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Abstract

Motivated by a physical phenomenon, the diffusion pro-
cess, this paper develops a diffusion-based algorithm for
workspace generation of highly articulated manipulators.
This algorithm makes the workspace generation problem
as simple as solving a diffusion-type equation which has
an explicit solution. This equation is a partial differential
equation defined on the motion group and describes the
evolution of the workspace density function depending on
manipulator length and kinematic properties. Numerical
simulations using this algorithm are also presented.

1 Introduction

Highly articulated manipulators, which are also called
snake-like, serpentine or hyper-redundant manipulators,
possess agility far superior to that of conventional ma-
nipulators. They have great potential for applications
where a high degree of redundancy is essential. Exam-
ples include inspection and repair tasks in complex en-
vironments; search and rescue tasks in areas difficult to
access by humans; and medical diagnostic and minimally
invasive operations in health care. Efficient algorithms
for workspace generation are important for applications
of such manipulators in the real world.

The workspace generation of a highly articulated manip-
ulator is much more complicated than that of a manipu-

lator with a few links. Various methods have been pro- .

posed. Geometric methods were used by [6] to generate
the workspace for a manipulator with an arbitrary num-
ber of revolute joints. However, such algorithms are not
applicable for manipulators of general structure. A curve
approximation approach is presented to determine the
workspace of complex planar manipulators in [9]. The
authors of [8] divided the manipulator into parts, sub-
workspaces of which are then calculated using the Jaco-
bian. The Monte-Carlo method was used in [1], where
a large number of random actuator values are generated
and the corresponding reachable positions are calculated.
In terms of workspace density, the authors of [5] pre-
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sented a method based on concatenation of the densities
of individual modules by sweeping, while the authors of
[4] applied the convolution of functions on Lie groups to
determine the workspaces through partitioning a manip-
ulator into parts, and approximating the workspace of
each part as a density function.

Different from all the above mentioned methods, this pa-
per develops an approach to generate the workspace of
a highly articulated manipulator by solving a partial dif-
ferential equation defined on the motion group, SE(N).
This equation can be easily solved using the techniques
of Fourier analysis of motion as developed in [2].

The format of the remainder of this paper is as follows.
In Section 2, the required mathematical techniques are
reviewed. The diffusion-based algorithm is presented in
Section 3. Section 4 explains a method to choose kine-
matic parameters in the proposed diffusion-type equation
for a given manipulator. Section 5 provides the simula-
tion results.

2 Fourier Analysis of Motion

2.1 Euclidean Motion Group

The Euclidean motion group, SE(N), is the semidi-
rect product of RN with the special orthogonal group,
SO(N)!. We denote elements of SE(N) as g = (a, A)
where A € SO(N) and a € RN. For any g = (a, A)
and h = (r,R) € SE(N), the group law is written as
goh = (a+ Ar,AR), and g~ = (—ATa, AT). It is often
convenient to express an element of SE(N) as an homo-
geneous transformation matrix of the form:

A a

g:

of 1

1The group SO(N) consists of N x N matrices with the prop-
erties RRT = I and detR = +1. The group law is matrix multipli-
cation.



For example, each element of SE(2) parameterized using
polar coordinates can be written as:

cos¢p —sing r cosf
9(r,0,0)=| sing cos¢ rsind
0 0 1

SE(2) is a 3-dimensional manifold much like R3. We
can integrate over SE(2) using the volume element

d(g(r,0,8)) = g==rdrdode [2].

2.2 Differential Operators Defined on the Motion
Group

The way to take partial derivatives of a function of motion
is to evaluate

XF5 2 & 1(g0 exp(tRo)lemo

where X is the basis for the Lie algebra. For the case of

SE(2),

0 -1 0

}21: 1 0 0 3
0 0 O

) 001

Xo=| 00 0 |;
0 00

) 00 0

Xs=(001].
000

Explicitly, we can derive the differential operators J.(tR for

SE(2) in polar coordinates to be [10]

xR = &
XE = cos(¢—0)2 +—<¢—91§9 (1)
XE = —sin(¢— 9)8+——J—Msf—

2.3 Motion-Group Fourier Transform
The Fourier transform of a function of motion, f(g), is
an infinite-dimensional matrix defined as [2]:

F(f) = Fp) = /G (@)U, p) d(g)

where d(g) is a volume element at g, and U(g,p) is an
infinite dimensional matrix function of g and a frequency
parameter p. The corresponding inverse Fourier trans-
form is

1a)=F() = [ trace[f@)0(5.9)] dv(r)

where G is the space of all p values called the dual of the
group G, and v is an appropriately chosen integration
measure in a generalized sense on G.

For the case of SE(2), the matrix elements of U(g, p) are
expressed explicitly as [2]:

Umn(9(r, 8, §),p) = jP~Me TPl 1. _(pr) (2)

where J,(x) is the vt* order Bessel function. The inverse
Fourier transform can be written in terms of elements as

Z ] fmnunm 9, p)pdp (3)
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2.4 Operational Properties

In analogy with the classical Fourier transform, which
converts derivatives of functions of position into algebraic
operations in Fourier space, there are operational prop-
erties for the motion-group Fourier transform.

By the definition of the motion-group Fourier transform

and differential operators X, R, we can derive the Fourier

transform of the derivatives of a function of motion as:
FIXEf) = n(Xi,p) f(p)

where

") 2 5 (Vi p)

t=0

Now we will derive the explicit expression of n(X;, p) for
SE(2) since they will be used to solve the partial differ-
ential equation stating in the next section.

The matrix elements of U(exp(tX;),p) can be obtained
from (2) by setting ¢ =¢, r =0, and § = O:

Umn (€xp(tX1),p) = € I™ 6 .

The fact

_J 1 for m—n=0
Jm“"(o)#{(\ for m—n#0

is used in the above calculation. Explicitly,

nmn(Xlap) = —jmémmn- 4)

The matrix elements of U(exp(¢X5),p) can be obtained
from (2) by setting ¢ =0, r =1¢, and 6 = 0:

umn(exp(tX2),p) = jn—mJn—m(Pt)~
It is known that

d

EJm(x) = -;-[J —1(z) = Imt1(x)).

Hence,

T (X2,8) = L Gmns1 +mnt): (5)



Figure 1: The workspace density of a binary manipulator

The matrix elements of U(exp(¢X3),p) can be obtained
from (2) by setting ¢ =0, r=¢, 0 =n/2:

Umn(exp(tX3),p) = (—=1)" "™ Jn_m(pt).

and so

nmn(XiiaP) = g(‘sm,n+1 —Omn-1) (6)

3 Workspace Generation as a Diffusion Process

3.1 Workspace Density

The diffusion-based algorithm takes advantage of the con-
cept of workspace density. Workspace density describes
the density of reachable points/frames in any portion
of the workspace [5] where the workspace is discretized
into small blocks and the density of points/frames is the
number of reachable points/frames per unit workspace
volume. The workspace density function is a probabil-
ity density function that describes the distribution of
points/frames over the workspace. Higher density of
a point/frame means the manipulator can reach that
point/frame more accurately. Figure 1 displays the
workspace density of a binary manipulator with ten mod-
ules [4]. Three of the manipulator’s 23 configurations are

this observation, we view the workspace of a highly- ar-
ticulated manipulator as something that grows/evolves
from a single point source at the base as the length of the
manipulator increases from zero. The workspace is then
generated after the manipulator grows to full length.

1. miodils: .2 module§

Figure 2: The workspace of a manipulator with different
modules

3.3 Implementation of the Algorithm

- With this analogy, the next. step is to determine what

indicated. Darker areas mean higher density, and manip- -

ulators can reach that part more accurately.

3.2 Inspiration of the Algorithm

Consider a discretely-actuated serial manipulator. Each
module can reach 16 different states as shown in Figure
2. The workspace of this manipulator with 2 modules, 3
modules and 4 modules are also shown in Figure 2 respec-
tively. They are generated by brute force enumeration.
It is easy to notice that the size of the workspace spreads
out with the increment of modules. This enlargement
of the workspace is just like the diffusion produced by
a drop of ink spreading in a cup of water. Inspired by
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kind of diffusion equation is suitable to model this pro-
cess. We can obtain such an equation by realizing that
some characteristics of highly articulated manipulators
are similar to those of polymer chains like DNA.

During our study of conformational statistics in polymer -
science, we derived a diffusion-type equation defined on

the motion group SE(3) [3, 10). This equation describes

the evolution of a probability density function for the

position and orientation of the distal end of a stiff macro-

molecule relative to its proximal end. By incorporating

parameters into this equation which indicate the kine-

matic properties of a manipulator, we can modify it to

describe the evolution of the workspace density function.

In the planar case, it is written explicitly as

of

oL
f stands for the workspace density function. L is the
manipulator length. XF and X are the differential op-
erators defined on SE(2) where the subscript 1 denotes
the rotation around Z-axis and the subscript 3 stands for
the tangent direction along the manipulator’s backbone.
Parameters o, 3 and ¢ describe the kinematic properties
of manipulators. We define these kinematic properties as
flexibility, extensibility and the degree of asymmetry. 3
describes the flexibility of a manipulator in the sense of
how much a segment of the manipulator can bend per
unit length. A larger value of 8 means that the manip-
ulator can bend a lot. e describes the extensibility of

(aXf*+ﬁ(Xf)2+Xf+€(X§)"’)f- )



a manipulator in the sense of how much a manipulator

can extend along its backbone direction. A larger value:

of ¢ means that the manipulator can extend a lot. «
describes the asymmetry in how the manipulator bends.
When o = 0, the manipulator can reach left and right
with equal ease. When a < 0, there is a preference for
bending to the left, and when « > 0 there is a preference
for bending to the right. Since a, 3, and € are qualitative
description of the kinematic properties of a manipulator,
they are not directly measurable. In Section 4, we will
show how to choose the values of these parameters from
the framework of probability theory.

This simple three-parameter model qualitatively cap-
tures the behavior that has been observed in numerical
simulations of workspace densities of discretely-actuated
variable-geometry truss manipulators [7)].

Explicit Solution to (7)

Applying the motion-group Fourier transform to (7) and
utilizing its operational properties, we can convert (7) to
an infinite system of linear ordinary differential equations
with constant coefficients:

af _
dL

Bf (8)

-where the matrix
B = an(X1,p) + (X1, p)? +1(Xa,p) + efn(Xs, p))*.

The explicit expressions of the matrix elements of
7(X1,p) and n(X3,p) are derived as (4) and (6) respec-
tively.

In principle, f(g;0) = &(g), and f(p;0) is the identity.
The solution to (8) can be obtained by matrix exponential

f(p; L) = exp(B(p)L).

Then we substitute the solution f(p; L) into the motion-
" group Fourier inversion formula (3) to recover f(g; L).

The effects of the parameters in (7) can be shown in the
positional workspace densities. The positional workspace
density is obtained by integrating f(g; L) over all values
of rotation angle. Figures 3 (a) and (b) show the effect
of the length parameter L with L = 1,2. Figures 3 (b)
and (c) show the effect of the extensibility parameter ¢
with € = 0,0.04. The area of the workspace density is
extended/fatted because of the larger value of e. Fig-
ures 3 (b) and (d) show the effect of the flexibility pa-
rameter B with 8 = 1,1.5. For larger value of 3, the
‘workspace density has larger area. Figures 3 (b), (e) and
(f) show the effect of the asymmetry parameter o with
a = 0,~0.6,0.6. It is easy to notice how o affects the
workspace of a manipulator to bend to the left and right.

In the above numerical implementations, the infinite-
dimensional matrix function U(g,p) is truncated. The
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Figure 3: The effects of parameters L, a, 3 and €

result is a band-limited approximation. We chose the
upper bound of the frequency parameter p to be 100.
The matrix U(g,p) is truncated at —lp < m,n < Ilp
where Ig = 7. Since the numerical results of the Fourier
transform of this diffusion equation are approximated
by a band-limited version, the outer elements (values of
f = exp(B) with |m|,|n| — Lp) can have larger er-
rors. We therefore impose a second cutoff frequency of
ip = 4 after the exponentiation when substituting into
the Fourier inverse formula to obtain the workspace den-
sity function f(g; L).

4 The Choice of Parameters in the Algorithm

Different manipulators have different kinematic proper-
ties. It is impossible to find a closed-form relationship be-
tween the parameters «, § and € and the kinematic prop-
erties of manipulators that is suitable for any manipula-
tor. Also these parameters are a qualitative description
of the kinematic properties and not directly measurable.
We developed a general approach based on probability
theory to match the parameters o, 3 and ¢ to a given
manipulator.

The mean and variance of workspace density functions
are used in this matching method. The general idea is to
adjust @, B and € to make the mean and variance of the
workspace density functions obtained from (7) and brute
force enumeration as similar as they can be. The «, 8
and e characterizing the manipulators are the ones that
make the workspace density functions have nearly the
same mean and variance. The procedure for this match-
ing method is depicted by the flowchart shown in Figure
4.

For a given manipulator, we consider only a few modules
so that its workspace can be easily obtained by brute force
enumeration. We first calculate the workspace density
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Figure 4: The flowchart of the matching method

function pgoar using brute force enumeration and pa,g,¢
using the diffusion-type equation (7). The initial values
to the parameters «, 5, and ¢ in (7) are assigned through
the features on the shape of pgoei. Then we calculate
the corresponding mean in term of x, y, ¢ and variance in
term of z,y, ¢, Ty, TP, yo. The parameters «, J and € are
adjusted to minimize the cost function

: C’~(a,ﬂ, €) } 3
= (BEz - E;)* + (Ey — Ey)* + (Ey ~ Ey)?
+(8% = 02)* + (32 — 02)* + (65 — 03)?
03 + (52, — 02,7 + (G54 — 054)%,

52
+(azy -

where E’s and &’s are the means and variances of p,, g,

and E’s and o’s are the means and variances of pgoar.

There are several ways to adjust «, 8 and e. Since it
is easy to find the coarse range of these parameters, one
simple way is to enumerate all the possible values with a
small increment step of these parameters for a given range
and find the set of parameters that results in the minimal
value of the cost function.
show that the value of cost function is not sensitive to
the small change of these parameters, so the step of the
increment will not affect the final result significantly.

5 Numerical Simulations

The manipulator used for the numerical simulation is the
same as that shown in Figure 2. We use this manipulator
with 4 modules to match the parameters. From Figure
2, we know that the maximal radius of the workspace of

Our numerical simulations
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Figure 5: The workspace (a) and workspace density (b) of
a 4-module manipulator

this manipulator with 4 modules is about 6. Hence, the
parameter L in (7) is set to be 6. Since the workspace is
symmetric in bending to the left and right, the parameter
« is set to be 0. The range of parameter 3 is taken from
0.02 to 0.74 with the increment step of 0.02. The range of
parameter ¢ is taken from 0 to 0.8 with the increment step
of 0.04. We found that the minimal value of the cost func-
tion is 0.5748 when 8 = 0.12 and ¢ = 0.08. Hence, the
parameters characterizing this manipulator are @ = 0,
8 = 0.12 and € = 0.08. The workspace and workspace
depsity of this manipulator with 4 modules generated
from the brute force and the diffusion-type equation (7)
with L =6, @ = 0, 8 = 0.12 and ¢ = 0.08 are shown in
Figures 5 (a) and (b) respectively.

It is shown in [4] that the workspace density function
p(g; L) for two concatenated manipulator segments with .
length Ly and Ly is the motion-group convolution

p(g: I + L2) = p(g; L) * p(g; La)- ©)

This indicates the linear relationship between the length
and number of modules of a manipulator in the workspace
density function. In our simulation, we use a 4-module
manipulator to match the parameters o, # and € in the
diffusion-type equation (7) with the length parameter
L = 6. Because of the linear relationship shown in (9),
the workspace density produced by adding or reducing
one module of a manipulator is the same as that by in-
creasing or decreasing the length parameter L by 1.5 for
the diffusion-type equation (7). To verify this result, we
test the manipulator with 5 modules using the matched
parameters o = 0, 8 = 0.12 and € = 0.08. Figures 6 (a)
and (b) show the workspace and workspace density of this
manipulator with 5 modules generated from brute force
method and the diffusion-type equation (7) with L = 7.5
respectively.

~ All the above numerical simulations can be implemented
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in a couple of minutes using a pentium IIT PC with 128
KB memory. We also further applied the workspace den-
sity generated in our algorithm to solve inverse kinemat-
ics problems. It gives us very good results [10]. This
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Figure 6: The workspace (a) and workspace density (b) of
a 5-module manipulator

workspace generation algorithm is very efficient for ma-
nipulator workspaces which have a crescent shape.

6 Conclusion

In this paper, it was shown that the workspace density of
a highly articulated manipulator can be found by solving
a partial differential equation which has an explicit so-
lution. The computational complexity of this algorithm
is independent of the number of modules/DOF of a ma-
"nipulator. In this sense, this algorithm is very suitable
for highly articulated manipulators. To our knowledge,
this is the only method in which computational complex-
ity is independent of the number of modules/DOF. The
effectiveness of this algorithm was verified by numerical
simulations.
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