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Appendix A

S.M., .T., L. G. ©
gregc@jhu.edu 02/01/10

These notes are meant to clarify and accentuate certain points in the book
“Stochastic Models, Information Theory, and Lie Groups. Vol. 1” by G. S.
Chirikjian [3]. These notes are not meant for stand-alone use, as many defini-
tions and symbols are defined in the book. Volume 1 of this two-volume set was
published by Birkh&user in 2009 and is available from the publisher as well as
outlets such as amazon.com. Volume 2 is expected to appear January 2011. A
separate addendum to Vol. 2 will be posted after it is published. These addenda
will be updated periodically to include new material. Contact the author via
email gregc@jhu.edu to report any errors. An up-to-date page of errata also is
being maintained at the webpage of the author’s lab.

The notes that follow are not meant as stand-alone course materials. For
context and definition of notation see Volume 1.

A.1 General Questions about Notation

Some nonstandard notation was used in Volume 1. In some cases this was
because of notational clashes that occurred when trying to span discussions
across multiple fields that assign different meaning to the same symbols. In
other cases it was to simplify the presentation. The main deviations from field-
specific standard notation are summarized in this section.

A.1.1 The Notation for a Parametric Family

In this book f(x;0) refers to a probability density function in the variable
x € D C R"™ parameterized by @ € B C R™. It is assumed that D is a measurable
space, but this need not always be the case for B. In many books this same
pdf is written as f(x|6), indicating that this is a density in x conditioned on

5
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6. In order for the concept of conditioning to make sense, the space of values 6
should be measurable and a prior density f(0) should exist such that

f(x,0) = f(x|0)f(8) = f(0]x)f(x)

is a joint density on D x B C R"*™,
If such a prior exists, then!

fo) = [ 010100

and

f(x]6)1(6)
f(0]x)= . Al
O = Jy s Fx1 0100 -
Therefore, in contexts when Bayesian calculations such as (A.1) are not calcu-
lated (which is most of Volume 1), parameterized families of pdfs are denoted as

f(x;8). A specific example of this are the multivariate Gaussian distribution,

1 1
X)=px; U, %)= ————¢ ——(x—pw)TE Y(x— }
p(ps) (%) = p(x; p, ) 2 det s} Xp{ 5 (X —p) (x — )

Unless one is ready to discuss integration measures on the space of values of the
form (p, ), it is premature to denote the Gaussian as p(x | g, ¥) (which is how
it is often denoted).

In addition to static Gaussian distributions, the issue of whether or not to
use the conditional symbol arises in the study of diffusion processes. Solutions
to Fokker-Planck equations such as?

of s 0f 1~ O
9f _ =L 4= By —2
ot = 2 "oa, 2 ;1 I Di0;

where f(x,0) = d(x)

are generally written as f(x,t). The latter could be denoted as f(x;t) (or
f(x;a, B,t)), but since x € R" is the only spatial variable, there is no confusion
about mistaking f(x,t) for a joint density on R™ x R>q. In this context it would
be confusing to use the notation f(x|t) in place of f(x;t), since one often talks
about conditioning on prior values of x (e.g., in discussions of Markov processes
the notation f(x1|x2) or f(x1,t1|X2,t2) is used). Here the t;’s are not part of
the domain on which the conditioning is being performed. And to say that the
pdf is in addition conditioned on a specific instant of time would lead to too
many conditioning symbols. This is one of a number of notational issues that
occur when passing from discrete to continuous time. The latter is the emphasis
in Volume 1, as this is the version that is most relevant to modeling physical
phenomena such as Brownian motion.

IEach of the densities f(x,8), f(x), f(6) can be extended over the whole of R*t™ R™ R™
respectively, by assigning them the value zero outside of D x B, D, B, respectively.

21t was shown in Chapter 2 that in fact the solutions f(x,t) to Fokker-Planck equations
with constant coefficients a, B is a Gaussian.
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Having said all this, in Volume 2, we will in fact discuss integration measures
on spaces of symmetric positive definite matrices, and so it will make sense to
define probability densities on spaces of covariance matrices (e.g., the Wishart
distribution), and hence p(x | i, 2) will make sense in that context. But rather
than leaving the reader wondering for hundreds of pages why a conditional
symbol is used in the definition of the Gaussian, the innocuous semicolon was
used.

A.1.2 Deviations from Standard Information-Theory No-
tation

The standard symbols for entropy, mutual information, etc., were not used in
Volume 1. For example, the standard notation for the entropy of a random
variable X is H(X). In Volume 1, the notation used was S(f) where f(x) is the
probability density function (pdf) corresponding to X. This notation reflects the
computational nature of the book. Namely, if one wants to know the numerical
value of entropy in some scenario, substitute f(z) into the integral

- / f(x)log f(x)dx

The notation S(f) also provides a degree of consistency with other definitions
in information theory. For example, in the scalar case the Fisher information is

- [3(8)'s

and the Kullback-Leibler divergence is

h(@) dx.
fa(2)
The pdfs used in computing them are explicit in the symbols F(f) and Dk (f1 ] f2)-

Why should f be hidden from sight when it comes to denoting entropy or mutual
information ?

Dicr(fr |l f2) = / f1(z) log

A.2 Addendum to Chapter 3: Probability and
Information Theory

A.2.1 Conditional Expectation

This section serves as an addendum to p. 73 of Vol. 1, in which conditional
expectation is discussed. The concept and notation for conditional expectation
(+|-) are explained in the text. The usual expectation of a function ¢(z1,z2)
using a probability density f(x1,x2) is

/ / ¢’ $17$2 $17$2)d$1d$2
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In contrast, the conditional expectation of any function ¢(x1) given xs is

Glovles) = s [ olen) o, aa)dan.
Here, of course, .
f2(x2) :/ o(x1) f (1, w2)d1.

This concept extends to higher dimensions (and even non-Euclidean settings)
in a natural way. For example, given ¢(x1,x2) and f(z1, z2, z3,24),

f3,4(x3,24) =/ / f(x1, x2, 23, x4)dx1d2s.
and
. 1 oo oo
(p(z1, x2)| T3, 24) = 7/ / d(x1, x2) f(x1, 22, T3, T4)dz1dTs.
f3.a(x3,24) J oo ) oo

Note that in the statement of a conditional expectation, such as one of the form
(p(x1,x2)|23,24), the master pdf used to perform the computation (in this case
f(z1, 2, x3,24)) is not explicitly stated. But its existence is necessary in order
to perform the computation.

In (3.25), the following computation is performed

(Fe) = (00

: (<ﬂ”“ii+“ﬂ>ﬁ'§§2§

INA
—
@
b
Q
3
s
S
=
N———
¥

IN

(s
((Fe3)) = <
(5

62<<;<zz> >+<1—ﬁ>2<<z’zéz%>2>-

Since fa(x) = (p1 * p2)(x), it follows that

[ F(py * p2) < B°F(p1) + (1 - B)°F(py)| (A7)
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where F(f) is the Fisher information of f. Optimizing over § gives

Flovspe) < 50, 5T F (o)

Both the inequalities that are introduced in going from (A.2) to (A.3) and
from (A.4) to (A.5) result from the application of Jensen’s inequality for condi-
tional expectation (3.24). However, since the conditional expectation of pf (u)/p1(u)
is computed using the joint density p;(u)p2(x2 — u) and the conditional expec-
tation of p)(v)/p2(v) is computed using the joint density ps(v)p1(x2 — v), care
must be taken when combining these since the angle brackets hide the pdfs with
which expectation is being computed. When both terms are combined resulting
in (A.2), the expectation must be computed with respect to a trivariate pdf
F(u,v,x9) with marginals

pa(v)p1(z2 —v) = /_OO F(u,v,22)du (A.9)
p1(w)pa(zg —u) = /jo F(u,v,x9)dv (A.10)
p1(u)p2(v) = /_00 F(u,v,29)dzy (A.11)

(The last of these is simply a statement that the original random variables are
independent. It is this marginal density that is used to compute the expectation
in (A.5), and which separates to give the expectations with respect to u and
v separately in the two terms in (A.6).) While not stated in the theorem of
Blachman, the existence of such a pdf is necessary for this step to be valid.

It turns out that such an F' can be constructed. And while it will exist
(which is all we care about), it may not be unique. The general conditions
under which the existence of trivariate pdfs are guaranteed that have certain
marginals is addressed in [8] (provided to the author by Prof. Jim Fill). And in
our particular problem it can be defined in terms of its Fourier transform as [5]

F(wuawvawx2> = ﬁl(wu + wlz)ﬁQ(wv + w12)' (A12)
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A.2.2 Fisher Information and Convolution without Con-
ditional Expectation

Suppose we start the same as before, but do not use conditional expectation
involving the joint distribution in u, v and z5. Instead, just complete the square:

() - s

p2(v)
- (5l oo (il

Now if we compute expectations we get

() - (e

p
(A0} o ((2))

L

~—

£

But we already established in Vol 1. that

falws) _ <p’1(U) x2> _ <p’22v§
pa (v

fa(z2) p1(u)
((B0].) (B0]Y) = (o)),

Therefore, bringing the cross term over to the other side, we have

o (FEs) < ((A5) ) ra-or((56) )

or equivalently,

and so

>

BQF(M) + (1-— ﬂ)ZF(PQ)
=pP+ @ =P+

F(f2) <
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Comparing with (A.7) this is not the same. Choosing

B2 F(p2) (1-p) F(p1)

(1-8)2+8%  F(p1)+ F(p2) (L=08)2+3%  Flp1)+ F(ps)

then gives the inequality

2 F(p1) - F(p2)
PO < 00+ Fiow)

Notice the factor of 2 here that does not exist in (A.8). Therefore, this bound
is not as tight, and conditional expectation played a key role in obtaining the
tighter bound.

(A.13)

A.2.3 When Is Fisher Information Divergence Invariant
Under Coordinate Changes 7

In the middle of page 77 the chain-rule equation that is written as
Vel (d) = (Vi) g /()
actually should be
VoIx(@)) = (Vi f (%)) g 7 (¢)- (A.14)

This error affects the resulting equations.
Since f(¢) is defined earlier on that page as

F() = f(x(#))|T(e)|

it follows from the product rule that
VL i) = V5 (F(x@)| (@)} = V5 {F(x(@)} (@) + F(x(@) VT (@)

Therefore

L T £ _L T 7 _
Fia ¢ g e
UL ALl B W L
@y Vo @O+ T — g Ve (@) - e =
: P X _; L X =
@) Vo 1O} = £ Vg {(x(9)
1 T _; T
(fl(X(¢)) (fol(x))’x(d)) () (Vi fa( ))|x(¢)> J().

The first few equalities above are from direct substitution and the last equality
uses (A.14).
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What this means is that

DFI(fl I fZ) =
/ (]<vamx»| L T hm) )Lu¢>21304¢»LM¢Nd¢
dern ||\ [1(x(¢)) " ¥ (P " f(x(¢) X x(¢)

and since dx = |J(¢)|d¢

Drr(fill f2) = Dri(f1 ] f2)
if
J()J" (¢) =1

which is a little different than what is written.

A.2.4 Variance and Entropy Powers

The following relationship between entropy and variance is well-known. See, for
example, [4]. Let & be an estimate of the mean of any pdf f(z). Then
A2 S mi a2
{(@-2)% 2 min{(z—2)7)
= ((z—ns)?
_ 2
Jf.

On the other hand, we know that over all pdfs with mean p; and variance UJ%,
the Gaussian is the one with maximum entropy. The entropy of a Gaussian
with mean py and variance 0']% is S(pw,gjzc) = %log(QweUJ%). Since this entropy
will be greater than S(f), and since the function e* is strictly increasing, we
also have that N(f) < N(Puf,aj%) where N(f) = exp(25(f))/2me is the entropy
power of f. Therefore,

1 1
N(pﬂf’ai) = 5. OXP <2 5 10g(27reaj2c)> =07 > N(f).

Combining this with the inequalities above gives that the variance of any esti-
mator of the mean (including the true variance itself) satisfies

((z—2)%) = N(f). (A.15)

We can make some statements in the multidimensional case also. Let ¥ be
the covariance of a pdf f(x) where x € R™. Then the entropy power N(f) will
always be less than or equal to the entropy power of the multivariate Gaussian
with covariance ;. That is, if |[X¢| denotes the determinant of X,

N(f) < N(pﬂf,Zf)

where 1
S(pus ;) = 5 log((2me)"|]) = 7 log ((2me) 2% )
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and

Therefore,
1

N(f) < |55

This can be written in a form analogous to (A.15) by observing the algebraic-
goemetric mean inequality (which holds for any set of positive real numbers):

1 n n %
> N> Ai
i (I

and substituting in for each A; the eigenvalues of ¥ ;. This then gives
() > [
—tr .
n flZ1=f
Then, mimicking the rest of the proof in the one-dimensional case,
1
ﬁtr<(x—§<)(x—${)T> > N(f). (A.16)

Furthermore, all k-dimensional marginals of the pdf f(x) must satisfy this ex-
pression also, with k replacing n.

A.2.5 An Additional Closed-Form Density

The Gaussian distribution was investigated extensively in Chapter 2. Since
the Gaussian is very special (e.g., it is the maximum entropy distribution under
variance constraints, it satisfies the equality case of the entropy power inequality
in the case when the two Gaussians have covariances that are scalar multiples
of each other, is completely determined by its first two moments, etc.) it can
be instructive to have other smooth pdfs that are not so special, to illustrate
theorems in more general cases. In this section some of the properties of a class
of smooth non-Gaussian pdfs are listed.
Let ,
fl@)=la+ bxz]efcxz.

If a,b,¢ > 0 and the integral of f(x) over the real line is constrained to be 1,
then this will be a pdf. Explicitly this is

o0 2 3 b
/ (a+bx?)e™ " dr = a (%) + gc—% =1. (A.17)

—0o0

Furthermore, using integration by parts,

/ 2% (a + bxz)e*cwzdm = VT SV

_’_7

T = g2, (A.18)

2

(e}
m\w‘ S]
(o)
w\m‘ S

— 00
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This means that we can define a pdf of the form

fe,0) () = [alc, 0?) + b(c,0?)z?]e” " (A.19)
where , - ,
5 3 1 2 3
b(e, 0%) = 202021— ¢t alc,0?) = sc? _10 c2
T2 T2

A.3 Addendum to Chapter 4: Stochastic Pro-
cesses

A.3.1 General Derivation of the Chapman-Kolmogorov Equa-
tion

Here a detailed derivation of the Chapman-Kolmogorov equation is given. The
dependence on 1, ...,t, is suppressed for notational convenience.
In general

p(X17X27X37"'7Xn) = p(Xl ng,Xg,...,Xn)p(Xg,Xg,...,Xn)

= p(X1]X2,X3 0y X )D(X2 | X3, ooy X )P(X3 o0y X )
Dividing by p(xs, ...,Xn), in general we can write

p(Xl,Xg,Xg, "'axn)
P(X3, ey Xn)

p(x1 | X2,X3, ..o, X )P(X2 | X3, ..., Xy ) = = p(X1,X2 | X3, ..., Xp)-

In the special case of a Markov process, this expression reduces to

p(x1|x2)p(x2 | x3) = p(x1,%2 | X3) = p(x1,%X2,%3)/p(X3).

Integrating both sides over xo then gives

p(Xl, X3)

p(X3)

which is the Chapman-Kolmogorov equation for Markov processes in R?. It is
easy to see that the restriction of the discussion to Euclidean space for the sake
of concreteness is artificial in that pdfs on any domain on which an integration
measure can be defined could have been used.

[ ptos ot [ xa)ixs = —pailx),  (A20)

The Special Case of Stationary Processes

Now, if we reintroduce the dependence on time, the result of the previous sub-
section can be written as

/ p(x1,11 | X2, t2)p(Xe, ta | X3,t3)dxe = p(x1,t1 | X3,1t3). (A.21)
Rd
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A somewhat confusing thing to remember is that the tradition in the study of
Markov processes is that ¢; > ¢; when ¢ < j and therefore x; is a more recent
value of x than x;. In other words, as indices on the time variable increase, they
denote times further in the past. This is the opposite of the convention used for
stochastic differential equations.

For a stationary process,

p(x1,t1 | X2, t2) = p(x1,t1 — ta | X2,0) = p(x1 | X2, t1 — t2)

and so using this definition on all terms in (A.21) gives
/ p(Xl |X27 tl — tg)p(Xg ‘ X3, tg — t3)dX2 = p(X1 |X37 tl — tg). (A22)
R4

If we let t1 — to = s and to — 3 =t — s then t; — t3 = ¢t and (4.16) results.

A.3.2 Proofs of the It6 Fokker-Planck Equation

In (4.58) and (4.59) the integrations over y should have been integrations over
x, and likewise the integration against €(y)dy should have been against e(x)dx
This can be fixed by either: (a) swapping the roles of x and y in the condi-
tional probability, (b) replacing the notation p(x|y,t) with p(x — y,¢) (which
is equivalent to (a)), or (c¢) integrating over x and against ¢(x)dx rather than
what was done.

In the following four subsections alternative proofs that make slightly differ-
ent notational choices are presented. In the first, the Fokker-Planck equation is
derived from It6’s rule rather than using the Chapman-Kolmogorov equation.
In the second re-derivation, as in the book, x occurs after y. The formulation is
also modified by using transition probabilities that are not necessarily invariant
under shifts in time. In the third re-derivation, y occurs after x (as in the book).
In both of these two, the temporal relationship is allowed to change: in some
instances it is dt, in others it is ¢, and in others it is ¢t + dt. In the fourth re-
derivation, the temporal relationships are fixed. Before getting to those, some
background is reviewed.

Recall that in general p(a|b, 7) denotes the probability of transitioning from
b to a in a period of time 7 > 0 in the special case when p(a,t + 7|b,t)
is independent of t. In some books this is written in a different notation as
p(b — a, 7), which adds to the confusion about the positions of the arguments.

The actual values of time do not matter, only their difference does. So,
for example, it does not matter whether a = x(¢) and b = x(t — dt) or a =
x(t + dt) and b = x(t). The value of 7 in p(a|b, 7) parameterizes the resulting
conditional pdf in the position of the trajectory 7 units of time after it was
observed being at b. Whereas the time difference T is relative, the position
variables a and b are absolute. The probabilistic relationship between a and b
will change based on the value of 7.

Let x(t) satisfy the It6 SDE

dx(t) = h(x(t), t)dt + H(x(t), t)dw(?) (A.23)
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where w = [wy, ..., w2]T is a vector of uncorrelated unit-strength Wiener pro-
cesses. In component form (A.23) is written as

m
diL’i = hi(X, t)dt + Z Hij(X, t)dwj
j=1
Since x(t + dt) = x(t) + dx(t), it follows that x(t) is a Markov process. This
is because the distribution of its values at t + dt is completely determined by
the distribution at ¢ and the transition probability describing the jump from ¢
to t + dt.
Since sample paths generated by SDEs driven by white noise are continuous,
p(x|y, dt) is sharply peaked like §(x—y). Furthermore, while in general p(x|y, 7)
is only a pdf in x (and not y), and so

/ p(x|y,7)dx =1 and / p(x|y,7)dy #1
R4 R

for general values of 7 > 0, we have the special case

lim p(x|y,7)dy = / d(x—y)dy = 1. (A.24)
Rd

7—0 Jrd

In the book, on p 121, the Taylor series for €(y) expanded about ¢(£€), which
is then multiplied by p(&|y, At) inside an integral, was written (with 0&;0¢
corrected as 0€;0¢;) as

d d 52

1
;1(312 — &) (y; f;)ag E, +... (A.25)

Where did this come from ? Well, in general if f : R? — R is smooth, then the
Taylor series expansion of f(x) when x = a + v for ||v]| << 1is
d

flatv)= +sz<af>‘ Z((f@f) .

i 2]1

v=a

On the right-hand-side of the above expression we could have replaced some of
the v’s and v;’s with x’s and x;’s as

d

flatv)= +§:m<af>

x=a % =1

since Ov/0xT = 1. The more familiar form may be

d
1 0 f
5 E:: i —aq)(x; — ay) (0@81}1) +...

f(x) = f<a>+§d2<%—ai) (aaaf)

i=1
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When it is understood that the evaluation only applies to the partial derivatives,
the parenthesis can be removed.
In the present context,

c(y) =€+ (y—¢)

and since At is small, and so p(&|y, At) is sharply peaked like the delta function
0(& —y), then the only values that contribute to the integral will be those for
which ||y — &|| is infinitesimally small. This justifies truncating the Taylor series
as

d

e 1 & 0%
e(y) =e(§) + Z(yz -&) 5 + 5 Z (i — &)Wy — &) 55—
i=1 Iy y=¢ 2 ig=1 9y;0yi y=§
And
Oe(y) _ Oe(§)
i |y_g  0&
Therefore, (A.25) is okay if we interpret all of the €’s on the right hand side to
be €(€).

In Versions 3 and 4 below, integrals of the form

L e(€) - e(x)]dx

I p(&;t —dtly, 0)[e(§) — e(x)ldx = p(§,t - dily,0) /Rd dt

T dt Jpa

need to be evaluated. Indeed, if dt is infinitesimally small, then x and & must
be close to each other. This means that as dt — 0,

(@ = o0 = 51 (£37).

Since in general

Oe
——dx =07
R4 8XT x ’

it follows that I = 0.

Better Proof (Version 0)

In this section It6’s rule is used rather than the Chapman-Kolmogorov equation
to derive the Fokker-Planck equation. This has the same three essential steps
as in other proofs. Namely

e The use of a Taylor series expansion of an arbitrary compactly supported
function (in the current case this is embedded in the derivation of It6’s
rule);

e Integration by parts;

e Localization of an expression from inside of an integral.
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Since It6’s rule applies equally well to It6 SDEs in Cartesian and curvilinear
coordinates, the latter (more general) case will be handled here.
Given the It6 SDE

dq = a(q,t)dt + B(q,t)dw or dg; = a;(q,t)dt + Z Bij(q,t)dw; (A.26)

Jj=1

and given an arbitrary smooth compactly supported real-valued function ¢(q),
then It6’s rule is written as

Now, recall that the expected value of any function ¢(q,t) where q is a set of
curvilinear coordinates in R? is computed as

@la) = [ élaf(a.0/G@)Hda (A2

where f(q,t) is the time-evolving probability density describing the ensemble
behavior of all sample paths generated by the SDE in (A.26). Therefore,

4 e 1 & 0% T L He
<d€> = < Z%aj+§ Z: 8qk8ql [BB ]kl dt+zzaqk3kldwl>

Il
T
E
‘Qv
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o
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The expectation of the product becomes a product of expectations because of
[t6’s interpretation of the stochastic integral, and the corresponding SDE. And
the second term disappears because (dw;). Now referring back to (A.27) we can
develop expressions that constrain the behavior of f(q,t). First observe that

() = {elalt+d0) = ealt))) = (de(alt +d0)) — (de(a(0))
= | @i+ aiGaltia- [ dasa)ca)ia

= [ 0P anca)tda

Expressing the right side of (A.28) in a similar way, and combining gives

d € 26 1
[ @t aicaitaa= [ (a5 3 g 185 | fla.0/Gta)l dadt.
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Cancelling dt, and performing integration by parts on the right side of the form?

Oe 1 0 1
| sewnctiaa = [ S (a5161) dayia

_1 a 1 1
- [ 161 (w161 ) )G da

(and doing so similarly twice for the other term) and then writing the result all
on one side gives

d

ot = 0q;
d 2
516t "y s (BB (@ Dluf(@ 0l { cla)l6(a)]Fda=0.
Localization then gives
d
ad ol 5 (6@l aanrian) (A.29)
s P :
+5l6(a 3 e (IBB" (@, )] f(a DIG(@) ).

Better Proof (Version 1)

In what follows, x € R? denotes the position of the stochastic trajectory at some
time 7 after being at y € R%. In some contexts the separation of time between
these two states will be 7 = dt, in others it will be 7 = ¢, and in others it will be
T =1t+dt. If 7 = dt then x might denote the Cartesian coordinates of x(t + dt)
and y might denote the coordinates of x(t) (or, equivalently x might denote the
Cartesian coordinates of x(¢) and y might denote the coordinates of x(t — dt)).
In comparison, if 7 = ¢ then x might denote the Cartesian coordinates of x(t)
and y might denote the coordinates of all possible initial states x(0).

The transition probability p(x,t + dt|y,t) is exactly that which would be
generated by making a histogram corresponding to an infinite number of sample
paths of length dt generated from (A.23). Using the properties of p(x, t+dt|y, t)

n (4.52) and (4.53), it follows that

[ dptost + dtly ax = (o) = {do) = iyt (230
Rd
or, using different variable names,

/Rd(fi —x)p(&,t + dt|x, t)dE = (§; — xi) = (dw;) = hi(x,t)dt

3The surface terms disappear because €(q) is taken to be compactly supported.
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and

/Rd (wi—yi) (=Y, p(x, tdtly, tdx = ((wi—y:) (w;—y;)) = (dwida;) = > Hipy, ) H5(y, t)dt
' k=1
(A.31)

/Rd (&—2:) (§—,)p(&, tdt|x, t)dE = ((&i—2:)(§—x5)) = (dwida;) =Y | Hup(x,t)HL (x,1)dt.
k=1

In contrast to p(x, t+dtly,t) (or p(&,t+dt|x,t)), we now investigate p(x, t+
dt]y,0). The Chapman-Kolmogorov equation (A.21) can be written in the
special case when t; —t3 =1 + dt as

plct+dly.0) = [ plct e plétly. 00 (A3

Using the Chapman-Kolmogorov equation in the form of (A.32), together
with the definition of partial derivative gives*

opx,tly,0) .1

. 1
= Jimy | [ px e Al 0pte 130~ it 5.0

Let ¢(x) be an arbitrary compactly supported function for which de/0x; and
0%¢/0x;0x; are continuous for all 4,7,k = 1, ...,n. Then the projection of dp/t
against €(x) can be expanded as

Ip(x,tly,0) I
[ D ix = w1 | [ eax [ ptxe atlgonte ]y, 0pe

= [ty 0

Now perform the following manipulations on the first term on the right hand
side of the above equation:

/ () [ / p(x,t+At|s,t>p<s,t|y,o>ds} dx / / €()p(x, £ + At € )p(E, £y, 0)dxde
R4 R4 Rd JRA

/]Rd ‘/Rd e(&)p(&,t + At|x,t)p(x, tly,0)dédx

[ pxtiv0) [ [ ct@mie.t+ atlx.0de| ix
R R

4A point of possible confusion is that the value of separation time in p(x,t -+ At |y, 0) and
p(x,tly,0) are different, and so the resulting conditional pdfs are different, but the position
variables x and y are the same in both.



A.3. ADDENDUM TO CHAPTER 4: STOCHASTIC PROCESSES 21

where all that was done in the middle step was a swapping of the names of the
variables of integration.
Therefore, (A.33) can be written as

/Rd amxéii‘y’o)e(x)dx = Al%r_r)lo é /Rd p(x,t]y,0) {/Rd p(&,t 4+ At|x, t)e(€)dE — e(x) | dx.
(A.34)
In the above bracketed term, & denotes the possible positions of a stochastic
trajectory dt units of time after it is observed at x. This is different than the
role of £ in the prior equations, because we swapped the roles of x and £ in
order to isolate p(x|y,t).
Expanding the function ¢(£) in its Taylor series about x:

de 1 <& 0%e
€(8) = elxt(§—x)) = )+ )_(E—mi) gty D (Gimwa)(§ ) g

i=1 i,j=1

and since here £ is playing the same role as y in (A.30) and (A.31), substituting
this series into the previous equation results in

€(x) - /R P+ dt | x, £)de

[ ptet+ atixe(eyae

" ; 88; ' /Rd(& —z)p(€,t + dt | x, t)d€
1 & 9%
3 ”Z::I dz,01; /Rd(fi —x;)(& — x;)p(& t +dt | x,t)d§
d e m
= e(x) +; 0z (x,t)dt + = le 83@16333 Zsz (x, t)Hk](X t)dt.

The first term on the last line above comes from the fact that

/ p(&,t+dt|x,t)d§ =1
R4

and so this e(x) will cancel with the one in (A.34). It follows that

Op(x,tly,0) 7/ — e -
2 gns [ |5 Bonion ) 3 G2 S st | i .o

when (A.30) and (A.31) are observed.
The final step is to integrate the two terms on the right-hand side of the
above equation by parts to generate

Op(x, tly,
¢
/Rd { +Z 5y, (% Pl 11y, )

l\)\»—t

Z Z axj Hik (%, £) Hyiy (%, )p (X:t|y70))} e(x)dx =0
o (A.35)
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Using the standard localization argument (4.56)=—=-(4.57), and using f(x,t) as
shorthand for the transition probability p(x, t|y, 0), the term in braces becomes:

2

m d
+ Z 8xz ;Z Z: Oz, 01, (Hir(x, t)Hk](X ) f(x,1) =0

i=1

(A.36)
To be more precise about the relationship between f(x,t) and p(x,t|y,0), if
f(x,0) = p(x), then

fxt) = Adp(x7t\y,0)p(Y)dy-

And so any pde consisting of partial derivatives in ¢ and z that p(x,t|y,0)
satisfies for fixed y will also be satisifed by f(x,¢). And in the special case
when f(x,0) = §(x — yo) then f(x,t) = p(x,t]yo,0).

Better Proof (Version 2)

Here we will switch the roles of x and y in the conditional and perform the same
proof. Only now, we will assume that the conditional probabilities are invariant
under time shifts:

p(y,t1 +t[x,t) = p(y, t1]x,0) = p(y|x, t1).

In order to use this assumption, we restrict the discussion to the case when
hi(X, t) = hi(X) and Hij (XJ) = Hij (X)

Let x = x(t) and y = x(t + dt) where dt is an infinitesimal time increment.
Using the properties of p(y|x, dt) it follows that

[ = mmlylx.doydy = (= i) = b (A31)
| (&~ winleiy,doyde = (& — ) = bty
and
/Rd (yi — i) (y; — =5)p(ylx, dt)dy = ((yi — 2:)(y; — ;) Z Hir,(x) Hyj (x)dt
(A.38)
[ 6= (& = wdntely. dnyde = (& = wi) Z Ha(y) HE, ().

Using the Chapman-Kolmogorov equation, together with the definition of
partial derivative gives

op(y|x,t) 1
5 = Am = pylx, ¢+ At) — pylx, t)]
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= i, 5 | [ otvle Soteix e - pivix.0)|.

At—>0 At

Let ¢(x) be an arbitrary compactly supported function for which de/0x; and
0%¢/0z;0x; are continuous for all 4,7,k = 1,...,n. Then the projection of dp/t
against €(y) can be expanded as

200ty = g 5| [ eay [ oty snpleix.nae
- [ w0ty (A.39)

Now perform the following manipulations on the first term on the right hand
side of the above equation:

/Rd e(y) Mdp(yle, At)p(€]x, t)dg} d

/Rd /Rd p(y 1€ At)p(€ | x,t)dydE
B /Rd /Rd p(€|y, At)p(y | x,t)dédy

= [pvixn | [ cemtely.ande] ay

where all that was done in the middle step was a swapping of the names of the
variables of integration. Therefore,

[ 2Dy = tim, [ otvixe | [ ately. Ane(erag - ty)| ay.

at At—0 At

Expanding the function €(€) in its Taylor series about y:

d

86 1 826
(€)= )+ 26 —wgr g 2L 6 wlG —wg

i,j=1
and substituting this series into the previous equation results in

m

op(ylx,t "L e 1

k 1

p(y|x,t)dy

when (A.37) and (A.38) are observed.
The final step is to integrate the two terms on the right-hand side of the
above equation by parts to generate

8py|xt LA
L{ -3 g -3

By]

(V) H(y)p (Y|Xat))} e(y)dy = 0.



24 APPENDIX A. SM., I.T., L. G. © GREGCQJHU.EDU 02/01/10

Using the standard localization argument, and using f(y,t) as shorthand for

Jra p(y|x,)p(x)dx, (or, equivalently, f(x,t) for [p. p(x|y,t)p(y)dy), the term
in braces becomes:

Df(x,1) =~ O L~ &
fét ) + ; Oz; (hi(x) f(x,1)) — 2 ;Z;1 0x;0x; ( zk(x)hrk] (x)f(x,t)) =0

Better Proof (Version 3)

Here we will keep the meanings of x = x(t), & = x(t — dt) and y = x(0) static
and do not let them vary in meaning with context as in the previous proofs.
Here ¢ > 0 and dt is infinitesimally small.

The transition probability p(x|€, dt) is exactly that which would be generated
by making a histogram corresponding to an infinite number of sample paths of
length dt generated from (A.23) with starting value of x(t) being &. Using the
properties of p(x|€,dt) in (4.52) and (4.53) (with & taking the place of x), it
follows that

[ s = €nxlg. dt)ix = (dm) = (o = ) = b€y (A1)

and

/Rd (@i—&:) (@ —&)p(x[€, dt)dx = (dwidu;) = ((2~&)(2;-&;)) = D Hix(©)Hi(E)dt.
) k=1

(A.42)

We now investigate p(x|y,t). The Chapman-Kolmogorov equation, (4.16),
or equivalently (A.22), can be written in the special case when ¢ — t3 =t as

pxly.t) = [ plox|€.atip(E .t — e (A3

Using the Chapman-Kolmogorov equation in the form of (A.43), together
with the definition of partial derivative gives

D) — &\ pixlganptely.t - dnd —pielye-an]. (aan
]Rn

Here we have used the “backward difference” as opposed to the “forward dif-
ference” to compute the derivative. Since dt is infinitesimally small and all
functions p, h, H are assumed to be smooth, the result should be the same
(even though x(t) is not differentiable).

Let €(x) be an arbitrary compactly supported function for which de/0x; and
0%¢/dx jOx; are continuous for all i, j, k = 1,...,n. Then the projection of dp/dt
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against €(x) can be expanded as
op(x,tly,0 1
[ 2D gie = L[ ([ sl ganpely.i - i) exax
Rd ot dt | Jra \Jpad
—/ p(€ly,t— dt)e(x)dx} . (A.45)
Rn

Now changing the order of integration in the first term on the right hand side
of the above equation:

/Rd (/Rd p(x[& dt)p(€ly,t - dt)dg) €(x)dx =

L ([ pixleanetax) ey - anae (A.46)
R4 R4
Expanding the function ¢(x) in its Taylor series about &:
d Je 1 < 0%
) = e+ (x-) = O+ (o= + 5 D (5i-6)(er ) e+
— i put L0

Here, of course, the following are equivalent

Oe Oe

2 2
= and O%e 0%e

it 060¢;  Om;0x;

x=t
Then

/ p(x| & d)e(x)dx = €(£)- / p(x | €, di)dx
R4 Rd
+Za& /R (— E)plx | € dr)dx

2 Z 0&8@ /Rd i = &)@ — &§)p(x| &, dt)dx

- , T
B +Za& &0d+s Z a@a@k (8 D Hyy (& )t

Back-substituting into (A.46) and (A.45) gives

Op(x]y. 1) - 3
B cgax = [ {Z e (&) Z a&% E:me & 0/ (&:1) | p(Ely.t — di)de

+gp [, p(Ely.t = anie©) - colax

RA
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when (A.41) and (A.42) are observed. Assuming that the second term can be
made to vanish as dt — 0, and £ — x, the above becomes

Op(xly, t) _ / de , - =
SR L 9 DY Z mlaxjgmkxwwx )| p(xly, t)dx

The final step is to integrate the two terms on the right-hand side of the above
equation by parts to generate

m d 2
/Rd {ap X[y, ) +Z s p(x|y,t) ;;;l Gm:07; (Hix(x, ) Hiij (x, )p(x|y, ))} e(x)dx =0
(A.47)
Using the standard localization argument and using f(x,t) as shorthand for
the transition probability p(x|y,t), the term in braces becomes:

2

t) d 0 1 m d
+1,=Zl 3:52 (hi(x, 522: Zz ax axj sz(x t)HkJ<X t)f(X t)) 0.

(A1)

Better Proof (Version 4)

Here we will keep the meanings of x = x(t), & = x(t — dt) and y = x(0) static
and do not let them vary in meaning with context as in the previous proofs.
Here ¢t > 0 and dt is infinitesimally small.

The transition probability p(x,t|€, ¢t — dt) is exactly that which would be
generated by making a histogram corresponding to an infinite number of sample
paths of length dt generated from (A.23) with starting value of x(¢) being &.
Using the properties of p(x,t|€,t — dt) in (4.52) and (4.53) (with & taking the
place of x), it follows that

/Rd(l“i —&)p(x, €, t — dt)dx = (dx;) = (z; — &) = hi(&§, t)dt (A.49)

and

/Rd(xi—&)(xj—fj)p(&ﬂiat—dt)dx = (dwida;) = ((wi—&)(2;=&)) = Y Hw(& ) H (&, t)dt
a0

We now investigate p(x,t|y,0). The Chapman-Kolmogorov equation, (4.16),
or equivalently (A.22), can be written in the special case when ¢, — t3 =t as

p(X,t|y,0) = /de(X,ﬂE,t—dt)p(ﬁ,t _dt|Y70)d€' (A51)
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Using the Chapman-Kolmogorov equation in the form of (A.51), together
with the definition of partial derivative gives

op(x.tly,0) 1
poe ) [ sttl gt - donte o - aly. 0 i o aty.0)|

(A.52)
Here we have used the “backward difference” as opposed to the “forward dif-
ference” to compute the derivative. Since dt is infinitesimally small and all
functions are assumed to be smooth, the result should be the same.
Let €(x) be an arbitrary compactly supported function for which d¢/0x; and
826/85530% are continuous for all ¢, j,k = 1, ...,n. Then the projection of dp/0t
against €(x) can be expanded as

/Rd amxéii‘y’o)e(x)dx = % URd (/de(X»tIE,t—dt)p(&t —dt|y70)d€) e(x)dx

— /np(é,t —dt|y, O)e(x)dx} . (A.53)

Now changing the order of integration in the first term on the right hand side
of the above equation:

/Rd (/Rd p(x,t| &t — dt)p(&,t — dt | y,o)dg) e(x)dx =

/Rd ( /R pix L&t = dt)e(x>dx) p(&,t —dt|y,0)d¢ (A.54)

Expanding the function ¢(x) in its Taylor series about &:

d de 1 <& 0%
€(x) = e(§+(x—§)) = e(§)+ ;( 51)8& B igz:l(xi—fz‘)( gﬂ)aglagj +-.
Here, of course, the following are equivalent

de  Oe d 0% B 0%
8& o 8:1:z ng a 351853 n Bxié‘xj x:é.
Then
[ ptxtlg - dneeaix = c(6): / Pl £ €t — dt)dx
Rd Rd
d
Oe
ae i St ) ) —dt)d
DI | (o= €ptct €.~ dnyix

d

1 0%
+§ij:1 060, /( = &)z — &)p(x,t] €.t — dt)dx

= &+ Z o (&)t + 3 Z %%k 1Hlk(£, HH; (€, t)dt
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Back-substituting into (A.54) and (A.53) gives

Op(x, ]y, 0) a u
[ PGP = [Z hi(6.D) + 5 Z a&a@Zszﬁtﬂkxe,) p(&t — dily, 0)dé

+;t p(§,t — dtly,0)[e(§) — e(x)]dx

when (A.49) and (A.50) are observed. Assuming that the second term can be
made to vanish as dt — 0, and £ — x, the above becomes

m

Oy ) o [ |S™ 2, -
| o = | > gy it Z amxj D i 5.0 | il )i

The final step is to integrate the two terms on the right-hand side of the above
equation by parts to generate

/}Rd {Bp x, tly,0) + Z o2, p(x,tly,0)) — %Z Z 5 aaxj (Hir(x,t)Hi5 (x, t)p(x,t|y,0))} e(x)dx =0

(A.55)
Using the standard localization argument and using f(x,t) as shorthand for
the transition probability p(x|y,t), the term in braces becomes:

N m d 2
o+ 3 g (e 60 = 5 32 37 50 (o, B 1), 1) =0

(A.56)

A.3.3 Integration over First vs. Second Argument of Con-
ditional Probabilities

In the proof of the Fokker-Planck equation in the book is the integral over the
second argument rather than the first an error or is it okay 7

Let y denote the Cartesian coordinates of the space in which x(¢;) moves
and x denote the Cartesian coordinates of the space in which x(¢2) moves. Joint
and conditional probability densities are related by the equalities

p(y, tilx, t2)p(x, t2) = p(y, ti; X, t2) = p(x, ta2ly, t1)p(y, th).
Bayes’ rule is then

p(x, t2|y’ t1)p(y, tl)
p(X, t2)

p(y,t1|x,t2) = (A.57)

Now, in the special case that ¢t = ¢ + dt and t5 = ¢, then if

/ (yi — 2)ply. t + di|x, t)dy = hi(x, t)dt
]Rd
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then we can also use (A.57) to write

p(x, tly,t +dt)p(y,t + dt)
i — T4 d :hi X,tdt
[ = e y = hi(x, )

Multiplying by —1, letting dt — —dt, and observing that p(x,t+dt)/p(y,t) = 1
gives

/X%—%m@ﬂmwwmw=m@wm
]Rd

So, in the case when t; — to = dt is infinitesimally small, it is okay to integrate
over the second index in the conditional probability density.

But what about when ¢; — t5 is not infinitesimal ?

Using Bayes’ rule,

. ,baly, T b
Flxtnt) = [ cyply.tix iy = [y PRI g,
R R

p(X7 t2)

Therefore,

/ e(y)p(x, taly, t1)p(y, t1)dy = F(x,t1,t2)p(x, t2)
Rd

This does not look promising.
Is (4.60) correct ? Suppose we start with (4.60), written as

p(x t|y 1S &K 9
8 X tb’7 5; Z: ay] 7k ya )Hk:j(ya ) (Xat|Y70)) = O
Can we get from here using Bayes’ rule to
1) = 0 1S L o2
+; Fa; (b, 5; Z:: S, (H 1) H (x,1)p(x, 1)) = 0?

This does not look promising either.
In summary, Versions 0,1,4 are more favorable than the proof in the book,
the last step of which is suspicious.

A.3.4 Inter-conversion between It6 and Stratonovich

Suppose we are given a Stratonovich SDE
dx = h*(x,t)dt + H®(x,t) ® dw,
or in component form

dr; = hi(x,t)dt + > Hj(x, t)&dw;. (A.58)

J
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with coupling matrix entries H;(x,t) and drift vector entries hj(x,?). Then
how do we get the corresponding It6 equation of the form

dzy = hp(x,t)dt + Z Hy(x, t)dw; ? (A.59)
l

And how do we relate the It6 and Stratonovich forms of the Fokker-Planck
equation ?

First, recognize that if we make the choice H};(x,t) = H;;(x,t), then
1 aH” (X, t)

1 1
H;, <x+ 30Xt + 2dt) = H(x,t) + 5 ot

OH;; 1 0*H;; 1 1

5

dt + (A.60)

Then substituting in (A.59) and using It6’s rules for expectations,
(dt?) = (dtdw;) =0
and
(dwidwj> = dtéi]‘,

and all higher order terms disappear. Substituting these rules into (A.60) and
summing gives

s 1 1 1 8H,-j (X, t)
Zj: Hij (X + §dx, t+ 2t> d’LUj = ZJ: Hij (X7 t) dw]+§ kz; TMH]W‘ (X, t) dt.

Note that this would have been the same as if instead of Hf; (x + $dx,t + 3dt)
in (A.60) we used H}; (x + 1dx,t). In fact, both of these two choices are used
in the literature. But since it does not affect the final outcome, there is no need
to commit to one convention or the other.

Explicitly this is because

1 < 0H,; aHzg
5 ]Zk axk dxkdwj = Z ZHkldwldwj =

H;; H;j
*Zﬁ J ZHkl(S adt = 86 Jijdt

And so

da; = ZZ ”ij dt + Y Hijdw.

J

5Here 0 is not truly zero, and these terms are not truly zero, rather, both are negligibly
small and so are thought of as zero.
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In other words,

. OH,,;
hi = h + = ZZ axkj

Substituting this SDE into the expression for the It6 version of the Fokker-
Planck equation (4.61), gives

0 H;; 1 0? s s
’ZaTci ZZ Al R P S v - [ H H S ]

1]

(A.61)
where again, the choice H;; = H7; was made, as explained in the text.
Let us split

0 s H;
o, hi +35 ZZ JH’W

into

0 B f O0H,;;
57 ZZax { LH k]f]

Now compare

> o S
Ox; | Oxy,
and
” H,;;H
Z Om,01, [HijHyj f]-
ijk
Since 1, j, k are dummy indices that get summed out, we can write

OH;; <« 0 [0Hu
Z al’z |: kjf:| o %}; 8:@ |: ij H]kf:|

to make it more consistent in appearance with the other terms.
Now expanding out

HiyHyi f] =

H, H
ijk 8m738xj[ = O [ T kjf)}

we get the following terms inside of the summations:
0 [0Hk
Gxi ox T
The first of these terms cancels with part of the drift term in (A.61).
The result simplifies to (4.70):

Hk]f"'Hmaa (ijf)} .

d

d P 1 9 m 5
- oz, i)+ 3 > o2, [Z Hy, 5o (H, f)] :
i=1 i 1

4,j=1
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A.3.5 SDEs in Cartesian and Polar Coordinates in the
Plane

This subsection is an addendum to p. 133. Note that in the unlabeled equa-
tion above (4.97) (corrected with z7 ! replaced by x7?), that this equation has
already factored in the fact that dz; = dw;, and therefore dx1dzxs = 0. More
general versions of these equations are:

r1dry + xodry  23(dx1)? — 22122d21dTs + 23 (dwo)?

dr =
(22 +23)* 222 + 23)*

and

—wodry + x1dTy  w172(dw1)? — T120(d22)? + (23 — 23)d21dT2
ot + a3 (2] +23)°

d¢ =

A.4 The Heat Equation in Curvilinear Coordi-
nates

This addendum involves both stochastic processes in R™ and some geometry
(through Jacobian matrices), and can be viewed as a bridge between Chapters
4, 5, and 6.

The heat equation on R" is written in Cartesian coordinates as

Of 1< 02f
i=1 g

The summation on right hand side can be written as
— 9*f 2 -
; T = V2f = div(gradf).

Two ways to directly convert this to curvilinear coordinates are outlined below.

Method 1
Suppose x = ¥(q). Then, much like what was done in Section 4.8.1 in the
case of R? and polar coordinates, we observe that

dx = J(q)dq where J(q)= %,

and if f(q) = f(3(q)) then

_Of 4 OfF
or ~
of _of
@J(Q)dq = qu
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Taking the transpose of both sides and using the arbitrariness of dq,

of  of
T N9 _ 9]
Therefore ~ ~
of _ 71, \Of of <~ ;-1 9f
e it = - A.
Ox J7" (a) aq or o, ; ng dq; (A.63)

Substituting (A.63) into the right-hand-side of (A.62) twice gives

" o2 f "9 /of

i=1 i=1
B n ) n _Tif
B ; ox; ; T3 0q;

B n o n o 9 n ,Taf
= 22 Tl g | 2 5y

Therefore, the heat equation on R™ can be written in curvilinear coordinates as
If I~~~ 7 0 [~ 7 0f

e J Joh =L A.64

ot 2 Zl I; ik an ; i 8(]]' ( )

where the tilde has been dropped since it is clear from the context that now

f=f(a,t).

Method 2
The Laplace-Beltrami operator defined in (5.50),

1x~ O 1w ;Of
div(gradf) = |G|~ 2 — | 1G]z ki L)
(gradf) = |G| ;aqk IIZ;g 94,
- =
means that the heat equation can be written as
Of 1, . 1= 0 1= g Of
= = 2G| 227 lelk: Zg Vi I (A.65)
ot 2 = oq = 0q;
How does this compare with (A.64) ?

First, observe that

G=lgy)l=J"T = G =g =7"1J"7T, (A.66)
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and so
"0 1= 4 Of 1 Taf
Yo (leE ) | = Z [k ZJM Ji;
— Oy, = 9 * O 52 J
"9 8f
= > —|lc] kzIZJ !
i k=1 Oan
B n 9 , n o 8f
= X 5 (Gl i) g
i,k=1 j=1
. n 8 n
G Z 37 ZJJ a
i,k=1 j=1
Substituting this back into (A.65) gives
of 1., 1 "9 "0 ", 0f
o =35lC! Z (|G| i )Z +\G| Jii 90 | - Tji 5e7
i,k i,k=1 q Jj=1 4

Note that if the first term in the braces is zero, then the above equation will
reduce exactly to (A.64). In particular, can we justify setting the following
equality for each j =1,2,...,n?

n B 8 N 3
2 ity (01 i) =0

As explained in the following subsection, the answer is ‘yes.’

Relationship to a Special Stratonovich-Fokker-Planck Equation
Given the Stratonovich SDE

dq = a®(q)dt + J_l(q) ©dw,

the corresponding Fokker-Planck equation is

af —1 0 s -1 S 9 —1i -1 1
W Z g (atlortr) + g6 32 o i eI
(A.67)

As illustrated in Exercise 4.11, when

i) = S >0 o (1618,

7,k=1

the heat equation results.
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While this statement is true, it resulted from the purely mechanical manipu-
lation of symbols using the product rule for differentiation. In contrast, we can
use a conceptual argument to study a;(q,t). Consider the Stratonovich SDE in
Cartesian coordinates

dx = dw.

Obviously, the corresponding Fokker-Planck equation is the heat equation in
(A.62). Now, if x = 4/(q) then using the Stratonovich calculus, dx = J(q) ®dq.
Substitution then gives

J(@)®dq=dw = dq=J"(q)®dw.

Therefore, the heat equation in curvilinear coordinates should be (A.67) with
ai(q) = 0. How is this paradox resolved ? It must be the case that due to the

1
geometric structure of R™ that in any set of curvilinear coordinates

Z . 5 (\G| T} =0 for i=1,2,..n. (A.68)

Relationship to a Special It6 -Fokker-Planck Equation

Given the It6 SDE
dq = a(q)dt + J ' (q)dw,

the corresponding It6 version of the Fokker-Planck equation in generalized co-
ordinates is

S el Y o (w6l r) + 4161 Y 52 (6] )

i=1 1,7=1

where (A.66) has been used.
As illustrated in Exercise 4.10, (A.69) will become the heat equation under
the special condition

ala) = 5101 Zai (161367 .
<

While this statement is true, it resulted from the purely mechanical manip-
ulation of symbols using the product rule for differentiation. In contrast, we
can use a conceptual argument to evaluate a;(q,t). Consider the It6 SDE in
Cartesian coordinates

dx = dw.

As with the Stratonovich interpretation, the corresponding Fokker-Planck equa-
tion is the heat equation in (A.62).

Now, if x = 1(q), then Itd ’s rule as described in Section 4.5.5 can be applied
in the current context, under the assumption that there is an underlying It6 SDE
of the form

dq = h(q)dt + H(q)dw
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as

81/% = T
dr; = [HH"] dt —H dw; = dw;.
x p Z 8qk 3qz kl + Z klQW] = QW
(A.70)
The second equality in the above expression forces

Z (%ZHM =6y = H=J"
1

(where of course J;, = 0v;/dqx) and

th_ n 1 oY;

dg; 2= 3%3%[

Jj=1

This can be written as

0
ZJ,Jh + = Z aqk(Jig)[J_lJ_T]kg:O.

kll

Multiplication by Jp_i1 and summation over ¢, together with the observation that
G '=J1J T, gives

:_72‘]1% )

ik, =1

It will be convenient to switch the roles of p and ¢ and write this as

n

1 -1 Ik 8

p,k,l=1

Clearly it must be the case that

ai(q) = hi(q). (A.71)

Does enforcing this equality constrain J or G 7
Actually, no it does not. This can be observed by writing out explicitly

IR . )
i z;a%(mw):— > 70" G ().

p,k,l=1

Substituting ¢ = 3", J, zk k in the left side, and using the fact that J=1J =1
(and hence
40 o)

Oq Oqk
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as a result of differentiating with respect to gx) gives

L~ 0 | ")
|G|228,<G|2ZJ5£JJGS>— > i)
j=1 4 k

p,k,l=1

Jplglk.

n n
> g =3 (z m‘%) -5
=1 =1 m

Therefore, (A.71) is equivalent to

;) , 2o,
Gl afq,(Ji;HGPJ;J) = ng :

jk=1 1 p,k=1

-1
Tl

Using the product rule to expand the derivative on the left hand side, and
1
multiplying both sides by |G|z then results in

S0yt S 1 o T
3, oy IO+ 30 Ut (16ha) et 30 et
Gk=1 1 §.k=1 J p,k=1

But the second term on the left is zero from (A.68), and what remains on both
sides is exactly the same, only written in terms of different dummy indices.

Therefore, there are several equivalent ways to write the heat equation on R™
in curvilinear coordinates. The difference in the appearance of these expressions
can be reduced by using (A.68) together with rules from matrix calculus.

A.5 Addendum to Chapter 5

A.5.1 Increasing the Stability of Inverse Jacobian Itera-
tions on pp. 150-1

If the values of q and k form a valid pair, then it should be the case that
F(q,k) = 0. However, it can be the case that after several iterations numerical
errors accumulate to cause this to be nonzero. This will then lead to numerical
instabilities.

The algorithm stated on p. 151 and embodied by (5.16) does not incorporate
a feedback mechanism to ensure that F(qg,k) = 0. This algorithm can be made
more stable by interlacing a correction step that updates k after each update of
q. Basically, after we update q, if ||F(q, k)| is not zero, then holding fixed the
value of q that was just computed, we should do Jacobian inverse iterations with
k as the variable, updating k with an artificial trajectory connecting F(q, k) to
the zero vector. Such iterations are completely analogous to the resolved-rate
manipulator inverse kinematics algorithm described on p. 145 and 151 and
in (5.17) (with k taking the place of q, F(q,k) taking the place of f(q), and
the artificial trajectory connecting F(q, k) to zero taking the place of q(t). Of
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course, updating k will cause it to deviate from the baseline linear path from kg
to Kgoa, and so the direction kgoq; — k (where k is always the most up-to-date
value) should be used instead of kgoq — ko to drive the next iteration of qg.

A.5.2 Computing Normal Curvature

In Section 5.4.2, an arc-length parameterized curve c(s) is defined to be con-
tained in a surface x(q1,¢2). In other words,

c(s) = x(q1(s), q2(s)).

Application of the chain rule then gives

6= 3 a3 oo a0 = Kom() (AT

=1 j=1

where ' = d/ds.
By the definition of curvature, ¢”(s) = k(s)
to the curve that are different than n;(s) a

n(q1(s), g2(s)) and m(s) = n(qi(s), g2(s)) x

resolve ¢’ (s) as

1(s). Furthermore, two normals
ny(s) are the surface normal
). Therefore, it is possible to

and
c(s
k(s)n1(s) = kn(s)n(q1(s), g2(8)) + rg(s)m(s).

A question raised was how do we get from (5.55), which is

o (5.56), which is
A dq” Ldq
" dqTGdq’
The answer lies in the fact that

9%x ox
=Lyn+ ) I't_—
0q;0q; ! Z 7 Oqx

and since
ox

-n=20,
dqi
then using (A.72) gives

-5t - Bty
174, ds? '

But
d82 = ZGququﬁ
ij
and so (5.56) follows.
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A.6 Addendum to Chapter 6

A.6.1 An Intuitive Introduction to Push-Forward Vector
Fields

Rather than taking a top-down approach to push-forward vector fields in which
the definition is stated and the properties follow, here some motivation is de-
veloped that will result in the definition as a natural outcome of intuitively
desirable properties. Here the motivating example that is provided will be in
the context of deformation of planar regions.

Consider the closed unit box B = [0, 1] x [0,1] C R%. To each point x € B,
assign a vector using the function a(x) € R2. Note that the values of a(x) need
not be in B even though the values of x are. For concreteness, let us assume
that

a(x) = ( _66 ) (A.73)
where € is a small positive real number. It is not difficult to imagine drawing
tiny little arrows on a Cartesian grid that overlays B to visualize this constant
vector.

Now suppose that the original domain, B, is morphed, or transformed, by a
mapping 1 : B — D C R2. In other words, the original unit square region is
transformed into another shape. For concreteness, suppose that

P(x) = : (A.74)

This would correspond to a uniform stretching of the original square along the

xo direction, and a compression in the x; direction, each by a factor of 2. The

resulting D = 1(B) is a long and narrow rectangle of the same area as B. Let y

denote Cartesian coordinates in the new domain. Soy = 1(x) and x = 1~ (y).
In the example in (A.74) 1) is an invertible mapping;:

21
Yl (y) = ,

1
342

and more generally any 1 of interest will also be invertible.

Now, how should the original vector field (tiny little arrows drawn on B)
transform under ¥? In the limit as the length of these arrows become infinitely
small, they will remain straight. And the base of each arrow originally at a
point x should go to ¥(x). If we wanted to achieve this while keeping the
original orientation of the arrows, then in the domain D we would just substitute
x = ¢~ !(y) into a(x) to get a(yp~1(y)) = (ac~1)(y) to get the representation
of this vector field in the new coordinate system. But is this a desirable way to
define the morphing of the vector field ?
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For example, if the original square were made out of a rubber sheet, then
as the sheet is stretched in one direction and compressed in the other, the tiny
little arrows should rotate toward the direction of stretching and away from
the direction of compression. And their length should change. This intuitive
behavior would not be captured by the (straw-man) definition in the previous
paragraph. Indeed, the way to update the transformation of the vector field
in order to have it behave in the way it should behave intuitively, the Jaco-
bian matrix of the transformation should enter the picture. Since the Jacobian
describes how an infinitesimal vector dx is related to its counterpart dy as

o

T oxT

dy dx,
this same relationship can be applied to a(1~!(y)) to make it transform in a
natural way. Therefore we can write

a.y) = 2L ap(y)). (A7)

This is the push-forward vector field associated with a(x). And we can define
1, : R? — R? to be the push-forward map that takes any vector field on the
original domain and maps it to a vector field on the new domain.

One small aesthetic problem is that since ¥ = 1(x), the right-hand-side of
(A.75) is an expression that is written in terms of mixed variables (x and y).
This is easily addressed by converting everything to y’s by rewriting every x as

P (y):

)= | AT (A76)

In more modern notation, the vector field A is

0 of
A—Zi:ai(x)a—xi and Af—zi:ai(x)a—xi
where f(x) is an arbitrary differentiable function and

(dy(x)A)f = Af((x)).

In modern notation x and ) typically would not be written as bold. The
differential di(x) can be defined completely in terms of the push-forward map
and differential of the mapping 1) such that it satisfies

(,a)(y) = dl,_qp1yy a8 (¥)). (A.77)

Returning to (A.76), this can be written in a different way (not in the book).
Recall from multivariable calculus that Jacobians have the property
Jdy Ox dy

oxT oyT - oyT =L
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dy [ ox\ '

oxT — \oyT '
Since y = 1(x) (or equivalently, x = 1~ !(y)), this means that an alternative
way to write the same thing is

and so

oyT

—1 —1
a*<y>=(a‘/’ ) (a0 N)(y). (A78)

A.6.2 The Lagrange Identity

Note that matrices V' € R™"*P can be written as

V =[v1,Ve,...,vp] where v; € R"
or VT € RP*™ where

VT = [¥1,¥2,...,v,] where v; € RP.

Then, it is easy to see that

Vi-W; Vo-Wp --- Vp Wi V{Wl ngl tee V;l;Wl
: T T .
Vi -Wo Vo -Wgo --- . _ ViW2 Vo5 Wo - . _VTW
Vi-Wp Vo W, -+ V, W, Vpr V%Wp s Vng
(A.79)

where W is defined in terms of rows and columns in complete analogy with the
way that V' was.
The determinant of the matrix in (A.79) is then

VIw|=wTv|.

When n < p this determinant will be zero. Henceforth only the case n > p is

considered. Let V} denote the k' of the < Z ) p X p square sub-matrices of V.

Then
( n >
p

VW= > Vil [Wil. (A.80)
k=1

The right hand side can be written in several equivalent (though slightly different
looking) ways using the fact that |Vi| = [V,I| and [Wy| = [WT.

In the case when p = n (A.80) reduces to |[VIW/| = |V|-|W]|. In the case
when n > p, (A.80) becomes more interesting.
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For example, if p = 2 and n = 3 then

V11 V12 w11 W12
V= V21 V22 and W = Wo1 W22
U3l U32 w31 Ws2

By brute-force evaluation, it can be shown that

|VTW| _ | w11v11 + w21v21 + W31V31 W11V12 + W21V22 + W31V32
W12011 + Wa2V21 + W32031 W12V12 + Wa2V22 + W32V32
is equal to
V11 V12 || W11 W12 V11 V12 || W11 Wi2 V21 V22 | | W21 W22
V21 V22 Wa1 W22 U3l  Us2 w31 W32 V31  Us2 w31 W32

If p=1 and n = 3 then

V11 w11
V= V21 and W = w21
V31 w31

and

VIW| = wiiv11 + worvar + wavsy = |Vi| - [Wh| + [Va| - [Wa| + V3] - [Wi).

Given these examples, it should not be difficult to see that (A.80) is true, and

induction would be a natural way to prove it in general.

The summation and label & in (A.80) are not very descriptive. Instead,
suppose that 1 < k1 < ky < --- < k, < n. Then using e; to denote the kth

natural unit basis vector in R™,

T
ekl

T
ekz

|‘/(k1,k2,m,kp)| = | [Qla{}Qa 5‘71'7,] [ekrlaek:27 ~-~7ekp] | =

T
ekp

will be the one of the Z minors of V' in which the p rows kq, ks,

chosen. Then (A.80) will be written in a more descriptive way as

VIw| = Z Vikr ko) | IW ks k) |-

1<k <ka<---<kp<n

(A.81)

..., kp are

(A.82)
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When using det[a;;] to denote the determinant of A = [a;;] it follows from
(A.81) that
|‘/(k17k27"'7k12)‘ = |‘/(’£1,k2,...,kp)| = |{,k13{,k27 "'7‘7kp|
= detley, - v;] = det[v; - ey, ]. (A.83)

Now if = € II, is a permutation with 7(1) < 7(2) < --- < 7(p), then we
can set k; = 7(i) and this permutation can be used to represent a particular
sequence 1 < ki < kp < --- < k, < n. However, since II,, can contain more than
one permutation with this property, for any well-behaved function f : RP — R
we will have

> f(x(1), 7(2), ..., w(p)) = ¢(n, p)- > f(kr ko, .o kyp)
mell | (1)< (2)<---<7(p) 1<k <ka<--<kp<n
(A.84)
where ¢(n,p) > 1 is an integer multiplier related to the properties of permuta-
tions. The value of ¢(n,p) is easy to assess. Fixing w(i) = k; for i = 1,...,p
partially constrains 7. But 7 (i) for i = p+1,...,n is completely unconstrained.
The group of all possible permutations of these n — p symbols is isomorphic to
II,,—p. Therefore there are |II,,_,| = (n — p)! possible ways for 7(p + 1), ...7(n)
to behave, and the mapping defined by the action 7 - (1,...,p) — (k1,....kp) is
therefore (n — p)!-to-one. And so

c(n,p) = (n —p)!

Stated in a slightly different way, for a fixed set of p numbers {k1, ..., k, } ordered
as 1 <k < ky <--- <k, <n, weshould expect that in the set of permutations
I1,, there should be (n — p)! different ways to map the remaining numbers n — p
numbers {p+ 1,...,n} into {1,...,n} — {k1, ..., kp}.

For example, suppose that p = 1 and n = 2. Il consists of 2! = 2 elements,
w1 for which (m1(1),71(2)) = (1,2) and m for which (m2(1),72(2)) = (2,1).
Summing over f(k;) from 1 < ky < 2 gives f(1) + f(2) for the right hand side
of (A.84). Similarly, summing f(mw(1)) over 7 € I gives f(m1(1)) + f(m2(1)) =
f(1) + f(2), and so ¢(2,1) = 1.

As a second example, if p =2 and n = 3, the elements of II3 are denoted as

/1 23\ (1 2 3\
=112 3) ™=\ 2 1 2 )’
/1 23\ (1 2 3
T™M=\92 13 ) ™=\3 3 2 )"

Here they are labeled from 1 to 6 whereas on p. 324 of Vol. 1 they were labeled
from 0 to 5, but this is immaterial. The point is that for any two ordered
numbers (ki, k2) where 1 < k1 < ko < 3, there will be exactly 1 permutation
from II3 that will map (1, 2) to that ordered set. For example 77 - (1,2) = (1,2),
76 - (1,2) = (1,3), and m3 - (1,2) = (2,3). And so in this case the left hand

NI w N
—_ W —_w
~
3 3
o w
| Il
/N N
— = W =
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side of (A.84) gives f(m - (1,2)) + f(m2 - (1,2)) + f(me - (1,2)) while the right
hand side of (A.84) gives f(1,2) + f(1,3) + f(2,3). Since these are the same,
c(3,2)=1

On the other hand, if n =3 and p = 1, then 1 < k; < 3 and the sum on the
right hand side of (A.84) becomes f(1)+ f(2) + f(3). But on the left hand side
m1(1) = me(1) = 1, m2(1) = ma(1) = 2, and 73(1) = 75(1) = 3 indicating that
the sum over 7 € II3, which can be written as f(m1(1)) + f(76(1)) + f(m2(1)) +
f(ma(1)) + f(ms(1)) + f(75(1)) will give twice the value as the sum on the right,
and so ¢(3,1) = 2.

Therefore, using permutation notation and (A.83), (A.82) and (A.84) can
be written together as the Lagrange identity from Exercise 6.17.

[VIW| = [(n—p)]* Z det[w; - ex(;)] det[v; - ex(j]
w€ell, | 7(1)<---<m(p)

(A.85)
Alternatively, instead of summing over the whole of II,, subject to the constraint
7(1) < --- < 7(p), ™ can be chosen to be a coset representative of o € II,,_,\IT,,
where II,,_ p = II,_, is the isotropy subgroup of II, that leaves the first p
entries of any permutation in II, fixed. Then the factor of [(n — p)!|~! will
vanish. (Often the distinction between fIn,p and II,,_, is blurred and the tilde
is dropped.) The reason why the factor [(n — p)!]~! disappears in this case is
that

> () > Yo @ om)1), e (x o m)(p))

well, ' €llp—p wETEIL,_p\II,

Z Z f(?T(1>7...,7T(p))

' €llp—p wEOTEIL,_p\IIn

(n=p) - > f(1),(p)

meo€ll,_p\II,

o)
=
=
=
|

because 7’ € l:In_p does not affect the first p entries of any w € II,,. Therefore,
(A.85) can be written in the alternative form

VIw| = > det[w; - e, (j)] det[v; - er(j)].  (A.86)
mE€o€ll,_p\IL, | 7(1)<---<7(p)

A.7 Addendum to Chapter 7
A.7.1 2D Manifolds Generated by Dividing the Plane by
Groups

In Section 7.2, the sixth class of examples included the torus, Klein bottle,
and real projective plane. These manifolds can be associated with tilings of the
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Figure A.1: A Pattern on the Real Projective Plane Transferred to the Euclidean
Plane

plane in which the tiles are flipped out of plane and rotated in plane before being
pasted down. Transformations were given that can be used to generate all such
motions for these three tilings by repeated application of the transformations in
different orders.

The set of basic transformations that produces the lattice generated by the
asymmetric unit and unit cells shown in Figure A.1 (which is the corrected
version of Figure 7.3) are

1 0 w -1 0 w
=10 -1 h and b, = 0 1 —h
0o 0 1 0 0 1

(Where this is the corrected b5.) The set of generators is not unique. For
example, it is also possible to use

-1 0 w -1 0 0
c1 = 0 1 h and c¢g = 0O -1 0
0 0 1 0 0 1

The equivalence of the set of transformations generated by {b},b5} vs. {c1,¢2}
follows when we observe that each b, can be written as a product of integer
powers of ¢;’s, and vice versa.
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A.8 Addendum to Chapter 8: Stochastic Pro-
cesses on Manifolds

This section supplements the discussion in Chapters 7 and 8. Chapter 7 dis-
cussed the classical differential-geometric machinery for describing how to move
from one coordinate chart to an overlapping one. Chapter 8 described stochas-
tic differential equations on manifolds from two perspectives: (1) Stratonovich
SDEs within a single coordinate chart; (2) 1t6 SDEs for implicitly defined man-
ifolds embedded in Euclidean space. In this section these two situations are
explained in more detail and supplemental examples are given.

A.8.1 Compatibility of Stratonovich SDEs in Different Co-
ordinate Charts

Suppose that two overlapping coordinate charts of an n-dimensional manifold,
M are given: ¢(U) € R™ and ¢(V) € R"™ where U and V are connected open
subsets of M, and U NV # (). Then the composite mapping

(podp™):0p(UNV) = d(UNV) (A.87)

is a mapping between open subsets of R”. If q are coordinates in ¢(U) and q are

coordinates in ¢(V'), then on the overlap U NV the mapping ¢ o ¢~1 in (A.87)

can be written as an invertible change of coordinates of the form q = q(q).
Given a Stratonovich SDE on ¢(U),

dq = a’(q,t)dt + H*(q,t) ® dw, (A.88)
and given a Stratonovich SDE on ¢(V),
dq = a%(q,t)dt + H*(q,t) ® dw, (A.89)

then if these describe the same stochastic process, they must bear some rela-
tionship to each other on regions where both coordinate systems apply. In order
to obtain this relationship, first note that regular (and Stratonovich) calculus
gives

99
oqT
Substituting this into (A.89) and inverting the Jacobian gives

g = ——dq. (A.90)

dq = (;(;‘T) & (d(a), 1))dt + (ai}) F*(d(a), ) ©dw.

A sufficient condition for this to be the same as the process in (A.88) is

-\ -1 N
a8<q,t>=(§.}) a'(a(a).f) and HS(q,o:(;fT) @), )

(A.91)
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These compatibility conditions for the SDEs can be used together with the
compatibility condition for the metric tensor,

6t = (22 a2
to write the Fokker-Planck equation in two different coordinates in a consistent

way. In particular, only the square root of the determinant of this metric tensor
shows up in the Fokker-Planck equation, and so the key thing to observe is that

As an example, consider the sphere S? C R3. Let U be the open “northern”
hemisphere parameterized as

99
oqT

[N

Gla)* = |G (@) - \

1 = @1

T2 = Q2

w3 = \J1-di—a

and let V' be the open “eastern” hemisphere parameterized as

1 = Q2
T2 = 4/ 1- (ﬁ - tj%
3 = q

The coordinates ¢; are simply Cartesian coordinates in the x; — x2 plane, and
G; are Cartesian coordinates in the x3 — 27 plane. In the region where these two
charts overlap (which corresponds to one quarter of the whole sphere) we must
have

G = Q2

@ = \J1-d-@
a = \J1-d-¢

G2 = q.

and

And so, for example, any Stratonovich SDE written in the coordinates §; can
be converted into one in coordinates ¢; by using this explicit q(q) and the
associated Jacobian matrix
—qg1 —9g2
94 Vi-id—a3  /1-ai-d3
oqT

1 0



48 APPENDIX A. SM., I.T., L. G. © GREGCQJHU.EDU 02/01/10

A.8.2 Compatibility of Ito SDEs in Different Coordinate
Charts

Consider the same manifold and coordinate charts as in the previous subsection.
Given an Ité SDE on ¢(U),

dq = a(q, t)dt + H(q,t) dw, (A.92)
and given an It6 SDE on ¢(V),
da = a(q, t)dt + H(q,t) dw, (A.93)

it is possible to define compatibility conditions that are analogous with the
Stratonovich case. However, these conditions are more complicated because
instead of (A.90), It6’s rule must be used. Explicitly, this gives

_ 0q 1 < 9%
dgq = —=dq+ = dgrdq.
4= ggrda+s kgl Farda; ke

Substituting the components of (A.92) into the right side and evaluating expec-
tations in the usual way (i.e., dw;dt = 0 and dw;dw; = 6;;dt) gives

dq = a+y Z 8qk8ql ZH;% q,t)His(q, t)dt (A.94)

where H € R™*"™,
Substituting this into (A.93), and inverting the Jacobian matrix gives the
It6 SDE

0q o 1 & 9%q g\
(aq ) a(q(q)a 75 Z 8QkanZHkS q, )Hls(qa ) dt+(8 T>

k=1

In other words, sufficient conditions for compatibility are

oa\ ‘... 1 & 0% &
alq,t) = (aqT) @@ -5 3 5oL (a0 a
k,l=1 s=1
(A.95)

and
oa \' 4,

i@t = (5ar) a0, (4.96)
Note that (A.95) can be written in terms of H rather than H by back substitut-
ing (A.96). These conditions for conversion between coordinates should not be
confused with the conversion between [t6 and Stratonovich forms. That conver-
sion was discussed in Section A.3.4 and is independent of the current discussion,
which transforms one It6 SDE into another. Note also that the discussion of
how the metric tensor transforms under coordinate changes is not affected by
the use of It6 or Stratonovich forms of SDEs; regular calculus is used in the
context of all computations associated with Fokker-Planck equations.

H(a(q),t) ®dw.
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A.8.3 Ito SDEs on Implicitly Defined Embedded Mani-
folds

Below several It6 SDEs in R™ in Cartesian coordinates are given that that
describe processes that evolve on embedded manifolds. This approach is very
different than the SDEs defined in coordinate patches in the previous subsection.
Whereas the Stratonovich form was more convenient in the context of transi-
tioning between coordinate charts, the Itd form is more suitable for implicitly
defined embedded manifolds.

A.8.4 Example 1: An Itéo SDE on the Circle

The unit circle in the plane is defined by the condition

flz1,20) = 23 + 23 = 1. (A.97)
n (8.25) the Itd6 SDE
dry = hy(x,t)dt + Hy(x,t)dw
(A.98)
dra = hi(x,t)dt + Ha(x,t)dw.

was given,
1 1
hl(X, t) = —5331, ]{1(X7 t) = —Z2, hQ(X,t) = —5.132, HQ(X,t) =42 (A99)

and it was shown by introducing the coordinate 0, where x1 = cosf and x5 =
sinf that this SDE evolves on the unit circle. Here the same fact is shown
without introducing the coordinate 6.

Suppose that the initial conditions are such that f(x1(0),22(0)) = 1, as
must be the case if the starting condition is on the circle. The condition that
the solution will stay on the circle is df = 0. However, since the governing SDE
is of It type, the evaluation of this condition requires the use of It6 rule. In
particular,

_ of T
df = ji‘? Zaxkaxl x, O HT (%, )]k dt+Z—Hkxt

(A.100)
Computing the derivatives of f(z1,22) in (A.97) and substituting these and
(A.99) into (A.100) gives

df‘x:x(t) =0,

indicating that the trajectory stays on the circle.
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A.8.5 Example 2: An It6 SDE on the Sphere
The following It6 SDE appears as (8.35) in Vol. 1:

dx = h(x,t)dt + H(x,t)dw

where
I T2 I3 0
h(x,t) =—| = and H(x,t)=| —21 0 x3
I3 0 —T1 —X2

and x,w € R3. This defines stochastic paths x(t).
Using a similar procedure as in Example 1, if

f(a1, @9, 23) = a7 + 23 + 3

and f(z1(0),x2(0),z3(0)) = 1, then showing that df = 0 means that the trajec-
tory will evolve on the unit sphere. Substituting all of the above quantities into
1t6’s rule, which in the present case is

L~ 2F
2 Kol 8xk8xl

of of

df = z]: aT:jhj(x, t) + [H(x,t)HT (x, )| | dt + ; a—kakl(x, t)duwy,
(A.101)

verifies that df|x—x() = 0.

A.8.6 Example 3: An It6 SDE on the Rotation Group
Consider the following It6 SDE studied by Brockett [1, 2]:

(n—1) -
dR = —TR dt + Z (Ei/j/ — Ej/i/)Rd’wi/j/ (A102)

it j'=1

where dw;; for i,j = 1,...,n are n?

uncorrelated unit-strength white noises and
B is the matrix with the number 1/+/2 in the i’5’ th entry and zero everywhere

else. In other words, the ij" entry of the matrix Ey i is

1

V2

In this way E; ;s — Ej/; is a unit basis vector for the Lie algebra so(n) in the
sense that ||Ei/j/ — Ej/i/ HF =1.

In order to show that this SDE on R™*™ describes a process R(t) that evolves
on SO(n) (viewed as an implicitly defined embedded manifold), we must show
that when R(0) € SO(n)

(Eijr)ij 0iir 057

dF|p—pyy =0 where F(R)=R"R-1L (A.103)
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The statement F'(R) = O is the constraint of orthogonality, and det R(t) = +1
is naturally satisfied if the same condition holds at ¢ = 0 while orthogonality is
enforced.

Two ways to address this problem are: (1) to use the V : R"*" — R"’
operation and convert (A.102) into the standard form of vector-valued stochastic
processes and use the standard form of 1t6’s formula; (2) to develop a variation
of It6’s formula specifically to handle matrix-valued stochastic processes. The
second approach is taken here, and the first is left as an exercise.

The key to extending It6’s formula to matrix-valued stochastic processes
such as (A.102), or more generally

dRij = Aydt + Z Bijiirjrdwiji s (A.104)
iy’
where
Aij = Aij(R,t)  and  Biyjiiry = Bijiig (R, 1),
is to observe that

(dw;jdw;jr) = 6;405;; and  {(dw;;dt) =0

and the usual rules for computing expectations of more complicated expressions
apply. For example,

<BZJ1J’dw1 J’Bllhl /(51/(5

191

dwl > = Bl] l’J/B11]1 H

191

The evaluation of the left-hand-side of (A.103) in terms of components using
1t6’s rule becomes

8Frs a Frs
dr,s = BB Sl dt
( ij u,z, 8R1J8Rklz JHITER
aFrs
WBij;kldwkl (A105)
igkd

Returning to (A.102) and fitting it into the component form in (A.104) we
see that

dR” = ( ledt"‘ Z 3’ j’z’) lRl]dw’L’]/
L,i',j'=1
(n—1) -
= — 3 Rijdt + 7 l Z . 512’5lj j 1i0; ’Z)ledwl '3’
(n—1
= —T)Rudt 7 Z 6li/Rj’j — 5312Rllj)dwllj/

7J//

Therefore,

Aij=—"——"Ry and By = (6 Rjrj — 6yiRirj) V2.
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The component form of (A.103) is

n

Frs = Z Rerps — Ors-
p=1

From this it is clear (from regular calculus) that

OF, R, R
rso_ "R 4R, s
P
= Z {6iP5jTRpS + Rp’répi(ssj}
p
= 6j7'Ris + Ri’l'(SSj
and
0?F )
ORyoRy Oy e T i)

= (53'7'515 + 5lsj5lr)5ik-

Substituting these into (A.105), we find

OF, (n—1)
7141 = - Rz(arst + Rir(ss')
6RU J 2 %: VAN J
= — (n _ 1) Z R, R;s + Z R;sR;, (A106)
2 i i
= _(n%:l)(drs + 557‘)
= —(n—1)d, (A.107)
where at (A.106) we substitute F(R) = O.
Next observe that
1
Y By By = 5 Y (0 Ry = 8jriRig) (O Ryt — 80k Rint)
i/j/ i/j/
1
= 3 dik Z RjiRjry + Oik Z RiyjRyy — Rij Ry — Rij Ry
J 4
= 0ikdj1 — Ri;Ra (A.108)
where to get to (A.108) we inserted F(R) = O and so
0*F, 1
Z 8R”8ng Z Bzg z’]/Bkl B 5 Z (5jr5ls + 5sj5lr)5ik<6ik5jl - Rijil)
i,5,k,l 1,5,k,l
= (n—1)ds-. (A.109)
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Therefore, combining (A.107) and (A.109) the term in parenthesis in (A.105)
vanishes. Furthermore,

OF,
ﬁr_k_Bij;kl = Z(5eris + Rirdsj)(0iir Rjrj — 8j0i Rirj)
i,j v ij
= Z {0jrRis0ii Rjrj + Rir0s;0iir Rjrj — 0jr Ris0j1iRirj — Rin0g;05;Riri }
i,
Ri/st’r + Ri’er/s - Rj’sRi’r - Rj/rRi/s
0.

This verifies that dF|g—pgu) = O when R(t) is defined by (A.102) with R(0) €
SO(n).

A.8.7 Example 4: A Class of Stratonovich SDEs on the
Rotation Group

Since the Stratonovich calculus behaves in the same way as usual calculus, the
condition RTR = T can be enforced as RTdR + (dR)TR = O, or RTdR =
—(RTdR)T. This means that

dR =Y (Ei; — Eji)Rw;; dt (A.110)

ij=1

will evolve on the rotation group SO(n) where

wij (t)dt = aij (R, t)dt + Z bij;i’j’ (R7 t) @ dwi/j/ .

il 5’

In the special case when a;;(R,t) = 0 and b;j,;// (R, t) = d;;76;; this Stratonovich
equation will be equivalent to the Ito equation in Example 3.
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A.9 Supplemental Exercises

E.1 Consider the ratio r(k,n,p) = f(k;n,p)/p(k;np,np(1 — p)) in (2.23). Let
n € {2,4,10,20}. Choose p € {0,1/2,1}. Then k = np will be an integer. For
each of these choices, plot r(k,n,p) as a function of n. Does r(k,n,p) — 1 asn
increases 7

E.2 Evaluate the entropy power inequality for multivariate Gaussian distribu-
tions of the form p(x;p1,%1) and p(x; pe, ¥2) as an inequality relating their

covariance matrices. Does anything special happen in the case when 1 = ¢Xo
?

E.3 In the one-dimensional case show that over all distributions with variance
o2, the Fisher information is minimized by the Gaussian distribution Plu,o2) ().
Is there a multi-dimensional extension of this, and if so, what is it 7

E.4 Verify (A.17) and (A.18) and compute the following for the distribution
f(e.o2) () defined in (A.19): (a) the convolution (f(., 42) * f(c,,02))(2); (b) The
Fisher information F(f(. ,2)); (c) The entropy S(f(c,02))-

E.5 Using the results of E.4, verify the Fisher information inequality

f(Cl ) -f(c o3)
F(f(e1,02) * flezo2)) < -, -
(Flerop) * fieao)) fierot) + fiearo)

and the entropy-power inequality

N(fer,02) * flearo2)) = N(f(er,02)) + N(fiep,02))-

E.6 Substitute (A.12) into the Fourier inversion formula

1 oo o oo .
F(z,y,2) = W/ / / Fwg, wy, w,) exp i(xwy+ywy+2w, ) dwy dw, dw,

and using the convolution theorem show that (A.9)-(A.11) are satisfied.

E.7 Show for both the It6 or Stratonovich forms of the Fokker-Planck equation
given in coordinates q that generate a solution f(q,t) that these equations will
also hold in coordinates s and generate f(s,t) = f(q(s),t) where the relation-
ships q = q(s) and s = s(q) are invertible.

E.8 Suppose that the 1t6 and Stratonovich SDEs for a given stochastic process
are not the same in a particular set of coordinates. Under what conditions will it
be possible to define a new set of coordinates in which the It6 and Stratonovich
SDEs are the same 7

E.9 Consider the function ¢(x) = —p(x; p1, X1)—p(x; pa, X2). If p; are relatively
well separated and X; are relatively small, this will be a function with two
minima close to (but, due to interaction of the tails, not exactly at) p;. Pick
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some values of p; and ¥;. (a) Write the Fokker-Planck equation corresponding

to
dx = =Vdt + o(t)dw.

(b) How should you select o(t) if you want with high probability x(t) to settle
in to the global (deeper) minimum from any starting point ? (Hint: If o(¢) — 0
as t — oo the solution will settle down somewhere.) (c) Use your “cooling
schedule” o(t) in 100 numerical simulations of the SDE with random initial
values of x(0) = xo. Where does the solution settle most of the time using your
cooling schedule ? For other stochastic search techniques see [7].

E.10. Let p(x; p1,%1) and p(x; pa, X2) be Gaussians on R™. Let

d(p1, 315 2, X2) =/ (% 1, 21) — p(x; pra, Bo) | dx.

n

First, compute ¢(p1,21; p2, X2) as a closed-form expression.

E.11. Let y = ¥(x) = g-x = Rx + t be a rigid-body transformation on R".
Let a(x) be a vector field on R™. Calculate the following: ¥~1(y), dv/0xT,
oY=t /0yT | 1p., dip, and a,(y) using the different variants in the expressions in
(A.75)-(A.78).

E.12. When defining transformation laws for vector fields using the push for-
ward, are they contravariant or covariant ? And how do these compare with
the vector fields and Cartesian tensors used in engineering 7

E.13. Use the VV : R™" — R"” operation and convert (A.102) into the standard
form of vector-valued stochastic processes and use the standard form of It6’s
formula to show that when R(0) € SO(n) then so too is R(¢). Hint: Use the
properties of the Kronecker product.

E.14. Compare the SDE for the kinematic cart, which is a stochastic process
on the motion group of the plane, SE(2), when viewed as an It6 equation and
when viewed as Stratonovich. Compare the resulting Fokker-Planck equations.
Write this as an implicit equation viewing SE(2) as being embedded in R3*3.
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