries represent the total Hamming distance between two positions across
all sequences.

To that end, we would like to determine the cyclic shifting or phasing that maxi-
mizes the following:

k
max | min |3 P <D (S(l),n))P’l (1)
P Peo | ijliti L; ! y
Here the cyclic shifts are represented by shift permuation matrices Py,...P; € 2.
& can be defined as

P = {P|P: (€n—jr€n—jt1s---€n,@1,...€n 1),
0<j<n—1}

where e; is the ith standard basis vector. It should be noted that the maximization in
(1) can be simplified by letting P, equal the K x K identity matrix.

It is likely that a number of shifts will result in the same value of (1). To choose
from among these we consider the standard deviation between all pairs of positions;
by minimizing this standard deviation, we seek to provide a uniformity to the Ham-
ming distance between positions.

5 Reading Wheel Position

For our application, a single overhead camera and binary sequences (i.e. ¢ = 2
and A = {0(black), 1(white)}) are utilized. Using this camera and fiducials on the
robots, we are able to locate the position and orientation of each robot. From this
pose information and the known geometry of a robotic module, we determine where
to read the sequences. The intensity images of the sequences are sampled along line
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(a) View from overhead camera (b) Close-up of reading locations

Fig. 3 Knowing the relative position of the robot with respect to camera allows the position
to be read. In (a) the full camera image is shown. The two short line segments in (b) indicate
where sampling of the sequences is performed in the image.
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Fig. 4 Intensity readings and expected values sampled from Fig. 3.

segments; an example of this sampling is shown in Fig. 3 and Fig. 4. We take pn
interpolated samples where p is the number of samples per bit. This sampling strat-
egy enables us to increase accuracy beyond + ¢ radians to approximately + p’;( for
K-length sequences. Let x(S,7) € [0,1]”" be a reading taken from the image of a
sequence S at time 7. Let y(s,(i)) € {0,1}?" such that

Y(Sn(l)) = ()’17)’27~~~)’p7)’p+17- . 'ypn)T = (aiyai7~~~ai7ai+17- . -an)T

Let h = {—0.5}”" be a constant vector used to shift x(S!),7) and y(s,(,l)(i)). This
shift is needed to ensure that all vectors have the same 2-norm.
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We can find the position using the summed cross-correlation across all m se-
quences. This can be done by letting b equal

k

b= argmax D (X(S(1>,l) + h)T (y (sf,l)(i)) Jrh)

=1
Then the angular reading can be taken as

0— an.
pK

6 Design Considerations and Imaging Simulator

For a given application, there are a number of design considerations that need to be
taken into account. First, the radius and width of the cylindrical surface on which
the code is to be written on will impose a number of design constraints including the
number of sequences to write in parallel and the length of the sequences. These geo-
metric factors must be coupled with the imaging resolution, position of the camera,
and image quality to determine a suitable set of coding sequences. For a fixed cylin-
der geometry, increasing the number of sequences written in parallel will increase
the Hamming distance between distinct angular positions, but will also increase
the noise and blurring experienced in reading the position. Similarly, increasing se-
quence length reduces the size of an individual bit leading to less certainty when
attempting to read the bit.

In an attempt to quantify the relative quality of various coding strategies, an imag-
ing simulator was developed to easily test a variety of encoders. The simulator cre-
ates a virtual cylinder with binary sequences written on the outer surface. It then sets
the cylinder’s pose and angular position. A virtual image is captured of the cylin-
der at a specified resolution and common image noise is added at specified levels.
The forms of image noise considered are Gaussian blurring, additive white Gaus-
sian noise, and a reduction in the dynamic range. In addition to image noise, minor
noise was added to the position of the cylinder. This has the effect of measurement
uncertainty of the position of a robotic module. Once we have an image, we use the
same decoding technique described in Section 5.

For a given coding scheme, the simulator was used to test reading a wheel with
a given geometry in a variety of poses and at numerous noise levels. The amount of
noise considered for each test was determined by a noise coefficient used to scale all
of the noise sources simultaneously (see Fig. 6). The percentage of correct readings
were then used to determine the effectiveness of a particular encoding. A reading
was considered correct if it was within a set tolerance limit; for the test results
presented in Fig. 7, the tolerance limit was set at + 21? for K-length sequences. Pa-
rameters were chosen that closely match those found in the M3 Express system [15].
The cylinder had a radius of 55mm and a width of 12mm. The image resolution was
chosen so that the each pixel represents approximately one square millimeter.
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Fig. 5 Six example encoders that were tested using the image simulator. Each encoded cylin-
der is shown from above at high resolution. From left to right: a single (10, 1)-sequence, a
single (8, 1)-sequence, a single (10,2)-sequence, two parallel (8, 1)-sequences, three parallel
(8,1)-sequences, and two parallel (10,2)-sequences.

Several examples of encoding scenarios that were tested are provided in Fig. 5.
These include a single (8, 1)-sequence, a single (10, 1)-sequence, a single (10,2)-
sequence, two parallel (8,1)-sequences, three parallel (8,1)-sequences, and two
parallel (10,2)-sequences. All sequences tested have a length of 170. The (n,1)-
sequences were generated randomly and then checked to ensure a minimum Ham-
ming distance of 1. These (n,1)-sequences are similar to a standard de Bruijn se-
quence encoding scheme. The (10,2)-sequences were generated using Algorithm
1. The phasing of the multiple sequence encodings was performed as described in
Section 4.

7 Discussion and Future Work

We have presented a new method for encoding and reading the angle of a wheel
using vision based detection. The encoding strategy was inspired by the use of de
Bruijn sequences as single track rotary encoders. In Sections 3 and 4, we describe
methods for developing encoders that are more tolerant to uncertainty and noise.
These methods include increasing the Hamming distance between distinct positions
for single cyclic sequences and writing multiple sequences in parallel.

In addition to developing encoders, six example encoding strategies were tested
using an imaging simulator described in Section 6. The results shown in Fig. 7 reveal
several things. It is clear that the multi-sequence encoders perform better than single
sequence encodings. This can be attributed to the redundancy provided by adding
additional sequences. However, the performance difference between using one and
two (8, 1)-sequences is much more dramatic than the difference between using two
and three. This may be due to blurring of the borders of bits or positioning error.
As additional sequences are added, the width of each strip is reduced. For a fixed
resolution image, this reduced size can lead to additional ambiguity for each bit.
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(a) Noise Coefficient=0.0 (b) Noise Coefficient=0.5 (c) Noise Coefficient

0.75

A b
(d) Noise Coefficient = 1.0

Fig. 6 Four sample images demonstrating the amount of image noise introduced in the image
simulator.
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Fig. 7 The percentage of correctly read encoder positions at various noise levels for the
encoder examples shown in Fig. 5.

Thus, there is a limit to the added benefit of adding additional sequences. Also
evident is that for the single sequence encoders, the (10,2)-sequence outperforms
both the (10,1) and (8, 1)-sequences. We believe that this is due to the increased
Hamming distance between any two positions. Finally, it should be noted that the
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encoder which employed both strategies had the highest success rate at nearly all
noise levels.

While the methods described here may provide more robust encoding strategies,
there is still additional cataloging of sequences for n > 10 and d > 1 that can be per-
formed. Moreover, future investigation can be performed to attempt to enumerate
sequences for larger alphabets, ¢ > 2. These could be useful as a replacement for
writing two or more codes in parallel. For example, if ¢ = 4, one could imagine rep-
resenting the four symbols using two bits side-by-side (i.e. the alphabet, A, could be
{(0,0),(0,1),(1,0),(1,1)}). Writing such a sequence on a wheel would then look
very similar to writing two sequences in parallel; however, a greater minimum Ham-
ming distance may be achievable for a smaller number of total readings. Finally, in
addition to investigating additional encodings, future work may include testing and
experimental validation of the accuracy of the encoders on the M>Express and de-
velopment of strategies for handling partial occlusions.
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