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SUMMARY

A nonholonomic system subjected to external noise from
the environment, or internal noise in its own actuators, will
evolve in a stochastic manner described by an ensemble
of trajectories. This ensemble of trajectories is equivalent
to the solution of a Fokker–Planck equation that typically
evolves on a Lie group. If the most likely state of such a
system is to be estimated, and plans for subsequent motions
from the current state are to be made so as to move the
system to a desired state with high probability, then modeling
how the probability density of the system evolves is critical.
Methods for solving Fokker-Planck equations that evolve
on Lie groups then become important. Such equations can
be solved using the operational properties of group Fourier
transforms in which irreducible unitary representation (IUR)
matrices play a critical role. Therefore, we develop a simple
approach for the numerical approximation of all the IUR
matrices for two of the groups of most interest in robotics:
the rotation group in three-dimensional space, SO(3), and the
Euclidean motion group of the plane, SE(2). This approach
uses the exponential mapping from the Lie algebras of
these groups, and takes advantage of the sparse nature of
the Lie algebra representation matrices. Other techniques
for density estimation on groups are also explored. The
computed densities are applied in the context of probabilistic
path planning for kinematic cart in the plane and flexible
needle steering in three-dimensional space. In these examples
the injection of artificial noise into the computational models
(rather than noise in the actual physical systems) serves as a
tool to search the configuration spaces and plan paths. Finally,
we illustrate how density estimation problems arise in the
characterization of physical noise in orientational sensors
such as gyroscopes.

KEYWORDS: State estimation; Lie groups; nonholonomic
motion planning; exponential map.

1. Introduction

In robotic systems, sensors make observations about the state
of the system and actuators change the state by moving the
robot in space. The “kinematic state” (or configuration) of a

* Corresponding author. E-mail: greg@jhu.edu

quasi-static robot often can be viewed as an element of a Lie
group, G.§ For a system whose state is specified in part by
a stochastic input, the state cannot be known or controlled
exactly. For such systems, the best that one can do is to
estimate the state, and make plans to evolve the state so
as to achieve some desired goal in a probabilistic sense.
In contrast, in motion planning scenarios, the injection of
“artificial noise” into the computational models can serve as
a tool to search the configuration spaces and plan paths by
following paths of high probability.

For these reasons, methods for probability density
estimation can play an important role in applications.
Systems that have states that evolve on Lie groups include
gyroscopic sensors, cart-like mobile manipulators (including
a library robot implemented in our research group), and
flexible needles with bevel tips used in minimally invasive
medical treatment planning. After establishing a general
theoretical framework, we address each of these topics later
in the paper.

Several orientation sensing modalities exist for mobile
robots and satellites. These include star trackers,38,32

gyroscopes,29,45 magnetometers,33,34 and omnidirectional
vision systems.4,5 Each of these can use the concepts of
IURs for SO(3) in one form or another. A detailed literature
review of this area is presented in ref. [6] (Chapters 14 and
15).

Another area of robotics in which methods of group
theory can be applied is nonholonomic motion planning. The
problem of motion planning for nonholonomic robots has
received significant attention within the robotics community
over the past two decades. For a summary of the state of the
art, see refs. [67,74,79,80]. One approach is to do planning in
high-dimensional configuration space. In contrast, we follow
the approach of doing planning in workspace variables,
which can have a greatly reduced dimension relative to that
of configuration spaces. This approach has been taken in
a number of prior papers from our research group shown
in refs. [73,78]. In particular, the inverse kinematics of
hyper-redundant and binary manipulators using “workspace

§ In this work, when we refer to the state of a system, this is what we
mean (rather than the dynamic state that includes rates of change
of kinematic variables).
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densities” has been pursued in refs. [72,75,76]. This approach
was adapted for nonholonomic planning in ref. [77] by
sampling allowable moves. In contrast to sampling, a Fokker–
Planck equation can be written that describes the evolution of
probability density70. In cases when the probability density is
highly concentrated, this can be approximated as a Gaussian
distribution, and covariances can be propagated.68,69,71 These
variations on the general theme of propagating probability
densities in the workspace of the robot will be pursued later
in the paper.

The remainder of this paper is structured as follows.
Section 2 reviews the relationship between Fokker–Planck
equations and stochastic differential equations that describe
processes in IRn and in Lie groups. Section 3 reviews and
develops theory for Fourier-based estimation on Lie groups.
Section 4 applies this methodology to the state estimation
and motion planning of the kinematic cart. Section 5 applies
the same methodology to steering a flexible needle in three-
dimensional space. Section 6 applies this theory to the
attitude estimation problem when using an inertial navigation
systems and examines the problem of extracting system
noise parameters from measured data, which is a capability
that is important for handling all of these systems. Finally,
Section 7 gives conclusions.

2. Fokker–Planck Equations

A stochastic differential equation (or SDE) in IRp is of the
form

dx(t) = h(x(t), t)dt + H (x(t), t)dW(t) (1)

where x ∈ IRp and W ∈ IRm. Here the deterministic
dynamical system dx/dt = h(x, t) is perturbed at every value
of time by noise, or random forcing described by W(t) where
W(t) is a vector of uncorrelated Wiener processes, each
with unit strength and H ∈ IRp×m is a matrix that scales
and couples these noises. SDEs used in modeling can either
be of Ito or Stratanovich type.54 In cases when H (x(t), t) is
independent of x, this distinction is not important.

The Fokker–Planck equation is a partial differential
equation that governs the time evolution of a probability
density function ρ(x, t). When (1) is interpreted as an Ito
SDE, the Fokker–Planck equation is written explicitly as

∂ρ(x, t)

∂t
+

p∑
i=1

∂

∂xi

(hi(x, t)ρ(x, t))

− 1

2

p∑
i,j=1

∂2

∂xi∂xj

(
m∑

k=1

HikH
T
kjρ(x, t)

)
= 0. (2)

We present the result without proof. The methodology was
first employed by Fokker53 and Planck.61 Many good books
explain the methodology thoroughly.54,59,62,64 Rather than
repeating this classical derivation, we present a derivation for
the Lie group case. In fact, this result is also known as shown
in refs. [51,55,56,57,58,60,63,65] but with the possible
exception of ref. [52], we have not seen a presentation that is
easy for engineers to understand. Therefore, we attempt such
a presentation here.

Let ρ(g, t) denote a time-parameterized probability
density function on a unimodular Lie group‡ (e.g., the
rotation or motion groups). That is,

ρ(g, t) ≥ 0 and
∫

G

ρ(g, t)dg = 1

for all values of t ∈ IR+, and

ρ(g, 0) = δ(g).

The Dirac delta function for a unimodular Lie group is well
defined. This and other definitions and proofs can be found
in ref. [6].

As usual, the partial derivative with respect to time is
defined as

∂ρ

∂t
= lim

�t→0

1

�t
[ρ(g, t + �t) − ρ(g, t)] .

However, for a process that evolves on a Lie group, we should
have

ρ(g, t + �t) =
∫

G

ρ(h, t)ρ(h−1 ◦ g, �t)dh

=
∫

G

ρ(h, �t)ρ(h−1 ◦ g, t)dh.

As in the proof of the classical Fokker–Planck equation,
one substitutes this convolution integral into the definition of
partial derivative, and computes

C =
∫

G

∂ρ

∂t
f (g)dg

where f (g) is an arbitrary function. Then one changes
coordinates, and expands f (g) in a Taylor series. One can
define a Taylor series expansion on a Lie group in a way that
is analogous to the classical case. If Xi is a basis element
of the Lie algebra G, then the “right” Lie derivative Xr

i is
defined by shifting from the right side of the argument of a
function f (g) as

Xr
i f (g) = d

dt
(f (g ◦ exp(tXi))) |t=0. (3)

If εi is a small real number, then the Taylor series
corresponding to small perturbations on the right side of
the argument of the function is:

f

(
g ◦ exp

(∑
i

εiXi

))
= f (g) +

∑
i

εiX
r
i f (g)

+ 1

2

∑
i

∑
j

εiεjX
r
i X

r
jf (g)

+ · · · .
‡A unimodular Lie group is one for which the integration measure
is bi-invariant,6 i.e., d(h ◦ g) = d(g ◦ h). This is a less restrictive
condition than the existence of a bi-invariant metric.
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A left Lie derivative can be similarly defined, and

f

(
exp

(∑
i

εiXi

)
◦ g

)

=f (g) +
∑

i

εiX
l
if (g) + 1

2

∑
i

∑
j

εiεjX
l
iX

l
jf (g) + · · · .

The differential operators Xr
i and Xl

i obey the product
rule. Note that derivatives resulting from right shifts are
left invariant, and those resulting from left shifts are right
invariant.

When the stochastic process on the group defined by

g−1dg = ε or dg g−1 = ε (4)

is substituted into the Taylor series expansion to second order,
where

ε= h(g, t)dt + H (g, t)dW(t),

averages are then taken over the ensemble of all possible
motions, and the properties of uncorrelated white noises are
used to eliminate terms. Integration by parts then results in
the localization of the form∫

G

Ef (g)dg = 0 → E = 0

where E = 0 is the Fokker–Planck equation

∂ρ(g, t)

∂t
+

d∑
i=1

X
r,l
i (hi(g, t)ρ(g, t))

−1

2

d∑
i,j=1

X
r,l
i X

r,l
j

(
m∑

k=1

Hik(g, t)HT
kj (g, t)ρ(g, t)

)
= 0. (5)

The superscripts (r, l) are chosen depending on whether the
SDE on the left or right of (4) is used, and d is the dimension
of the Lie group. Examples of (5) will be demonstrated in
subsequent sections in the context of gyroscopes, kinematic
carts, and flexible needle steering. Focusing on the “r” case,
when h and H are constant, we can write

∂ρ(g, t)

∂t
+

d∑
i=1

hi X
r
i ρ(g, t)) − 1

2

d∑
i,j=1

DijX
r
i X

r
j ρ(g, t) = 0

(6)
where

Dij =
m∑

k=1

HikH
T
kj .

When considering stochastic differential equations and
the corresponding Fokker–Planck equations, it is usually
important to specify whether the Ito or Stratanovich form
is used. Without getting into too much detail, it suffices to
say that the Ito form has been assumed in the derivation of
both of the above Fokker–Planck equations. However, if the

coloring matrices, H , are independent of the coordinates used
(or do not depend explicitly on the group elements), then the
Ito and Stratanovich forms of the Fokker–Planck equation
will be identical. In the examples that we will consider, the
Ito and Stratanovich forms of the Fokker–Planck equation
are all the same unless otherwise specified.

3. Fourier-Based Estimation on Lie Groups

and Applications

In estimation, one desires to obtain the underlying probability
density function that describes the process giving rise to
these data. There are two closely related variations of this
problem. In the first, a set of randomly drawn group elements
g1, g2, . . . , gm are obtained and we seek to estimate the
underlying density ρ(g). In the second variation, we sample
the probability density itself at points on a grid, {gi}, and
we seek to evaluate (or interpolate) ρ(g) at any other value
of g ∈ G. In this paper we develop techniques that allow
both of these variations of the problem to be solved when
G = SO(3). One kind of estimator in IRn is the Fourier
estimator.23,25 This concept generalizes to Lie groups.22,24

Abstract estimation problems on SO(3) and compact Lie
groups in general have been reported elsewhere.36,37

Both of the variations of the problem described above can
be formulated as follows:

ρsamp(g) =
m∑

i=1

αiδ
(
g−1

i ◦ g
)

where δ(·) is the Dirac delta function for the group G and

m∑
i=1

αi = 1.

In the first variation of the problem, αi = 1/m. In the second
variation αi = ρ(gi). In order to define the appropriate
concept of a Fourier estimator in this context, some review
is required.

3.1. Group representations and harmonic analysis
A group representation can be thought of as a matrix-
valued function of group-valued argument, U (g), with the
homomorphism property:

U (g1 ◦ g2) = U (g1)U (g2).

Irreducibility means that it is not possible to simultaneously
block-diagonalize U (g) by the same similarity transforma-
tion for all values of g in the group. Completeness of a set of
representations means that every (reducible) representation
can be decomposed into a direct sum of the representations
in the set. A famous result (due to Schur) states that every
irreducible representation is equivalent to a unitary one.
Therefore, without loss of generality we can take U to
be unitary, i.e., U−1 = U ∗ where ∗ denotes the Hermitian
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conjugate. It then follows that since,

I = U (e) = U (g−1 ◦ g) = U (g−1)U (g),

then

U (g−1) = (U (g))−1 = U ∗(g).

In a number of practical applications, data is presented
on Lie groups such as the rotation group and group of
rigid-body motions. These are noncommutative groups for
which the representation theory and harmonic analysis have
been fully worked out (see e.g., refs. [7,8,16,17,21]). In
particular, the method of induced representations9 was used
by Miller for the case of the rigid-body motion group.13

Connections between group representations and special
functions are explored in refs. [12, 19]. Representations
of the rotation group play a central role in quantum
mechanics.7,18,20 In that application, the Euler angles are used
to parameterize rotations. This corresponds to the double-
coset decomposition used in refs. [10,11] for FFTs developed
for the rotation group, SO(3).

In their most general form, the results of this paper
are as follows, where G is a unimodular Lie group (e.g.,
SO(3), SE(2), SE(3)). Given functions fi(g) for i = 1, 2
which are square integrable with respect to a bi-invariant
integration measure dg on a the group (G, ◦), we can define
the convolution product

(f1 ∗ f2)(g) =
∫

G

f1(h)f2(h−1 ◦ g)dh,

and the Fourier transform

F(f )(λ) =
∫

G

f (g)U (g−1, λ)dg

where U (·, λ) is a unitary matrix function (called an
irreducible matrix representation) for each value of the
parameter λ (where the set of all values of λ is called the
dual of the group, and is denoted as Ĝ).

The shorthand F(f )(λ) = f̂ (λ) is often convenient. The
Fourier transform defined in this way has corresponding
inversion, convolution, and Parseval theorems:

f (g) =
∑
λ∈Ĝ

d(λ)trace[f̂ (λ)U (g, λ)], (7)

F(f1 ∗ f2)(λ) = f̂2(λ)f̂1(λ)

and ∫
G

|f (g)|2dg =
∑
λ∈Ĝ

d(λ)||f̂ (λ)||2.

Here || · || is the Hilbert–Schmidt (Frobenius) norm, and
d(λ) is the dimension of the matrix U (g, λ). Much of this
is classical mathematics (see e.g., ref. [15]), which has not
been fully embraced by the engineering world until relatively
recently.6

A useful definition is

u(Xi, λ) = U (exp(tXi), λ)|t=0.

We develop explicit expressions for U (g, λ) and
u(Xi, λ) using the exponential map and corresponding
parameterizations for the groups SO(3), SE(2) and SE(3). In
particular, given the scalar parameters xi ∈ IR, the linearity
of the Lie algebra allows one to write

u

(∑
i

xiXi, λ

)
=

∑
i

xiu(Xi, λ)

and a famous theorem states that7,14,6:

U

(
exp

(∑
i

xiXi

)
, λ

)
= exp u

(∑
i

xiXi, λ

)
. (8)

These results together with the surjectivity of the exponential
map (up to a set of measure zero) and the sparseness of the
matrices u(Xi, λ) provides the properties that we exploit for
the rapid evaluation of U (g, λ).

This all relates back to the problem of density estimation on
G as follows. The Fourier matrices corresponding to ρsamp(g)
are computed as

F(ρsamp)(λ) =
m∑

i=1

αi

∫
G

δ
(
g−1

i ◦ g
)
U (g−1, λ)dg

=
m∑

i=1

αiU (g−1
i , λ) =

m∑
i=1

αiU
∗(gi, λ).

Substitution into the Fourier inversion formula,

ρest (g) =
∑
λ∈ ˆ̂G

trace(ρ̂samp(λ)U (g, λ))d(λ).

or

ρest (g) =
m∑

i=1

αi

∑
λ∈ĜT

trace
(
U

(
g−1

i ◦ g, λ
))

d(λ). (9)

Here ĜT denotes the truncated/bandlimited version of
the dual space Ĝ. Since ĜT �= Ĝ, it follows that ρest (g) �=
ρsamp(g). The function ρest (g) is a smoothed version of
ρsamp(g) that can be evaluated at group elements g �= gi .

3.1.1. Example 1: the SO(3) case. In the particular case of
SO(3), the basis elements for the Lie algebra so(3) are

X1 =
⎛⎝0 0 0

0 0 −1
0 1 0

⎞⎠ ; X2 =
⎛⎝0 0 1

0 0 0
−1 0 0

⎞⎠ ;

X3 =
⎛⎝0 −1 0

1 0 0
0 0 0

⎞⎠ .
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Exponentiating any linear combination of these basis
elements yields an element of the rotation group, SO(3),
as reviewed in refs. [6,48–50]. In this case, the set of IUR
matrices is indexed by λ = l where l = 0, 1, 2, 3, · · · and
each IUR is a (2l + 1) × (2l + l) matrix. The m, nth entry of
the lth matrix is of the form6:

ul
mn(X1) = i

2

(
cl
−nδm+1,n + cl

nδm−1,n

)
ul

mn(X2) = 1

2

(−cl
−nδm+1,n + cl

nδm−1,n

)
ul

mn(X3) = −inδm,n

where −l ≤ m, n ≤ l and cl
n = √

(l − n)(l + n + 1).
If we define

ul(x1, x2, x3) =
3∑

k=1

xku
l(Xk)

where X = ∑3
k=1 xkXk, then as stated earlier, the

exponential of this (2l + 1) × (2l + 1) matrix will be an
irreducible unitary representation of SO(3) expressed in
terms of the exponential coordinates for SO(3).

3.1.2. Example 2: the SE(2) case. The SE(2)-Fourier
transform, as expressed in the coordinates x, y, θ , or
equivalently in the polar coordinates (r cos φ, r sin φ, θ), has
been used previously to solve similar equations in a variety
of different applications.71,72 We note here an alternative
approach. Even though the IURs of SE(2) are infinite
dimensional, it is possible to approximate them as finite
unitary matrices by using (8) in truncated form. In particular,
for SE(2) a set of basis elements for the Lie algebra are:

X1 =
⎛⎝0 0 1

0 0 0
0 0 0

⎞⎠ ; X2 =
⎛⎝0 0 0

0 0 1
0 0 0

⎞⎠ ;

X3 =
⎛⎝0 −1 0

1 0 0
0 0 0

⎞⎠ .

The corresponding Lie algebra representation matrices are:

umn(X1, p) = ip

2
(δm,n+1 + δm,n−1) (10)

umn(X2, p) = p

2
(δm,n+1 − δm,n−1) (11)

umn(X3, p) = −imδm,n (12)

where in the SE(2) case λ = p takes continuous values
over all of the nonnegative real numbers, and in the Fourier
inversion formula the sum over λ is replaced by an integral
over p with measure pdp/4π2. These umn(Xk, p) are
infinite-dimensional sparse skew-Hermitian matrices, which
when truncated to a finite range −d ≤ m, n ≤ d results
in (2d + 1) × (2d + 1) matrices. The truncation does not
change their skew-Hermitian nature, and exponentiation of

these matrices results in unitary matrices that approximate
the IURs for SE(2). This approximation becomes better as
d becomes large.

3.2. Solving Fokker–Planck equations using harmonic
analysis
By the definition of the group Fourier transform F[·] and
operators Xr

i reviewed earlier in this paper, one observes that

F
[
Xr

i f
] =

∫
G

d

dt
(f (g ◦ exp(tXi))) |t=0U (g−1, λ)dg.

(13)
By performing the change of variables h = g ◦ exp(tXi) and
using the homomorphism property of the representations
U (·, λ), one finds

F
[
Xr

i f
] =

∫
G

f (h)
d

dt
(U (exp(tXi) ◦ h−1, λ))|t=0dh (14)

= d

dt
(U (exp(tXi), λ))|t=0

∫
G

f (h)U (h−1, λ)dh.

(15)

By defining

u(Xi, λ) = d

dt
(U (exp(tXi), λ)) |t=0,

we write

F
[
Xr

i f
] = u(Xi, λ)f̂ (λ).

Hence, (6) can be transformed to the system of linear
differential equations:

dρ̂

dt
= B(λ)ρ̂, (16)

subject to the identity matrix as initial conditions, where

B(λ) = 1

2

n∑
k,l=1

Dlk u(Xl, λ)u(Xk, λ) −
n∑

l=1

hl u(Xl, λ).

In principle, ρ(g; t) is then found by simply substituting
ρ̂(λ; L) = exp(LB(λ)) into the the group Fourier inversion
formula (7).

3.3. Shifted Gaussian solution for Fokker–Planck equations
with small diffusion
In this subsection, we show that the solution for the
Fokker–Planck equations can be approximated by the shifted
Gaussian when the diffusion is small. Even though we
describe the SE(3) case here, similar arguments are possible
for the SE(2) case.

A driftless diffusion equation on SE(3) is of the form:(
∂

∂t
− 1

2

6∑
k,l=1

DlkX
R
l XR

k

)
f = 0, (17)

which subject to the initial conditions f (g, 0) = δ(g). For
intermediate to large values of t such equations can be
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solved efficiently using methods from harmonic analysis as
seen in earlier section. However, for small values of t , such
methods become impractical due to Gibbs peaks and the large
number of harmonics required. In contrast, as will be seen
in Section 6.2.1., the concentrated Gaussian distributions
provide a closed-form solution in the small t limit. A highly
concentrated Gaussian distribution on SE(3) can be defined
as shown in ref. [71]

ρ(g; �) = c(�) exp

(
−1

2
xT �−1x

)
, (18)

where g = exp(̂x) = exp
(∑6

i=1 xiXi

)
with {Xi} denoting

the standard basis for the Lie algebra se(3), and c(�) =
(2π)−3/2| det(�)|−1/2. A small-time solution to (17) is
f (g, t) = ρ(g; tD).

If the drift term is added to (17), thus resulting in an
equation of the form (6), the solution of this modified system
can be approximated by the shifted Gaussian in the very small
noise limit. Namely, this approximated solution has the form
of (18) and x = log(g−1

m (t) ◦ g)∨, where gm(t) is the mean
path. In this case, the covariance matrix can be computed
by covariance propagation. The covariance propagation in
ref. [71] is based on the concatenation of a finite number of
noisy motions. In the limiting case of a time-parameterized
path of noisy motions, the covariance propagation formula
can be written as

�t =
∫ t

0
Ad−1

g−1
m (τ )gm(t)

D Ad−T

g−1
m (τ )gm(t)

dτ (19)

where Adg(·) is the adjoint. Technically, the mean path, gm(t)
is not the same as the noiseless path that can be obtained
by solving the deterministic model. Referring back to the
drift coefficients {hi} in (6), the path that the solution would
follow if all Dij = 0 would be exp(

∑6
i=1 hiXi). While this

is not exactly equal to gm(t), in practice we use the noiseless
path for the mean path since it is easier to have the noiseless
path than the mean path and the difference between the two
can be assumed to be small in the case of small diffusion.
This approach will be used for path planning for the cart and
the flexible needle in subsequent sections.

4. Estimation and Motion Planning for the Stochastic

Kinematic Cart

In this section, a stochastic version of the kinematic cart is
considered. We first address the problem of estimating the
position and orientation of the cart when nothing but a history
of noisy wheel angles is given (i.e., dead reckoning). Then we
address how to use the probabilistic information obtained by
solving Fokker–Planck equations for the purpose of planning.

4.1. Pose estimation for the stochastic cart
Consider the kinematic cart shown in Fig. 1(a). The position
of the cart is (x, y) and the orientation is θ . Here L is the
length of the wheel base (distance between the wheels as
measured along the axis), r is the radius of the wheels, φ1

Fig. 1. The kinematic cart: (a) definition of variables; (b) the CAPM
library robot from our lab as an example of a mobile manipulator
with cart as the base.

is the angle through which the right wheel rotates, and φ2

is the angle through which the left wheel rotates. Both of
these angles are measured counterclockwise when viewed
along the axel from outside the cart to the left side. This is
perhaps the most common geometry for mobile robots used
in robotics research. For example, the mobile manipulator
shown in Fig. 1(b) was developed by our research group
for the purpose of retrieving books from library shelves and
moves as a kinematic cart.

The infinitesimal motions of the kinematic cart are
governed by no-lateral-slip conditions, which allow the
following transverse translational motions and rotations:⎛⎜⎝dx

dy

dθ

⎞⎟⎠ =

⎛⎜⎝
r
2 cos θ r

2 cos θ
r
2 sin θ r

2 sin θ
r
L

− r
L

⎞⎟⎠ (
dφ1

dφ2

)
.

If the infinitesimal changes in wheel rotation angles are of
the form

dφi = ωidt + σ dWi

where dWi are increments of unit-strength Wiener processes,
σ allows us to specify the strength, and the commanded wheel
angle rates are ω1 = ω + � and ω2 = ω − �, then the result
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is the stochastic differential equation:⎛⎜⎝dx

dy

dθ

⎞⎟⎠ =

⎛⎜⎝ rω cos θ

rω sin θ

α

⎞⎟⎠ dt

+ σ

⎛⎜⎝
r
2 cos θ r

2 cos θ
r
2 sin θ r

2 sin θ
r
L

− r
L

⎞⎟⎠(
dW1

dW2

)
(20)

where α = 2r�/L.

If the specified speeds of the wheels are either constant,
or explicit functions of time (without dependence on time
through x(t) = [x(t), y(t), θ(t)]T ), then by using the Fokker–
Planck Eq. (2) results in:

∂f

∂t
= −rω cos θ

∂f

∂x
− rω sin θ

∂f

∂y
− α

∂f

∂θ
(21)

+ 1

2
σ 2

[
r2

2
cos2 θ

∂2f

∂x2
+ r2 sin θ cos θ

∂2f

∂x∂y

+ r2

2
sin2 θ

∂2f

∂y2
+ 2r2

L2

∂f 2

∂θ2

]
.

Of course, this system is evolving on the group of rigid-
body motions of the plane, SE(2), which has group elements
that can be described in the form

g =
⎛⎝ cos θ − sin θ x

sin θ cos θ y

0 0 1

⎞⎠ .

The reason why we can use (2) is that the bi-invariant
integration measure for SE(2) is dg = dxdydθ , and so, to
within a set of measure zero, SE(2) “looks like” the slab
within IR3 defined by θ ∈ (−π, π) to a sufficient degree
that we can use the Fokker–Planck machinery developed for
Euclidean space.

On the other hand, we can view the same problem from a
coordinate-free point of view. Recall that for SE(2), the ∨
operation is defined as⎛⎝ 0 −ω v1

ω 0 v2

0 0 0

⎞⎠∨

=
⎛⎝v1

v2

ω

⎞⎠ .

Realizing that

(g−1ġ)∨ = J (x)ẋ

where

J (x) =
[(

g−1 ∂g

∂x

)∨
,

(
g−1 ∂g

∂y

)∨
,

(
g−1 ∂g

∂θ

)∨]

=
⎛⎝ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎞⎠

allows us to write (20) (viewed as a Stratanovich SDE) in the
coordinate-free form:

(g−1dg)∨ =

⎛⎜⎝ rω

0

α

⎞⎟⎠ dt + σ

⎛⎜⎝
r
2

r
2

0 0
r
L

− r
L

⎞⎟⎠(
dW1

dW2

)
. (22)

This result is obtained by simply multiplying both sides of
(20) by J (x). Note that the h and H in (22) are independent
of g. When the SDE is written in the form of (22) the no-slip
condition that results in the nonholonomic behavior of the
system is clear from the zeros in the middle row.

Equating (g−1dg)∨ with ε and using (5) for this system,
the resulting invariant form of this SDE is:

∂f

∂t
= −rωXr

1f − αXr
3f + 1

2
σ 2

[
r2

2

(
Xr

1

)2 + 2r2

L2

(
Xr

3

)2
]

f.

4.2. Stochastic motion planning for the cart
In this subsection, several related approaches to motion
planning of the kinematic cart are demonstrated for both
the case when the workspace is free of obstacles and the
case when obstacles are present. Three variations of the
Fokker–Planck/SDE approach are taken: (1) The Fokker–
Planck equation is solved explicitly using the approximate
IURs and Fourier diffusion matrix resulting from truncating
and exponentiated the sparse infinite-dimensional se(2) Lie
algebra representation matrices; (2) in cases where the
magnitude of the noise is assumed to be small, covariances
are propagated and probability densities are evaluated by
shifting closed-form Gaussian distributions along the drift
path; (3) sample paths of the SDE are generated and
histograms are formed. Hybrid approaches that combine
these techniques can also be taken. Methods (1) and (2)
work well in the case when there are no obstacles. However,
they must be augmented to take into account obstacles.
This is easy to do with method (3) where sample paths are
removed from the ensemble if any point on a path intersects
an obstacle. These methods are described in detail in the
following two subsections.

4.2.1. The cart in an environment without obstacles.
Consider the following scenario: Suppose that we want
to generate a path for the kinematic cart from (x, y, θ) =
(0, 0, 0) to (2, 0.5, π/4). How can we do this? One approach
could be to use sinusoids67 or some other weighted sum
of basis (or modal) functions as the input for the wheel
angles. Then the unknown coefficients {ai

j } in the expression

φi(t) = ∑N
j=1 ai

j�
j (t) for the wheel angles φ1 and φ2 can

be found by numerically integrating the nonholonomic
kinematic equations and using iterative numerical procedures
similar to those used in the inverse kinematics of hyper-
redundant manipulators (see ref. [81] for details). If the
system were completely deterministic (no actuator noise,
and no slipping of the wheels), this approach might work
well. However, in the stochastic case, an ensemble of paths
will result, and the probability of actually reaching a specific
neighborhood of the goal will depend on the amount of noise
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Fig. 2. Path planning for the kinematic cart using IURs and harmonic analysis: (a) Cart path for the goal, (x, y, θ ) = (2, 0.5, π/4) (b) Cart
path for the goal, (x, y, θ ) = (1.6, 1.6, π/3).

in the system. Therefore, we propose to use here the path-
of-probability (or POP) algorithm proposed in refs. [75,76].
In this algorithm, each move is taken so as to maximize the
probability density that remains to reach the goal. And one
of the nice features of this algorithm is that we do not even
have to know a priori a path that deterministically connects
the initial and final states of the system. For example, if we
want to steer the cart so as to go from (x, y, θ) = (0, 0, 0)
to (2, 0.5, π/4), we can use as the deterministic drift which
corresponds to both wheels moving forward with speed 1.
Then, in the deterministic case, the resulting pose at time t

would be (rt, 0, 0). Even though this is not the desired pose,
if the Fokker–Planck equation resulting from this drift term
and some noise causes there to be nonzero probability density
over the desired pose, then the POP algorithm can be used to
find a path. The intermediate step, gi can be determined by

gi = arg maxρ(g−1 ◦ ggoal; τ ),
g∈S

where τ is the remaining time to hit the goal and S is the
set of possible intermediate paths generated by numerical
integration of SDE. We use Euler–Maruyama numerical
integration method.66

The path planning results using the first method described
in Section 4.2 are shown in Fig. 2. Using approximate IURs
and Fourier diffusion matrix, we can obtain the solution to

the Fokker–Planck equation, which is the probability density
function. This PDF is used for the POP algorithm. The cart
starts from (x, y, θ) = (0, 0, 0) and the triangle in the figures
shows the position and orientation of the goal. The noise
constant, σ = 0.3 was used in (22).

The path planning results by the shifted Gaussian are
shown in Fig. 3. Unlike the harmonic analysis method, the
shifted Gaussian method can be applied to the small diffusion
case. The dash lines in Fig. 3 are the noiseless paths. Note
that the goal is not far from the noiseless path. The constant,
α = 0.11 was used for the noiseless path in Fig. 3(b). For
both cases, the noise constant, σ = 0.02 was used.

4.2.2. The cart in an environment with obstacles. When
obstacles are present in the environment, the Fokker–Planck
approach and covariance propagation break down since
they do not take into account obstacles. There are several
modifications that can be attempted in special cases. For
example, one can ignore the obstacles, and use this approach,
and if the resulting path does not hit an obstacle, then it will
have produced a valid result. Closely related to this would
be to propagate probability densities forward from the initial
state until the amount of probability density situated over the
obstacles reaches some threshold value, and then stop. Then
do the same by propagating probability density backward
from the goal. If there exists an overlapping region in

Fig. 3. Path planning for the kinematic cart using the shifted Gaussian: (a) Cart path for the goal, (x, y, θ ) = (2.5, 0.2, 0); (b) Cart path for
the goal, (x, y, θ ) = (2.0, 1.4, π/3).
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Fig. 4. Path planning for the kinematic cart using many sample paths: (a) Cart path for the goal, (x, y, θ ) = (1.6, 1.6, π/3) (b) Cart path
for the goal, (x, y, θ ) = (1.6, 1.6, π/3), the obstacle position = (0.75, 0.75) and the obstacle radius = 0.25.

the workspace (which is a bounded subset of SE(2)) where
the product of these probability densities is nonzero, then the
POP algorithm can be used to generate paths to and from via
points within these regions. The resulting composite paths
will be guaranteed not to intersect obstacles. Alternatively,
the obstacles can be represented using artificial potentials
that can be incorporated into the Fokker–Planck equations.
Unfortunately, the resulting equations are difficult to solve.

While the techniques outlined above may work in
specialized cases, it is desirable to have algorithms that
work in general. We simply generate many sample paths
by integrating the SDE describing the stochastic cart. This
integration can be implemented by the Euler–Maruyama
method66. Each time we check for overlaps of the positional
part of the poses that constitute each path against the positions
on the surface of the obstacles. If at any time step a path
penetrates the surface of an obstacle, we kill this path and
then initiate a new sample path. After a large number of
obstacle-avoiding sample paths are generated, a PDF of the
reachable positions and orientations is generated. However,
a big difference between the case with obstacles and the case
without obstacles is that the PDF is now dependent on the
starting point. This means that after each move of the robot,
a new ensemble of sample paths must be generated. In other
words, we cannot simply generate PDFs and shift them as we
move as is done in the obstacle-free version of POP. Rather,

we must recompute PDFs after each move. The reason for this
is that the relative location of obstacles (and their influence
on the evolution of probability density) changes with respect
to the cart as it moves.

In order to have a smooth PDF from a finite number of path
samples, we assigned a small Gaussian function to each path
sample and averaged an ensemble of the Gaussian functions.
The path planning results by this approach are shown in
Fig. 4 and Fig. 5. Alternatively, we can estimate the PDF by a
Gaussian function from the sample paths. The mean and the
covariance of the Gaussian can be estimated from the sample
paths. Using this approach, we have the results as shown in
Fig. 6.

5. Stochastic Motion Planning for the Flexible Needle

with Bevel Tip

Recently, a number of works have been concerned with
the steering of flexible needles with bevel tips through soft
tissue for minimally invasive medical treatments.82,83,84 In
this scenario, a flexible long needle with a bevel tip bends
as it is inserted into the tissue. The question becomes how
to specify a time-history of the control variables (pushes and
twists of the needle at the insertion point) to deliver the needle
tip to the desired location within the tissue. In this section,
we apply the shifted Gaussian to have the probability density

Fig. 5. Path planning for the kinematic cart using many sample path: (a) Cart path for the goal, (x, y, θ ) = (2, 0.5, π/4) (b) Cart path for
the goal, (x, y, θ ) = (2, 0.5, π/4), the obstacle position = (1, 0) and the obstacle radius = 0.25.
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Fig. 6. Path planning for the kinematic cart by many sample paths. The mean and the covariance from the paths are used for a Gaussian
function: (a) Cart path for the goal, (x, y, θ ) = (1.6, 1.6, π/3) (b) Cart path for the goal, (x, y, θ ) = (1.6, 1.6, π/3), the obstacle position
= (0.5, 0.5) and the obstacle radius = 0.25.

Fig. 7. The definition of parameters and frames in the nonholonomic
needle model.83

function of the flexible needle, and solve the path planning
problem using the PDF.

Figure 7 depicts the needle and the body fixed frame.
The needle is rotated with the angular velocity, ω, while it is
inserted with the insertion velocity, v. It follows an arc whose
curvature is κ . Using this body fixed frame, the nonholonomic
kinematic model for the needle was developed in ref. [82] as:

ξ = (g−1ġ)∨ = [κ 0 ω 0 0 v ]T (23)

In order to get a noise model for the needle, we assume
that

ω(t) = λ1w1(t),

and

v(t) = 1 + λ2w2(t)

in the similar way in ref. [83]. wi(t) is the unit Gaussian
white noise. Thus, our noise model is

ξ = (g−1ġ)∨dt =

⎡⎢⎢⎢⎢⎢⎣
κ

0
0
0
0
1

⎤⎥⎥⎥⎥⎥⎦ dt +

⎡⎢⎢⎢⎢⎢⎣
0 0
0 0
λ1 0
0 0
0 0
0 λ2

⎤⎥⎥⎥⎥⎥⎦
[

dW1

dW1

]
(24)

where dW = W (t + dt) − W (t) = w(t)dt are the non-
differentiable increments of a Wiener process W (t). This
noise model can be seen as a stochastic differential equation.
If the noise is small, which means the small diffusion, the

solution to the corresponding Fokker–Planck equation can be
approximated by the shifted Gaussian function as explained
in Section 3.3.

Fig. 8. Path generation using concentrated shifted Gaussian
distribution: κ = 0.05, λ1 = 0.08, and λ2 = 0.08.
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For a numerical example, the values of λ1 and λ2 are both
set to be 0.08. Figure 8 shows the path planing results using
the concentrated shifted Gaussian distribution. The number
of intermediate steps used in the path generation is 10. In
this example, only positions of the goal is considered in
path planning since the specific needle orientation is less
important than the position in the needle insertion system.
This can be achieved by the marginal density function.
Our full density function from shifted Gaussian approach
is a six-dimensional function, and the three-dimensional
marginal density function can be obtained by integrating it
over orientational space.

6. Attitude Estimation Using an Inertial

Navigation System

Inertial navigation systems generate estimates of the position,
velocity, orientation, and angular velocity by measuring
the linear and angular accelerations of the system relative
to an inertial reference frame. A variety of orientational
measurement sensors exist including classical mechanical
gyroscopes, laser gyros, vibrating fork gyros, hemispherical
resonator gyros, and magnetohydrodynamic gyros1–3. These
are used in gimbaled gyrostabilized platforms, fluidically
suspended gyrostabilized platforms, and strapdown systems.
All measurement systems have associated noise, and inertial
navigation systems, which integrate rate information, are
therefore subject to orientational drift errors. For example,
Fig. 9, a commercially available gyroscope used in our
laboratory.

A vast literature exists on the attitude (orientation)
estimation problem in the satellite guidance and control
literature. In addition to those works mentioned above,
see e.g., refs. [26–28,30,31,35,39,40,42–44], or almost
any recent issue of the Journal of Guidance Control and
Dynamics for up-to-date approaches to this problem. For a
geometric approach to the problem, see ref. [41].

6.1. Model formulation
In this subsection we consider an estimation problem on
SO(3) that was introduced in refs. [46,47]. Consider a rigid

Fig. 9. Gyroscope Hardware.

object with orientation that changes in time, e.g., a satellite or
airplane. It is a common problem to use on-board sensors to
estimate the orientation of the object at each instant in time.
We now examine several models.

Let R(t) ∈ SO(3) denote the orientation of a frame fixed
in the body relative to a frame fixed in space at time t .
From the perspective of the rotating body, the frame fixed

in space appears to have the orientation R′(t) �= RT (t). The
angular velocity of the body with respect to the space-fixed
frame at time t as seen in the space-fixed frame will be
ωL = vect(ṘRT ), and the same angular velocity as seen in
the rotating frame will be ωR = RT ωL = vect(RT Ṙ) where
Ṙ = dR/dt . These are also easily rewritten in terms of R′.

If again {Xi} denotes the set of basis elements of the Lie
algebra so(3), then

dR(t) =
(

3∑
i=1

(ωL · eidt)Xi

)
R(t)

and

dR(t) = R(t)

(
3∑

i=1

(ωR · eidt)Xi

)
.

In practice, the increments dui = ωR · eidt are measured
indirectly. For instance, an inertial platform (such as a
gyroscope) within the rotating body is held fixed (as best as
possible) with respect to inertial space. This cannot be done
exactly, i.e., there is some drift of the platform with respect
to inertial space. Let A ∈ SO(3) denote the orientation of
the space-fixed frame relative to the inertial platform in the
rotating body. If there were no drift, A would be the identity
I . However, in practice there is always drift. This has been
modeled as shown in ref. [46]§§ :

dA(t) =
(

3∑
i=1

XidWi(t)

)
A(t) (25)

where the three-dimensional Wiener process W(t) defines
the noise model.

The orientation that is directly observable is the relative
orientation of the inertial platform with respect to the frame
of reference fixed in the rotating body. We denote this as
Q−1. In terms of R and A,

A−1 = RQ−1.

Therefore Q, which is the orientation of the rotating body
with respect to the inertial platform, is

Q = AR.

Taking the inverse of both sides gives

Q′ = R′A′. (26)

§§ We are not using the Itô Calculus, but the basic idea is the same.
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From the chain rule this means

dQ′ = dR′A′ + R′dA′.

Substitution of (25) and the corresponding expression for dR

gives

dQ′ =
(

3∑
i=1

−duiXi

)
R′A′ + R′A′

(
3∑

i=1

XidWi(t)

)
.

Using (26) and defining xidt = −dui , this is written as in
ref. [46]:

dQ′ =
(

3∑
i=1

xidtXi

)
Q′ + Q′

(
3∑

i=1

XidWi(t)

)
. (27)

The particular problem that we will address is the
assessment of noise properties in the gyroscope from
measurements. In this context, the motions of the platform
will be taken to be zero, i.e., xi = 0. The Fokker–
Planck equation corresponding to this stochastic differential
equation will then be of the form of (6) subject to the initial
conditions ρ(R; 0) = δ(R). The noises are assumed to be
correlated as

〈dWi(ti)dWj (tj )〉 = σij δ(ti − tj )dtidtj , (28)

and we do not know (and therefore seek) the values σij . The
diffusion constant is related to the noises as D = � = [σij ].

From sample paths of a stochastic differential equation
(which correspond to experimental measurements) we will
illustrate a procedure in the next sections for estimating the
noise parameters Dij that are intrinsic to the gyroscope.

6.2. Methods for determining noise parameters
from measurements
In this section we explain how errors in orientational sensing
or robot pose can be quantified. We first consider the case of
small errors, and then large ones. This problem is relevant to
all of the examples discussed in prior sections.

6.2.1. Small errors. Small errors can be handled by
expanding quantities around the identity of the group of
interest and linearizing. As will be shown below, this amounts
to treating concentrated distributions as distributions on IRn.
In particular, for a probability density function on G that is
highly concentrated around the identity, we can define the
covariance as

� =
∫

IRn

xxT f (g(x))dx (29)

where x ∈ IRn are the exponential parameters for G. The
justification for this kind of linearization is given in.71

The Gaussian distribution in IRN can be defined as the
solution to a diffusion equation. This definition can be
extended to the context of probability densities on the rotation
group and other Lie groups. Recall that given that elements of

G (viewed as square matrices) are parameterized as g = g(x),
differential operators analogous to partial derivatives take the
form Xr

i .
A diffusion equation on G is then of the form in (6). For

intermediate to large values of t such equations can be solved
efficiently using methods from noncommutative harmonic
analysis.6 However, for small values of t , such methods
become impractical. In contrast, as is shown in the theorem
below, the concentrated Gaussian distributions discussed
throughout this paper provide a closed-form solution in the
small t limit.

It is easy to see that the solution to the diffusion Eq. (6) with
small values of Dt is a Gaussian distribution in exponential
coordinates with covariance � = Dt . To prove this, let g ≈
I + X. Then

Xr
i f (g) = df ((I + X)(I + εXi))

dε

∣∣∣∣
ε=0

= df (I + X + εXi + εXXi)

dε
|ε=0.

If we define f̃ (x) = f (I + X), then

Xr
i f̃ ≈ df̃ (x + εei)

dε

∣∣∣∣
ε=0

= ∂f̃

∂xi

,

where the approximate equality holds since both ε and ‖x‖
are small and so their product can be viewed as a second-
order term.

The solution to Eq. (6) for small values of time (therefore
resulting in a highly concentrated distribution centered
around the identity) is exactly the same as the solution to

∂f

∂t
= 1

2

n∑
k,l=1

Dlk

∂2f

∂xk∂xl

.

The solution to this is well known, and is the Gaussian in IRn

with

� = tD.

Therefore, for small measurement errors, we can obtain the
noise properties by taking experimental measurements in
the group, computing their relation with respect to a group
mean of the measurements (see ref. [6] for definition of
group means) and computing the covariance in exponential
coordinates of the residual orientations relative to the mean:

�exp = 1

N

N∑
i=1

xix
T
i .

This then defines the error in the measurements on the group.

6.2.2. Large errors. For large orientational errors (i.e., those
greater than 20%), the linearized analysis of the previous
subsection lose their effectiveness, and other techniques
are required. Fourier Density estimation is a technique to
describe errors in this case.
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Due to the operational property of the group Fourier
transform, in SO(3) case, the Fokker–Planck equation in
(6) can be written in Fourier space as

df̂ l

dt
= D̂lf̂ l with f̂ l(0) = I2l+1,

where

D̂l =
3∑

i,j=1

Diju
l(Xi)u

l(Xi).

The solution of the Fourier transform is then

f̂ l = exp(tD̂l).

This can be matched to the SO(3) Fourier transform of
experimental measurements at time t in each sample path
in an ensemble of N trials:

f̂ l
exp(t) = 1

N

N∑
i=1

Ul
(
R−1

i (t)
)
.

Two natural ways to perform this match are: (1) to perform
a gradient descent on the six unknown diffusion parameters
in the cost function

C1({Dij }, t) = ∥∥ exp(tD̂l) − f̂ l
exp(t)

∥∥2
, (30)

or, (2) to find in closed form the diffusion parameters by
minimizing the quadratic cost function

C2({Dij }, t) =
∥∥∥∥∥∥t

3∑
i,j=1

Diju
l(Xi)u

l(Xi) − log f̂ l
exp(t)

∥∥∥∥∥∥
2

.

(31)
In practice, we solve for the minimum of C2 and use it as
the starting point for a few gradient descent iterations in the
minimization of C1. This can be done at each value of t . The
answer can then be averaged over time.

6.3. Numerical experiments and results
To evaluate the methods purposed in Section 6.2.1. and
6.2.2., random samples of SO(3) need to be drawn from
a known time-evolving PDF that simulates the error in a
orientational rate measurement sensor. This can be done by
a Monte Carlo approach and applying the Euler–Maruyama
method which was introduced and explained in detail by
Higham as a numerical method for SDEs.66 With the Euler–
Maruyama method, a sample value of angular velocity vector
ω(t) at time t can be calculated in principle by doing
numerical integration along a discretized Brownian path in
the following form:

ω(t) dt = BdW (t) (32)

where W denotes a vector of unit uncorrelated Wiener
processes, B is a coupling and amplification matrix, and

we take as the initial condition ω(0) = [0, 0, 0]T . However,
direct integration of this angular velocity will lead to errors.
Therefore, the exponential parameterization for SO(3) is
used, where we write

ω = Jr (x) ẋ.

Then (32) becomes:

dx(t) = J−1
r (x(t)) B dW (t) (33)

where

J−1
r (x(t)) = I3x3 + 1

2
X(t)

+
(

1

‖x(t)‖2 − 1 + cos ‖x(t)‖
2 ‖x(t)‖ sin ‖x(t)‖

)
X(t)2.

Once the random samples of SO(3) are produced, the
method introduced in Section 6.2.1. can be applied in small
error case. The computed covariance, �exp, in exponential
coordinates of the sample data is then the estimate of the
model covariance Dmodel = BBT . To assess the accuracy of
the estimate, the error in the covariance estimate

e = ‖�exp − Dmodel‖
‖Dmodel‖

is used as a measurement of the distance (error) between
the estimation and the model covariance. Note that this is
not the error in the sensor, but the error in the estimation
algorithm used to assess the error in the orientational rate
sensor (which is defined by the covariance/diffusion matrix).
Here ‖·‖ is the Hilbert–Schmidt (Frobenius) norm. Figure 10
shows error plot with different sample sizes. It clearly shows
that the method provides a better estimate as the sample size
grows for small errors.

In large errors case, two methods purposed in Section 6.2.2.
are tested with different configuration of B and sample sizes.
Figure 11 shows the error plots for one set of configuration
of B with sample sizes of 1000, 5000, 10000, and 50000.

The errors is the form of ‖Dexp−Dmodel‖
‖Dmodel‖ which measures

Fig. 10. Error plot for covariance in small errors case.
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Fig. 11. Error plots for large errors.

the accuracy of the estimates. The x-axis represents L, the
dimension of IURs (U (g) is a 2L + 1 × 2L + 1 matrix).
The line with dots is the error for the method using gradient
descent and the line with circles is the error for the method
(2) which finds the diffusion parameters by minimizing (31).
The figure shows that the larger sample size being used
in the methods the better estimate one can get. The figure
also indicates that the gradient descent method has better
performance in terms of reducing errors. But it is very much
dependent on a good choice of starting point. In practice,
we can solve for the minimum of C2 (31) and use it as the
starting point.

7. Conclusions

We showed that irreducible unitary representation (IUR)
matrices for SO(3) and SE(2) can be computed by matrix
exponentiation. These IURs are used to estimate probability
density functions (PDFs) via the group Fourier transforms
and inversion formulae. Such PDFs arise both in applications
in which physical systems are subject to noise, as well as in
planning problems in which the injection of artificial noise
serves as a useful tool to search configuration space.

We applied several other methods for obtaining PDFs for
the stochastic kinematic cart. For the small diffusion system,
the shifted Gaussian could be used for the PDF. In order to
solve the path planning problem in the case with an obstacle,
the sample paths were used to estimate the PDF. By the Euler–
Maruyama method, we integrated the SDE to generate an
ensemble of paths. By excluding the paths intersecting with
the obstacle, we can take the obstacle into account when
estimating the PDF. From the paths, we generated the PDF

in two different ways: (1) Assigning the small Gaussian to
each sample path and averaging them; (2) computing the
mean and covariance from the paths and approximating the
PDF by a Gaussian function with the computed mean and
covariance. The PDFs were used for path planning of the
kinematic cart. We also applied the shifted Gaussian method
to the flexible needle to obtain the PDF and solved the path
planning problem.

Detail techniques are also provided on applications of
quantifying the small or large errors in orientational sensing,
such as gyroscopes. This new computational tool provide us
an efficient and robust density estimator on rotational groups.
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