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Abstract — In this paper, dead-reckoning error in mobile
robots is studied in the context of several different models.
These models are derived first in the form of stochastic
differential equations (SDEs). Corresponding Fokker-Planck
equations are derived, and desired probability density functions
(PDFs) of robot pose are computed by using the Fourier
transform for SE(2).

I. INTRODUCTION

Many mobile robot tasks require that the robot have some
knowledge of its position. Because of its simplicity, dead-
reckoning is widely used to provide such information. The
position of a mobile robot in a globa reference frame is
determined by summing the incremental movements, e.g.
counting the revolutions of the robot wheels. Since sensors
are not perfect, errors accumulate in dead-reckoning pose
estimation.

Efforts are often made to reduce dead-reckoning error.
Many systems use readings from extra sensors, such as
ultrasonic sensors [1] and fiber-optic gyroscopes [2], together
with dead-reckoning data to update robot location. This is
often implemented by utilizing Kaman filtering. Vision-
based techniques are also used to assist the dead-reckoning
process [3,4]. With neural networks detecting the wheel dip
and estimeting the linear velocity of the wheels, the
performance of conventional dead-reckoning estimation is
improved [5]. For a class of dual-drive compliant linkage
robots, an internal position error correction method was
proposed, based on the measurement of the difference in
motion between the two connected carts [6]. Dead-reckoning
is also applied to robot map generation. Based on the
observed analogy between graphs modeling the environment
and truss gtructures, the method of elastic correction was
proposed to correct dead-reckoning errors made during
exploration with a robot capable of identifying landmarks [7].
On the side of probabilistic methods, a map with spatial
occupancy representation, which defines the probability of
occupancy of each cell in space, can be estimated by doing
Markov model-based searches of the next optimal robot
position [8-10].

Since many mobile robots operate under noisy situations, a
probability error model was developed to give an estimate of
robot location with uncertainty [11], which is modeled as a
set of equal-error-probability ellipse isolines. In practice, the
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probability of robot pose can be more complex, depending on
different probabilistic models. This paper examines three
models, the kinematic disk, cart and car, and develops an
algorithm to obtain the probability distribution of robot
position and orientation caused by noise in the direct reading
of wheel speeds.

I1. STOCHASTIC DIFFERENTIAL EQUATIONS

To generate the probability density function of pose for a

nonholonomic system subjected to white noise, a system of
SDEs needs to be constructed. Any system of SDEs can be
written in the standard form [12]
dx = a(x,t)dt + B(x,t)dw(t) , @
where in the case of a mobile robot x=(x,y,)" denotes the
pose of the robot moving in a plane, dw is a vector
consisting of uncorrelated normalized white noises, a is
called the drift vector, and B is called the diffusion matrix.
Equation (1) reflects the fact that for a mobile robot subjected
to stochastic forcing, the evolution of the pose density is
really a diffusion process.

In this section, the SDEs for the kinematic disk, cart and
car moving in the plane are derived respectively.

A. SDE of a Rolling Disk

As a widely studied classical and simple model, the

nonholonomic constraint for a rolling disk with deterministic
spinning arises by allowing it to roll but not dlip (Fig.1)
dx = r w(t) cosat , (2
dy =r w(t)sinédt, ©)
where 6 is the heading angle of the disk plane with respect to
its initial orientation, w(t)=d¢/dt denotes the rate of spinning
of the disk about its axle, and r the radius of the disk.
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Fig.1 Kinematic disk moving on a plane
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Assuming that the orientation of the rolling disk is
governed by a Wiener process
d¢ =/Ddw, (4)
one obtains a system of SDEs for the rolling disk with
deterministic spinning and random heading [13]

dx ra(t) cosé 0
dy | =| re(t)sing |dt+D| 0 dw" (5)
do 0 1

B. SDE of a Kinematic Cart

As another model of the mobile robots under discussion,
the kinematic cart (Fig.2) has two wheels which can roll at
different speeds, and therefore change the orientation of the
cart from time to time. The nonholonomic constraint for the
cart arises by allowing the whedls to roll but not dip.
Moreover, connected by an axle, the wheels steer together.
As a result, the sideway velocity of the cart is zero, and the
cart can only move in the direction of the body orientation.

For each wheel, (2) and (3) can be rewritten as

dx; =rcos@dg, (6)

dy, =rsinédg,, (7

where =1 or 2. For the whole system, one obtains

dx = dx, + dx, , 8)
2

dy = dyl%dyz , ©)

|d6 = rdg, —rdg, , (10)
where (x,y) denotes the position of the midpoint of the axle,
and | isthe length of the axle. Therefore, one obtains

dx = %jﬁd%), (11)
dy = %ﬁﬁd%) (12)
do = [(d¢,—dg,) (13)

Assuming the rolling speeds of the wheels are governed by
a deterministic and stochastic part
dg, = w(t)dt +/Daw, , (14)
d¢, = w(t)dt +/Ddw, , (15)
where w(t) denotes the deterministic part of the rolling speed,

and dw; are Wiener processes, one obtains the SDEs of the
kinematic cart

r r
—Ccos@ —cosé

dx r o(t) cosé 2 d (16)
dy | =| ro)sing |dt+vD| Lsng Lsing | 4

2 2 dw,
do 0 . .

X
Fig.2 Kinematic cart moving on a plane

Fig.3 Kinematic car moving on a plane
C. SDE of a Kinematic Car

Another model of mobile robots is the kinematic car
(Fig.3). It has two rear wheels which roll together, and two
front wheels which steer together. The nonholonomic
congtraint for the car arises by replacing each of these two
sets of wheels with a single imaginary wheel centered along
their axles and alowing the wheels to roll but not dip, i.e.
[14]
dxsin@ —dycosd =0, (17)
dxsin(@ + ¢) — dy cos(@ + ¢) —1d@ cosg = 0. (18)
Here (x,y) is the position of the midpoint of the rear axle, 6 is
the angle of the car body with respect to itsinitial orientation,
and ¢ isthe steering angle with respect to the car body. Here,
dx = ra(t) cosédt , (19
dy = ra(t)sinéadt , (20)
where w(t) denotes the rolling speed of the rear wheels.

Assuming that the steering of the car is governed by a
deterministic part and a Wiener process

d¢ = &(t)dt +~/Daw, (21)
one obtains a system of SDEs for the car
dx ro(t) cosé 0
ro(t)siné ) 22
d =|r () ++/D 0 dw (22)
do T ot)tang 0
d¢ 40 1

[1l. FOKKER-PLANCK EQUATIONS

To caculate the PDFs as a continuous function of robot
pose and time, the Fokker-Planck equations corresponding to
the SDEs of different models need to be solved. The solution
of a Fokker-Planck equation is a time evolving PDF of robot
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pose. Applying Ito’'s method to (1), the corresponding
Fokker-Planck equationis[12]

of P}

—=- —(@xnf

o= 25 AN "
1 02 :

+EZZ,-: XX, (BOOB () 1)

Applying Stratonovich’'s method to (1), the corresponding
Fokker-Planck equationis[12]

f _ <
o Zax(&(x,t)f)

. (24)
1 0 0
+EZZ;&(B”< aij(Bjkf))

From (5), one obtains the same Fokker-Planck equation for
the rolling disk with deterministic spinning and random
heading using both the Ito and Stratonovich methods

2
a—f=—ra)(t)cos¢9a—f—ra)(t)sinea—f+98 f2 J
ot X dy 296
where f=f(g(x,y,0),t) is the desired time-evolving PDF, and
g(x,y,0) denotes a member of the group of planar rigid-body
motion SE(2).

(25)

From (11), one obtains the same Fokker-Planck equation
for the kinematic cart using both the Ito and Stratonovich
methods

2 2
a—f=—ra)(t)cos¢9a—f—ra)(t)simﬁ'a—f+E(r—<:osza9a—z
ot ox ady 2 2 ox~ . (26)
2 2 2 2 2 2
+r—sin26’a f +r—sin26’a—]; 2%8 f2)
2 oxdy 2 ay [ 06

From (22), one obtains the same Fokker-Planck equation
for the kinematic car using both the Ito and Stratonovich
methods
of of . of
—=—Tow(t)cosd —-rw(t)snd —
ot~ rel)eose T mra()sne e @7)

r of of D o*f
——ot)tang ——E(t) —+—

Iw() ey 6()a¢ 2 99

With constant w(t)=v and &(t)=0 (in the case of the car
moving in a straight line), (25)- (27) change into the simpler
versions:

2
X o rveosoF —rvsngd D2 fz (28)
ot ox ady 296
2 2
a—f=—rvcos€a—f—rvsin€a—f+9(r—coszea—£
ot ox ay 22 ox" , (29
2 2 2 2 2 2
+Lsn2g o’f +r—sjn26?a ]; 2%8 fz)
oxdy 2 ay I° 96
2
a—f:—rvcosé?a—f—rvsjné?a—f—ﬂtanqﬁa—f+Ba fz . (30
ot oX ay | 20 2 9d¢

V. SOLVING FOKKER-PLANCK EQUATIONS

Since the maobile robots under discussion are modeled by
kinematic disks, carts and cars moving in a plane, operational
properties of the Fourier transform of functions on SE(2) can
be used to solve the Fokker-Planck equations (28)-(30).

A. Operational Properties Used in Solving Fokker-Planck
Equations

SE(2) is the group of rigid-body motions in the plane
[14,15]. Theright differential operators for SE(2) in Cartesian
coordinates are [15,16,17]

X - c0s62 +sing-, (31)
oX oy
XK ——sn62 +coso (32
oX oy
xr-9. 39

The Fourier transform on SE(2) is defined as[15]

F()=f(p)=[,, f(@U(g™ P)d(g): (34)
and itsinverse transform is defined as [15]
F(f) = f(g) = || tracelf (p)U(g, P)) polp- (35)

where g denotes a member of SE(2), p is the “frequency”
introduced by the Fourier transform, and U(g,p) is an
irreducible unitary representation matrix of SE(2). Here the
elements of matrix U(g,p) are given as[15]

U (9(r,9,6), p) =i Me Ay (pr),
where -oo<m,n<oo,

(36)

An important operational property of the Fourier
transform for SE(2) is[15,16,17]

FOX ) =n (D (p) 37
where y, (p)'s are coefficient matrices with elements [16,17]

nlmn ( p) = g(am,nﬂ - 5m,n—1) ’ (38)
i

772 mn ( p) = Ep (§m,n+l + §m,n—1) ! (39)
Nam (P) =—IMJ, s (40)
where ¢ isthe Kronecker delta function.

B. Solving for the Disk Model

By using (31)-(33), one rewrites (28) as
of g-i"t) =(_rv>'<“f+%>?§2)f(g,t). (41)

By applying the SE(2) Fourier transform on both sides of

(41), one obtains

of (p.t)
ot

= (-rvn,(p) +%ns(p)2)f“ (p.t)- (42)
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The solution to (42) is

f(p,t) =™ (p,0), (43)
where
AP) ==, () + 1, (P) (44)

By setting x=y=6=0 when t=0, the initial condition for (28) is
defined as

f(9(x y,0);t=0)=35(X)6(y)5(6) » (45)
where ¢ is the Dirac delta function. As aresult, f(p,0) isthe
identity matrix, and (43) isreduced to

f(py=e". (46)

By applying the inverse Fourier transform for SE(2) to
(46), one obtains the solution to (28)
f(a(x.y,0).1)

= j:trace(f(p, t)u(g(x, y,6), p) pdp

-3y j:f‘(p,t)mnunm(g(x, Y, ), p) pdp

meZneZ

(47)

where Z denotes the set of all integers.

To compute the reduced PDF f(x,y,t), one integrates
f(a(x,y,0).t) analytically as
toy = [ fa(xy.0).1)d6- (48)

Since the matrices n and U are infinite dimensional, we
must truncate them to finite dimension as (2L+1) by (2L+1)
meatrices when doing numerical computations, where L is a
chosen integer.

By solving the Fokker-Planck equation (28), one obtains
PDFslikethosein Fig.3.

C. Solving for the Cart Model

By using (31)-(33), one rewrites (29) as

% = (-rVXF +% (% X4 ZILZ X f(g.1) - (49)
By applying the SE(2) Fourier transform on both sides of
equation (49), one obtains

aof (p.t D r? 2r? -

TP _ oy () + 2+ (T () - (50
By following the steps in the last subsection, one can obtain
the desired PDFs like those in Fig.4.

Dt=8

i, y)
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Fig.3 PDF of the position of the disk model when Dt=8 and
r=v=1(L=5)

Dt=1

Dt=1

0.0!
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Fig.4 PDF of the position of the cart model when Dt=1 and
r=l=v=1 (L=3)
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D. Solving for the Car Model

By using (31)-(33), one rewrites (30) as

M@ _ s - tan o "+2 9 ytg- (1)

at 2 9¢?
Multiplying both sdes of (51) by cos’d, one obtains

cos’ ¢ M = (-rvcos® gX;*

(52)
D
—I—sn¢cos¢x +ECOS (p?)f(g 1)

By expanding f, cosp and sing in aFourier seriesin ¢, i.e.

fg)= 3 f.(g)e"

N=—co

e’ +e"

(53)

oS¢ = (54)

e’ —e"
2
one obtains

sing = ; (55)

z (afn z(g t) af (g t) + afn+2(g t))em}
e ot ot

— - _ 2

-y ((—rvxf+iﬂx§ _Db(n-2"
. I 2

+(-2rvX X - Dn?) f, (g,t)

2

D(n+2) X

2
from which one obtains a system of partial differential

)fa(91)
, (56)

# VRS X n2(9D)e™

equations
Aoa(98)  ,9f(9)  Ifha(90)
ot ot ot
2
D(n-2) X
2

Sro VS
=(—rvX1R+|I—X3R—

D), (9.9
PO, e

By applying the SE(2) Fourier transform on both sides of
(57), one obtains a new system of differential equations

ofo(p1) , ,0f(p1) | ofpr(Pit)
ot ot ot

2 ~

rv_ D(n-2) )

n2(9:1)
i . (57)
+(=2rvX -

Sk TV
+ (—rvX S —||—X3R -

= (=, +i5mm n,z(p.t)’ (58)
+(-2rvn, — Dn? )fn(p,t)

+(rvm, - Y, -2 oy

whi crl has the form

M, M (59)

ot

where f is a vector which consists of { .’s. By truncating the

fn and m; as (2L+1) by (2L+1) matrices and setting -N<n<N,
one obtains two (2N+1)*(2L+1) by (2N+1)*(2L+1) tri-
diagonal matrices

M,=| 1 02 01 (60)
M, = m 0 m, 0 mg | (61)
where
——rvnl+|ﬂ D(%_z)zl ; (62)
m, = —2rv, — Dn2I : (63)
m, :—rVql—i%m—D(nTJrz)zl ; (64)

and | isthe (2L+1) by (2L+1) identity matrix.
Because x=y=6=0=0 when t=0, the initial condition for
equations (30) is defined as

f(g(x,y,6,0);t=0) = 5(X)5(y)5(6)5(¢9)- (65)
As aresult, f(p,0) is an identity matrix, and the solution of
equation (59) is
f(p,t)=e ™,
where A =M ['M ,.

(66)
(67)

Then, by inverse Fourier transform on SE(2), one obtains

f,(9(x .6).t) = [trace(f,(p.)U(g, p)) pdp- (68)
The desired time-evolving PDF is obtained by
F(g(x ,0),0,0= 3 T.(g(x,y,6),16" - (69)

To compute the _r_educed PDF f(xy,t), one integrates
f(a(xy.0).0.) s

fy)=[ [ f(g(xy.6).0,0)d6ds- (70)
By solving Fokker-Planck equation (30), one obtains PDFs
likethosein Fig.5.

V. CONCLUSION

In this paper, dead-reckoning error is studied in the context
of different models of mobile robots with nonholonomic
constraints where there is noise in the steering and/or drive
systems. As one can see, the Fourier transform on SE(2)
provides a powerful tool to solve the Fokker-Planck
equations that describe the evolution of pose in these
examples arising from the planar stochastic motion of those
dynamic systems.
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Fig.5 PDF of the position of the car model when Dt=10,

r=v=1 and |=5 (L=5,N=6)

The results in this paper are obtained by assuming a
constant spinning rate for the wheels, which guarantees such
analytical intermediate results as (43) and (66). We are
currently investigating cases in which the deterministic parts
of wheel speeds and heading angles are variable. In the
future, more attention will be given to the dead-reckoning
errors caused by dipping and skidding of the wheels.
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