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Abstract— Collision detection has attracted attention of re-
searchers for decades in the field of computer graphics, robot
motion planning, computer aided design, etc. A large number
of successful algorithms have been proposed and applied,
which make use of convex polytopes and bounding volumes
as primitives. However, algorithms for those shapes rely signif-
icantly on the complexity of the meshes. This paper deals with
collision detection for shapes with simple and exact mathemat-
ical descriptions, such as ellipsoids and superquadrics. These
primitives have a wide range of applications in representing
complex objects and have much fewer parameters than meshes.
The foundation of the proposed collision detection scheme relies
on the closed-form Minkowski sums between ellipsoids and
superquadrics in n-dimensional Euclidean space. The basic
idea here is to shrink the ellipsoid into a point and expand
each superquadric into a new offset surface with closed-form
parametric expression. The solutions for detecting relative
positions between a point and a general convex differentiable
parametric surface in both 2D and 3D are derived, leading
to an algorithm for exact collision detection. To compare
between exact and inexact algorithms, an accuracy metric is
introduced based on the Principal Kinematic Formula (PKF).
The proposed algorithm is then compared with existing well-
known algorithms: Gilbert-Johnson-Keerthi (GJK) and Alge-
braic Separation Conditions (ASC). The results show that the
proposed algorithm performs competitively with these efficient
checkers.

I. INTRODUCTION

Collision detection plays an important role in many ar-
eas such as computer aided-design (CAD), robot motion
planning, computer vision, etc. Many algorithms have been
proposed to make collision detection more efficient when
using polyhedral objects. However these algorithms rely
significantly on the complexity of the meshes representing
the objects, which results in a trade-off between accuracy and
efficiency. Superquadrics, with ellipsoids being a simplified
version within this family of shapes, have become popular
recently since they require fewer representation parameters.
A real-life scenario using superquadrics is a humanoid robot
trying to pick up a cup on a table while avoiding hitting
objects in its trajectory. The rigid parts of the robot are
encapsulated by a union of ellipsoids and the objects in
the environment are enclosed by superquadrics, as shown
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(a) An Atlas humanoid robot
with rigid parts being encap-
sulated by ellipsoids.

(b) A poly-ellipsoidal humanoid
robot picking up a cup while
avoiding hitting the table.

Fig. 1. An Examples of the scenarios where ellipsoids and superquadrics
come to play a role in robot motion planning tasks.

in Fig. 1. In [1], superquadrics are used for representing
different objects in an environment where a PR2 has the task
of grasping objects. The major advantage of superquadrics
lies in the simple mathematical expressions and varieties of
shapes it can describe without meshes. This paper provides
a new collision detection paradigm between an ellipsoidal
and a superquadric object based on the idea of closed-form
Minkowski sums [2].

A. Related Work

There are hundreds of well known algorithms for collision
detection. Methods based on Bounding Volume Hierarchy
(BVH) [3] use primitive shapes such as spheres, axis-aligned
bounding boxes (AABB) or oriented bounding boxes (OBB)
[4] to encapsulate polytopes. These methods have been
proven to accelerate the collision detection by doing penetra-
tion test based on these less complex shapes. Nevertheless,
when there are multiple objects in the space, it is better to
use hierarchical representations like octrees [5]. There are
also methods based on Euclidean distance, which use more
memory in order to accelerate the search. These algorithms
calculate, in advance, a map of distances between points of
bounding boxes belonging to the polytopes. These maps tend
to use large quantities of memory, which is the reason why
they are not commonly used. In [6] and [7], some approaches
based on distance with superquadrics are defined. These
methods present less computational time than the regular
OBB, but in the case of [6], it takes longer time to pre-
process the geometry of the objects.

A shortest distance computation algorithm between two
convex or non-convex polyhedra is the Lin-Canny closest
feature tracking algorithm described in [8], which is the basis
of several frameworks for collision checking including [9]



and [10]. The algorithm compares edges, vertices and faces
in order to find the closest points. The best application for
this algorithm is checking collision while the objects move
at a constant speed. The downside of this algorithm is the
quantity of information stored about the surface.

The Gilbert-Johnson-Keerthi (GJK) [11], based on
Minkowski formulations for convex polytopes, is an algo-
rithm that does not use extensive quantities of memory and
is comparably fast to the previous methods. GJK does not
calculate the whole Minkowski Sum, but iteratively generates
“simplex”, a subsection of the Minkowski Sum aimed to find
a subset that indicates collision between the shapes. This
method is guaranteed to converge after several iterations, but
is still subject to the complexity of the shapes. BVH, OBB,
AABB with GJK are implemented in the Flexible Collision
Library (FCL) [12] and are widely used in robotics, computer
graphics, computer games, and other fields.

One method that uses the Interior Point approach is
proposed in [13]. The proximity queries are calculated as
intersections of implicit surfaces, and the closest distance
between their points is calculated as an optimization prob-
lem. The algorithm is guaranteed to converge in polynomial
time with respect to the constraints.

The algorithms discussed above have shown to perform
fair enough. Nevertheless, when the objects are enclosed
by bounding volumes that do not fit closely, false positives
could occur. Moreover, when using hierarchical methods, the
complexity of the object representation and the quantity of
collision queries increase. An alternative is to use algebraic
methods, like the ones presented in [14]–[16], which give
exact conditions of collision detection when the objects are
encapsulated by ellipsoids. Their Algebraic Separation Con-
ditions (ASC) are characteristic polynomial equations based
on the geometric parameters of the shapes, i.e. shape matrices
and configurations (orientations and locations). According
to the sign and real values of the roots, it is possible to
determine whether two ellipsoids are separated, touching
in a point or in collision. This algorithm has shown a
significant success in performing collision detection between
two ellipsoids. The limitation of this method is that it can
only be applied between two ellipses or ellipsoids.

In [17], a method similar to ASC is presented, where
a set of nonlinear equations is numerically solved using
Newton-Raphson method with Jacobian matrices analytically
calculated for superellipsoids. This method does not rely on
polyhedron-based geometries and can be extended to other
shapes, but it has the inconvenience of having some Jacobian
singularities. In [18], a method based on normal vectors is
proposed. It formulates collision checking as a 2-dimensional
unconstrained optimization problem. The advantage of this
method is that it requires less iterations in order to achieve
higher accuracy. However, it is only applicable when the
superellipsoids are expressed as a collection of smooth
convex particles and an explicit relation between the surface
points and the surface normals must be provided.

Apart from geometrically enclosing objects, superquadrics
are also applied in artificial potential field methods for

collision avoidance [19], where the repulsive isopotential
contours around the obstacles are modeled as superquadrics.

Another method applicable to superquadrics is described
in [20], based on the implicit equation of the evaluated
surfaces. The contact query is expressed as a convex non-
linear constrained optimization problem to solve for the
distance between the surfaces. To accelerate the process,
spheres are used to enclose the objects followed by OBB.
When a collision is detected, the accurate contact points are
calculated.

B. Contributions
This paper presents a collision detection scheme between

ellipsoidal and superquadric objects based on the closed-form
Minkowski sums. The major contributions are:
(1) An exact algorithm for collision detection based on a
parametric closed-form Minkowski sum expression is pro-
posed;
(2) A collision detection accuracy metric is proposed for
inexact algorithms using meshes, based on the Principal
Kinematic Formula;
(3) The proposed algorithm is compared with the existing
state-of-the-art algorithms, and shows competitive perfor-
mance in discrete collision detection problems.

The advantages of the proposed method can be summa-
rized as:
(1) The mathematical derivations start with only the param-
eters of the collision objects (i.e. semi-axes length, exponents
and configurations), and performs exact detection and avoids
generating meshes;
(2) The algorithm can check collisions between an ellipsoid
and any convex differentiable surface embedded in Euclidean
space, which gives a wide range of ways to describe objects.

The rest of the paper is organized as follows. In Section
II, we first review the closed-form Minkowski Sums between
an ellipsoid and any surface, and provide a concrete explicit
expression for superquadrics. In Section III, we propose an
exact algorithm for collision detection between ellipsoids
and superquadrics, both in 2D and 3D. And we introduce
an accuracy metric of evaluations for inexact algorithms in
Section IV. We then provide benchmarks details with the
existing algorithms in Section V, with discussions of the
results and analysis of the proposed algorithm. We conclude
in Section VII.

II. THE CLOSED-FORM MINKOWSKI SUM BETWEEN AN
ELLIPSOID AND ANY CONVEX DIFFERENTIABLE
SURFACE IN N-DIMENSIONAL EUCLIDEAN SPACE

This section reviews the derivations of the closed-form
Minkowski sum between an ellipsoid and any convex differ-
entiable surface embedded in n-dimensional Euclidean space
(Rn). Then, concrete explicit expressions for superquadrics
in both 2D and 3D cases are provided.

A. Review of closed-form Minkowski sums
Assume that Sa is a surface embedded in Rn, with implicit

and parametric forms being

Φ(xa) = 1 and xa = f(ψ), (1)



where both xa and f are vector-valued functions of ψ . Let
Eb be an arbitrary ellipsoid in Rn, with semi-axis lengths
given by b = [b1,b2, ...,bn]

>. Then, the implicit and explicit
equations are of the form

x>b B−2xb = 1 and xb = Bu(ψ), (2)

where B = RbΛ(b)R>b is the shape matrix of Eb where Rb ∈
SO(n) denotes the orientation of the ellipsoid, and Λ(·) the
diagonal matrix. Here u(ψ) is the standard parameterization
of the n-dimensional hyper-sphere with angle parameters
ψ = [ψ1,ψ2, ...,ψn−1]

>.
Then the affine transformations that shrink the ellipsoid to

a sphere with radius r = min{b1,b2, ...,bn} on the surface Sa
can be expressed as

x′a = RbΛ(r/b)R>b xa
.
= T xa, (3)

where T = RbΛ(r/b)R>b denotes the “shrinking” affine trans-
formation, and is symmetric and positive definite since
Λ(r/b) is diagonal and positive definite.

The implicit expression for the “shrunk” Sa, denoted as
S′a, is

Φ(T−1x′a) = 1. (4)

Then the Minkowski sum between S′a and E ′b, which now
is a sphere, is obtained by computing the boundary of the
offset surface with offset radius r as

xo f s = x′a + rn′, (5)

where n′ = ∇Φ(T−1x′a)
‖∇Φ(T−1x′a)‖

is the outward normal of the sur-
face and ∇Φ(T−1x′a) = T−>∇Φ(xa) with T−> = (T−1)> =
(T>)−1 = T−1.

The Minkowski sum between the original surface S1 and
ellipsoid E2 can be given by “stretching” the transformed
space back, using inverse affine transformation, as

xeb = T−1xo f s =T−1
(

T xa + r
T−>∇Φ(xa)

‖T−>∇Φ(xa)‖

)
=xa + r

T−2∇Φ(xa)

‖T−1∇Φ(xa)‖

(6)

B. Explicit expressions in canonical form

Eq. (6) can be divided into three unknown parts, i.e. x,
∇Φ(x) and T . The explicit expressions for x, ∇Φ(x), in both
2D and 3D cases, are derived as follows.

1) 2D case: The explicit expression of a superellipse is

xa(θ) =

(
a1 cosε θ

a2 sinε
θ

)
, −π ≤ θ < π. (7)

The implicit equation is

Φ(xa) =

(
x
a1

) 2
ε

+

(
y
a2

) 2
ε

= 1. (8)

By direct calculations, the gradient in parametric form can
be obtained as

∇Φ(θ) =
2
ε

(
cos2−ε θ/a1
sin2−ε

θ/a2

)
. (9)

Note that the superellipse becomes an ellipse when ε = 1.

2) 3D case: For a 3D Superquadrics surface, the corre-
sponding explicit expressions can be obtained as

xa(η ,ω) =

a1 cosε1 η cosε2 ω

a2 cosε1 η sinε2 ω

a3 sinε1 η

 ,
−π/2≤ η < π/2
−π ≤ ω < π

(10)
The implicit equation is

Φ(xa) =

((
x
a1

) 2
ε2
+

(
y
a2

) 2
ε2

) ε2
ε1

+

(
z

a3

) 2
ε1

= 1, (11)

the gradient of which in parametric form can be obtained as

∇Φ(η ,ω) =

 cos2−ε1 η cos2−ε2 ω/a1
cos2−ε1 η sin2−ε2 ω/a2

sin2−ε2 η/a3

 . (12)

Similar to the 2D case, the superquadrics shrinks into an
ellipsoid when ε1 = ε2 = 1.

In both 2D and 3D cases, the exponents are within the
range of 0≤ ε ≤ 2, so that the shapes remain convex.

III. COLLISION DETECTION BASED ON CLOSED-FORM
MINKOWSKI SUMS

The resulting parametric closed-form Minkowski sums
shrink the moving ellipsoid to a point in Rn, so the collision
detection problem can be viewed as checking whether the
point is outside of a parametric surface. Applying this idea,
we first assume the point to be checked is denoted as
p0 = [p1, p2, ..., pn]

> ∈Rn, and the Minkowski sum boundary
is obtained by Eq. (6).

A. Relative position between a point and a parametric
surface

The problem is simplified as checking the relative position
between a point p0 and a parametric surface S in Rn. The
idea is to firstly find a point peb on the parametric Minkowski
sum boundary surface that falls on the line defined by
origin O and the point p0. Then if p0 is farther from the
origin than peb, the point is outside of the boundary surface,
therefore, the moving ellipsoid is separated from the fixed
superquadrics, i.e.

Status =

{
In collision : ‖p0‖ ≤ ‖peb(ψ)‖
No collision : ‖p0‖> ‖peb(ψ)‖.

(13)

The key computational step is to search for the point peb
based on the parametric surface and the point p0. Concretely,
we seek to find peb such that its distance to the line lOp0 is
zero. This subproblem is addressed in both 2D and 3D cases
as follows.

1) 2D case: Let θ parameterize the closed-form
Minkowski sum boundary curve in R2, then the ele-
ments of the points peb and p0 are defined as peb(θ) =
[pebx(θ), peby(θ)]

> and p0 = [p0x, p0y]
> respectively. The

distance between peb and lOp0 can be written as

d(peb(θ), lOp0) =
|p0y pebx− p0x peby|√

p2
0x + p2

0y

(‖p0‖ 6= 0). (14)



Fig. 2. A demonstration of the collision detection scheme in 2D. Peb is
parameterized by θ , which can be obtained by solving for Eq. (15). In this
situation, the ellipse is separated from the superellipse since ‖P0‖> ‖Peb‖.

Setting the distance to be zero gives the objective function

F(θ) = p0y pebx− p0x peby = 0. (15)

Solving for θ gives the parameter that defines the point
peb(θ) on the Minkowski sum boundary. Moreover, if θ ∈
[0,π), the solution is unique, and the distance expression
is valid as long as the point p0 does not coincide with the
origin. Figure 2 demonstrates the collision detection scheme
in 2D.

2) 3D case: Two parameters (i.e. η and ω) are used to
define the explicit expression of the Minkowski sum bound-
ary surface. Therefore, the distance between peb(η ,ω) =
[pebx(η ,ω), peby(η ,ω), pebz(η ,ω)]> and the line defined by
p0 = [p0x, p0y, p0z]

> and the origin can be expressed as

d(peb(η ,ω), lOp0) =
‖peb×p0‖
‖p0‖

(‖p0‖ 6= 0). (16)

Setting the distance to be zero gives the objective function

F(η ,ω) = peb(η ,ω)×p0 =

 peby p0z− pebz p0y

pebz p0x− pebx p0z

pebx p0y− peby p0x

= 0.

(17)
Note that this is not an over-constrained system of equations
since each equation in F can be derived from the other two
equations. Hence, in the 3D case, there are two equations and
two unknowns, and the solution is unique up to a reflection
with respect to the origin when η ∈ [0,π/2) and ω ∈ [0,π).

B. Algorithm for collision detection between ellipsoids and
superquadrics

Based on the derivations of separation checking between
a point and the parametric closed-form Minkowski sum
boundary, we propose an algorithm for collision detection
between ellipsoids and superquadrics.

Algorithm 1 solves the collision detection problem in
general. In practice, the most computational intensive step
is finding the root of the nonlinear equation F(ψ) = 0 in
Step 4. Since there is no simple closed-form solution for
this equation, numerical root finding needs to be done.

Algorithm 1: Collision Checking Procedure for Ellip-
soidal and Superquadric objects

Input: SQ1 (Semi-axes lengths a1, Epsilons ε1,
Orientation R1, Position of center t1);

E2 (Semi-axes lengths a2, Orientation R2, Position of
center t2).
Output: Status (0 for separated, 1 for in collision).

1 Compute the affine transformation T = R2Λ(r/a2)R>2 ;
2 Transform SQ1 and E2 by T ;
3 Construct the point on the Minkowski Sum boundary

peb(ψ) via Eq. (6) ;
4 Solve the objective function F(ψ) = 0 for ψ̃ via Eq.

(15) or Eq. (17) ;
5 Compute the point peb(ψ̃) ;
6 Compare the magnitudes ‖peb(ψ̃)‖ and ‖p0‖, and

determine the Status via Eq. (13).

IV. ALGORITHM EVALUATION METRIC

The performance of any collision detection algorithm is
evaluated by both efficiency and accuracy, the former of
which can be compared by the running time. The accuracy is
an equally important judgment for a good collision checking
algorithm, but is more difficult to define. Here, we introduce
an accuracy evaluation metric based on the volume of all
configurations where collision occurs. Such volume can be
computed via the Principal Kinematic Formula [21] as

I(Sa,Eb) =
∫

SE(n)
i(Sa∩gEb)dg, (18)

where Sa and Eb are superquadrics and ellipsoids in Rn

respectively, g = (R, t) ∈ SE(n) describes the pose of Eb
(i.e. gEb

.
= REb+ t), dg is the natural bi-invariant integration

measure for SE(n) [22] and i(Sa ∩ gEb) is an indicator
function defined as

i(Sa∩gEb) =

{
1, Sa∩gEb 6=∅
0, Sa∩gEb =∅

(19)

Since inscribed meshes or bounding volumes make ap-
proximations to the actual objects, there is the possibility
that the inexact algorithms return “no collision” when there
is actually a collision, and vice versa. Therefore, computing
the relative volume of all the possible collision configura-
tions gives a metric to evaluate the accuracy of performing
collision detection. The relative volume can be computed as

γ =
I(Mesha,Meshb)

I(Sa,Eb)
×100%, (20)

where Mesha and Meshb are the two objects represented
by meshes. Note that for an exact algorithm, such as our
proposed method or ASC, γ = 100%.

V. BENCHMARK WITH EXISTING METHODS

In this section, we compare the computational time and
accuracy of the proposed algorithm for discrete collision
checking with some state-of-the-art ones. For the ellipsoid-
ellipsoid case, both ASC and GJK methods are compared;



TABLE I
A LIST OF BENCHMARKS FOR THE ALGORITHM 1

Dimension Ellipsoid-Ellipsoid Ellipsoid-Superquadrics
2D ASC, GJK (E), GJK (Mesh) GJK (Mesh)
3D ASC, GJK (E), GJK (Mesh) GJK (Mesh)

TABLE II
PARAMETERS FOR ELLIPSOID AND SUPERQUADRICS MESHES.

Dimension/Object Notation # Vertices # Facets
2D/Ellipse (E) Mesh 50 48

2D/Superellipse (S) Mesh 50 48
3D/Ellipsoid (E) Mesh1 25 268

3D/Superquadrics (S) Mesh1 25 260
3D/Ellipsoid (E) Mesh2 100 540

3D/Superquadrics (S) Mesh2 100 534

while for the ellipsoid-superquadrics case, only GJK is
compared. All the algorithms are implemented in C++, and
the benchmarks run in an Intel Core i7 CPU at 3.60GHz.

A. Benchmark Parameters and Notations

To make a fair comparison, we input the same parameters
that defines the geometry (i.e. semi-axes lengths and expo-
nents) and configuration of the objects (i.e. orientation and
location). For ASC and our method, those parameters are
directly used in the algorithms. For GJK, from the Flexible
Collision Library (FCL), they need to be converted to specific
representation objects. For the shape representation, we use
the built-in “Ellipsoid (E)” and “Mesh” objects for ellipsoids
and “Mesh” for superquadrics (S). Table I lists the algorithms
and object shapes we use for benchmarks.

We also compare the effects of using different mesh
densities by varying the number of vertices and facets that
constructs the convex bodies of the objects. To generate
those meshes, we use a popular computational geometry
library in C++, “CGAL” [23]. Detailed vertices and surface
information for the generated meshes are provided in Table
II with the notation of each mesh used in the rest of the
content.

B. Running Time Results

Using two ellipsoids/superquadrics, we fix one and ran-
domly generate 1000 poses of the other. Then we record the
running time of collision checking for each configuration.
Figure 3 shows the running time comparisons, with the line
segment being standard deviation and its center being the
mean.

C. Accuracy Evaluation of Collision Detection

Based on the metric described in Section IV, We evaluate
the accuracy γ for different object representations in both 2D
and 3D. For the cases of SE(2), Eq.(18) can be calculated
as [21]

ISE(2)(Sa,Eb) =2π[A(Sa)+A(Eb)]+L(Sa)L(Eb), (21)

where, A(·) and L(·) denote the area and perimeter of
the objects respectively. And for SE(3), the corresponding

TABLE III
COLLISION DETECTION ACCURACY FOR EACH CASE IN 2D AND 3D.

Case Algorithm/Objects pair Accuracy (γ)
2D/E-E ASC 100%
2D/E-E GJK/E-E 79.53%
2D/E-E GJK/E-Mesh 82.25%
2D/E-E Ours 100%
2D/E-S GJK/E-Mesh 88.65%
2D/E-S Ours 100%
3D/E-E ASC 100%
3D/E-E GJK/E-E 38.18%
3D/E-E GJK/E-Mesh1 42.08%
3D/E-E GJK/E-Mesh2 60.98%
3D/E-E Ours 100%
3D/E-S GJK/E-Mesh1 28.62%
3D/E-S GJK/E-Mesh2 72.33%
3D/E-S GJK/Mesh1-Mesh2 74.77%
3D/E-S Ours 100%

simple expression for Eq.(18) is

ISE(3)(Sa,Eb) =8π
2[V (Sa)+V (Eb)]

+2πF(∂Eb)M(∂Sa)+2πF(∂Sa)M(∂Eb),
(22)

where V (·) is the volume of a body in Rn, F(·) and M(·)
are the surface area and the integral of mean curvature of
the bounding surface enclosing a spatial body, respectively.

Table III compares the collision detection accuracy for
each object representation pair for the corresponding exper-
imental trial in both 2D and 3D.

VI. DISCUSSION

With the current implementation, the Minkowski-based
collision checker is competitive with some of the state-of-
the-art methods. The significant advantages of our proposed
algorithm are the direct use of the shape and configuration
parameters without the need of meshes or bounding volumes,
and the ability to extend to more complex shapes embedded
in the Euclidean space.

In the Ellipsoid-Ellipsoid (E-E) case, both Algebraic Sep-
aration Condition and Minkowski-based methods provide
exact collision detection, with the difference being the former
only solves a cubic or quartic polynomial, which can be
efficient. The Minkowski-based method, however, requires
solving for the roots of a nonlinear equation. It is essential
to apply an efficient nonlinear optimization algorithm and
solver (currently we apply a trust-region algorithm, and
use the nonlinear root finding method from the well-known
“Eigen” library in C++). The results show that, in terms
of running time, ours is competitive with ASC, and even
outperforms in the 2D case.

Another remarkable advantage of our method is that it can
be extended to more complex shapes. Although this paper
only derives concrete expressions and conducts experiments
for superquadrics, the closed-form Minkowski sum can be
applied to any convex and differentiable surface embedded
in Rn, as described in Eq. (1). Consequently, the proposed
general algorithm can deal with the collision detection prob-
lem between an ellipsoid and any object shape as long as it
has implicit and parametric expressions.



(a) Ellipse-Ellipse (b) Ellipse-Superellipse (c) Ellipsoid-Ellipsoid (d) Ellipsoid-Superquadrics

Fig. 3. Running time comparisons with existing methods and different object representations. For ASC and our proposed method, the shape and configuration
parameters are directly used; For GJK, we make comparisons between different object representations provided in FCL, labeled as “FCL-Object1-Object2”.

For objects with complex shapes, generating meshes or
bounding with volumes are common methods, with GJK be-
ing one of the most rigorous and efficient collision checkers
for those primitives. We compare our method with GJK in
both the E-E and E-S collision checking scenarios using
different mesh densities. It turns out that by using the
“Ellipsoid” object in FCL, GJK runs remarkably faster, the
reason of which being the bounding volumes have fewer
vertices. For the experiments, we use this “Ellipsoid” object
for one agent and generate different meshes by varying the
number of vertices and facets for the other agent. We also
use meshes for both objects to show the changes in the
performance of the GJK detection algorithm with different
mesh densities. It is obvious that as the number of vertices
and facets increase, GJK takes longer time to execute. This
gives limitations to the GJK algorithm, which is an inexact
checker and depends significantly on the quality of the
meshes or bounding volumes. Our algorithm, on the other
hand, is an exact checker, with the accuracy γ = 100%,
therefore outperforms GJK when the number of vertices
becomes larger.

Moreover, as the accuracy comparisons show, the volume
of all the possible collision configurations computed from
the mesh is always smaller than the one of the exact
representation of the object, since the former always gives a
lower bound for the object if the vertices are generated on
the boundary. As a result, even when the two objects collide,
inexact algorithms might sometimes return false negative
results, and the probability of returning the true results is
reflected by the accuracy.

VII. CONCLUSION

This paper studies the collision detection problem between
ellipsoids and superquadrics. The geometric formulations are
based on the closed-form Minkowski sums, a parametric
expression that enlarges the superquadrics surface boundary
and shrinks the ellipsoid into a point in Rn. An algorithm
is proposed, which involves computing the closed-form
Minkowski sum boundary and finding the relative position
between a point and a parametric surface. Furthermore, to

evaluate the probability of returning the true collision results,
a collision detection accuracy based on the relative volume of
all collision configurations of the objects is introduced. The
major advantages of the propose Minkowski-based algorithm
are:
1) It is an exact collision checker that uses less parameters
as input, i.e. the semi-axes lengths and exponents, without
depending on the quality of the meshes or bounding volumes;
2) It can work for collision detection between an ellipsoid
and any surface, with implicit and parametric expressions,
that is embedded in the Euclidean space.

Benchmark experiments are performed in C++ and with
some existing popular collision detection algorithms: Al-
gebraic Separation Conditions (ASC) and Gilbert-Johnson-
Keerthi (GJK) for ellipsoid-ellipsoid checking, and GJK
for ellipsoid-superquadrics checking. The majority of the
computational time for the proposed method is spent on
solving the roots of a nonlinear equation, and a numerical
solver is used in practice. The GJK method depends on
the complexity of the meshes belonging to the objects,
and different numbers of vertices and facets are used and
compared. The benchmark results show that the proposed
method is competitive with ASC and GJK, and outperforms
as the mesh density increases.
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