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Abstract— Degenerate diffusions on the special Eu-
clidean group of the plane arise in a number of ap-
plications in filtering theory such as the construction of
dead-reckoning priors in nonholonomic mobile robot pose
estimation, and in inpainting and stochastic completion
in the study of visual perception. Two very different
solution methodologies have been pursued in the literature:
(1) Gaussian distributions in exponential coordinates for
very concentrated probability densities; (2) noncommuta-
tive Fourier expansions for very distributed probability
densities. Here we compare and contrast these method-
ologies and examine the range over which they provide
comparable answers and quantitatively analyze when one
should be used over the other.

I. INTRODUCTION

This paper compares two methods for construct-
ing time-evolving probability densities of the form
f(x, y, θ; t) that solve degenerate diffusions on SE(2),
the group of rigid-body motions of the plane. The
two solution methodologies that we compare are: (1) a
generalized of Fourier solution; (2) a Gaussian solution
in the exponential coordinates for this group.

Before going into technical details, we first consider a
simple analogy to illustrate the motivation for this work.
The diffusion equation with drift on the circle is of the
form

∂f

∂t
=

1

2
D
∂2f

∂θ2
− ω

∂f

∂θ
(1)

where D > 0 is a diffusion constant, and ω is a constant
drift speed, which can take any real value. The solution
to this equation subject to the initial conditions f(θ; 0) =
δ(θ−0) (the Dirac delta function) can be written exactly
in two very different ways:
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where σ2 = Dt and µ = ωt mod 2π. The first of these
is a “wrapped Gaussian” or “folded normal” distribution
where the solution on the real line has been made into
a 2π-periodic function (i.e., a “function on the circle”).
In the second equality, this periodic function has been
expressed as a Fourier series. As σ2 becomes small, we
can truncate the summation over k at k = 0 because
the tails of the Gaussian decay rapidly. In the second
solution, when σ2 is large, we can truncate at |n| = 1
as the distribution becomes a small perturbation on the
uniform distribution on the circle.

Analogous solution methodologies exist for more
complicated scenarios. In particular, degenerate diffu-
sions1 on the proper group of motions of the Euclidean
plane, also called the “special Euclidean group”, SE(2),
arise in a surprising number of distinct application
areas. Unlike in the Euclidean case, diffusions on Lie
groups with degenerate diffusion matrices can result in
probability densities that are well behaved.

Applications of these degenerate diffusions on SE(2)
include modeling dead-reckoning errors in mobile robot
pose estimation [17], [24], [34], stochastic completion
and inpainting in image analysis [13], [14], [31], [15],
[35], visual perception [4], [5], [11], [12], [16], [21],
and phase noise in optical communications [30]. And
3D analogs of these result in applications as diverse as
DNA statistical mechanics [33] and steering of flexible
needles [23]. Our motivation is mobile robot dead-
reckoning models, but the methodological developments
are applicable to all of the above.

Here we compare the range of applicability of Fourier
and Gaussian solutions in these scenarios.

Let

g(x, y, θ)
.
=




cos θ − sin θ x

sin θ cos θ y

0 0 1


 (3)

denote the homogeneous transformation matrix describ-
ing rigid-body transformations in the plane (with trans-
lation parameterized using Cartesian coordinates). The

1These are diffusions with drift in multiple directions such that the
diffusion matrix is positive semi-definite instead of positive definite.
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set of all such positions and orientations (or poses)
is called SE(2). This is an example of a Lie group
under the operation of matrix multiplication. That is,
g1 ◦ g2 .

= g(x1, y1, θ1)g(x2, y2, θ2). The group identity
is e = g(0, 0, 0), and the existence of an inverse for each
element and the associative law (g1◦g2)◦g3 = g1◦(g2◦
g3) all follow from the fact that SE(2) is a matrix Lie
group. This is an example of a noncommutative group
since g1 ◦ g2 6= g2 ◦ g1.

It is also possible to use polar coordinates for trans-
lations: x = r cosφ and y = r sinφ. The space of all
poses is parameterized by (x, y, θ) ∈ R × R × S

1, or
equivalently (r, φ, θ) ∈ R≥0 × S

1 × S
1. It is possible to

integrate functions on this space as
∫

SE(2)

f(g)dg
.
=

∫ π

−π

∫ ∞

−∞

∫ ∞

−∞

f(x, y, θ)dxdydθ

=

∫ π

−π

∫ π

−π

∫ ∞

0

f(r, φ, θ)rdrdφdθ.

Consider a kinematic cart which executes noisy trajec-
tories, as shown in Fig.1. Each of the two wheels have
a desired rotational rate of v, and so the infinitesimal
angle that each wheel would turn through at time t is
dφi(t) = vdt. Superimposed on each of these wheel
motions white noise (increments of a Wiener process),
dφi(t) = v dt +

√
Ddwi. Substituting this into the

nonholonomic equations for the kinematic cart gives the
following model for dead-reckoning errors in mobile
robotics [34]:



dx

dy

dθ


 =




rwvcosθ

rwvsinθ

0


 dt

+
√
D
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

rw

2
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rw

2
cosθ

rw

2
sinθ

rw

2
sinθ

rw

l
−rw

l




(
dw1

dw2

)
,

(4)
where rw is the radius of both of the cart’s wheels and l

is the length of cart axle. This is a stochastic differential
equation (SDE). Usually two kinds (or interpretations) of
SDEs are used to model systems: Ito or Stratonovich. It
can be shown that the particular SDE in (4) is a special
case in which it does not matter which interpretation
is used. Closely related models include those used in
[2], [28], [3], [18], [19], [20], [26]. Corresponding to
every SDE is a diffusion equation that generates the
same probability density that would result from running
an infinite number of random trials of the SDE. This is

g(t)

Fig. 1. A kinematic cart with an uncertain future position and
orientation

called the Fokker-Planck equation (FPE), and the FPE
corresponding to the SDE in (4) is

∂f(g, t)

∂t
=− rwvX̃1f

+
D

2

[
r2w
2

(
X̃1

)2
+

2r2w
l2

(
X̃3

)2]
f.

(5)

where

X̃1 = cosθ
∂

∂x
+ sinθ

∂

∂y
(6)

X̃2 = −sinθ
∂

∂x
+ cosθ

∂

∂y
(7)

X̃3 =
∂

∂θ
(8)

are a basis for all left-invariant vector fields on SE(2).
Equation (5) is an example of a more general equation

of the form

∂f

∂t
=


−

3∑

i=1

hi(t)X̃i +
1

2

3∑

i,j=1

Dij(t)X̃iX̃j


 f (9)

where f = f(g, t) and the coefficient matrix D(t) is
symmetric and positive semi-definite. When detD = 0,
and at least one eigenvalue is non-negative, this is the
degenerate case. And often in applications h(t) and D(t)
are constant.

It is possible to solve (5) subject to the initial con-
ditions f(g; 0) = δ(g)

.
= δ(x − 0)δ(y − 0)δ(θ − 0)

using either Fourier methods or Gaussian approaches,
in analogy with diffusions on the circle.

The remainder of this paper is structured as follows.
Section II explains how operational properties of the
Fourier transform on SE(2) can be used to solve these
sorts of degenerate diffusions. Section III derives a
Gaussian solution. Section IV examines the solutions
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in the case when only one of the three directions of
infinitesimal motion has nonzero diffusion coefficient.
And Section V computes the Gaussian and Fourier
solutions numerically and calculates their relative error.

II. FOURIER SOLUTION

The Fourier transform on SE(2) is defined as [9], [10]

F (f) = f̂(p) =

∫

SE(2)

f(g)U(g−1, p)d(g) (10)

and its inverse transform is defined as [9], [10]

F−1(f̂) = f(g) =

∫ ∞

0

trace(f̂(p)U(g, p))pdp (11)

where g denotes a member of SE(2), p is the “frequency”
introduced by the Fourier transform, and U(g, p) is an
irreducible unitary representation matrix of SE(2). Here
the elements of matrix U(g, p) are given as [9], [10]

umn(g(r, φ, θ), p) = in−me−i[nθ+(m−n)φ]Jn−m(pr),
(12)

where −∞ < m,n < ∞, and g is used to describe
the matrix form of cart motion in the plane (translation
and rotation). An important operational property of the
Fourier transform for SE(2) is

F (X̃if) = ηi(p)f̂(p) (13)

where ηi(p)’s are coefficient matrices with elements [9],
[10]

η1mn(p) =
p

2
(δm,n+1 − δm,n−1), (14)

η2mn(p) =
ip

2
(δm,n+1 + δm,n−1), (15)

η3mn(p) = −imδm,n, (16)

where δ is the Kronecker delta function. Note that in our
context f = f(g, t) and f̂ = f̂(p, t) – the time variable
is unaffected by Fourier transformation on the group.

By applying the SE(2) Fourier transform on both sides
of equation (5), we obtain

∂f̂

∂t
= (−rwvη1(p) +

D

2
(
r2w
2
η1(p)

2 +
2r2w
l2

η3(p)
2))f̂ .

(17)
The solution to (5) is

f̂(p, t) = exp(A(p)t)f̂(p, 0), (18)

where

A(p) = −rwvη1(p) +
D

2

(
r2w
2
η1(p)

2 +
2r2w
l2

η3(p)
2

)
,

(19)
and exp is the matrix exponential. When t = 0, the
initial condition for (5) is defined as

f(g(x, y, θ); t = 0) = δ(x)δ(y)δ(θ), (20)

where δ is the Dirac delta function. As a result, f̂(p, 0)
is the identity matrix, and (18) is reduced to

f̂(p, t) = exp(A(p)t). (21)

From this Fourier-space solution f(g, t) is obtained by
applying the inverse Fourier transform in (11).

III. GAUSSIAN SOLUTION

Whereas Cartesian coordinates in translation/position
are convenient to state the original stochastic differential
equation, and polar coordinates are convenient to use the
SE(2) Fourier transform, a third set of coordinates: the
exponential coordinates are most convenient to define
Gaussian solutions. A basis for the Lie algebra se(2) is

X1 =




0 0 1
0 0 0
0 0 0


 ;

X2 =




0 0 0
0 0 1
0 0 0


 ;

X3 =




0 −1 0
1 0 0
0 0 0


 .

These respectively correspond to infinitesimal trans-
lations along the x and y axes, and rotation around the
z axis and are related to X̃i in (6)-(8) by

(X̃if)(g) :=
d

dt
f(g ◦ exp(tXi))

∣∣∣∣
t=0

.

If X
.
= v1X1 + v2X2 + αX3, then rigid-body motions

can be parameterized as

g̃(v1, v2, α) = exp(v1X1 + v2X2 + αX3)

= exp




0 −α v1
α 0 v2
0 0 0


 .

This can be expressed in the closed form

g̃(v1, v2, α) =





cosα − sinα [v2(−1 + cosα) + v1 sinα]/α
sinα cosα [v1(1− cosα) + v2 sinα]/α
0 0 1



 .

The opposite of the matrix exponential is the matrix
logarithm, which is well defined as long as |α| 6= π. We
also use the notation

(v1X1 + v2X2 + αX3)
∨ = [v1, v2, α]

T .

Here we use g̃ to distinguish this from the parameteri-
zation in (3).
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Using these concepts, the mean of any probability
density on SE(2) can be written as

∫

G

log∨(µ−1g)f(g) dg = 0. (22)

This concept of mean, should not be confused with other
related concepts presented recently in the literature. The
above definition has some particularly useful properties
for our application, as described below.

The covariance matrix Σ can be defined as

Σ =

∫

G

log∨(µ−1g)
(
log∨(µ−1g)

)T
f(g) dg. (23)

And when ‖Σ‖ ≪ 1 a Gaussian distribution can be
defined as

f(g;µ,Σ)

=
1

c(Σ)
exp

(
−1

2

[
log∨(µ−1g)

]T
Σ−1 log∨(µ−1g)

)
.

(24)
Here c(Σ) is a normalizing factor that ensures that
f(g;µ,Σ) is a pdf. When the covariance is small this
normalizing factor can be approximated as

c(Σ) ≈ (2π)n/2| det(Σ)|1/2

Suppose that fi(g) = f(g;µi,Σi). Then the convolution
is defined as

(f1 ∗ f2)(g) =
∫

SE(2)

f1(h)f2(h
−1 ◦ g)dh.

It has been shown previously that the mean and co-
variance of concentrated distributions propagate under
convolution as

µ1∗2 = µ1◦µ2 and Σ1∗2 = Ad(µ−1
2 )Σ1Ad

T (µ−1
2 )+Σ2.

That is, these are the mean and covariance of (f1∗f2)(g).
The adjoint matrix is of the form

Ad(g(x, y, θ)) =




cos θ − sin θ y

sin θ cos θ −x

0 0 1


 .

It has the properties

Ad(g1 ◦ g2) = Ad(g1)Ad(g2)

Ad(g−1) = Ad−1(g)

Ad(e) = I.

The above formulas can be iterated. For example, the
mean and covariance of (f1 ∗ f2) ∗ f3 will be

µ(1∗2)∗3 = (µ1∗2) ◦ µ3 = (µ1 ◦ µ2) ◦ µ3

and
Σ(1∗2)∗3 = Ad(µ−1

3 )Σ1∗2AdT (µ−1
3 ) + Σ3.

Iterating this formula, and removing the parenthesis
(which are unnecessary due to the associativity of the
group operation and the convolution operator),

µ1∗2∗···∗n = µ1 ◦ µ2 ◦ · · · ◦ µn =

n∏

i=1

µi (25)

(where the order of multiplication in this product mat-
ters) and

Σ1∗2···∗n =

n∑

i=1

Ad−1




n∏

j=i+1

µj


 Σi Ad

−T




n∏

j=i+1

µj


 .

In the continuous time case, where each fi(g) is
replaced by an f∆t(g), then with initial conditions
µ(0) = e we get the product integral

µ(t) =
⋂

0≤τ≤t

exp

(
3∑

i=1

hi(τ)X1

)
. (26)

In some special cases this product integral becomes easy
to compute in closed form. For example, if hi is constant
then

µ(t) = exp

(
t

3∑

i=1

hiX1

)
.

Or if hi(t) = h(t)ci where ci is constant, then

µ(t) = exp

(∫ t

0

h(t)dt

3∑

i=1

ciX1

)
.

With initial conditions on the covariance Σ(0) =
O, and in the special case when µ(t) follows a one-
dimensional subgroup with constant speed, then

Σ(t) =

∫

t

0

Ad−1(µ(t− τ))D(t)Ad−T (µ(t− τ))dτ (27)

because

Ad−1(µ(t))Ad(µ(τ)) = Ad(µ−1(t))Ad(µ(τ))

= Ad(µ−1(t) ◦ µ(τ)) = Ad−1(µ(t− τ)).

IV. THE SINGULAR CASE

Note that in (1), if the initial conditions are f(θ, 0) =
δ(θ), and if D = 0, then the solution will simply be
f(θ, 0) = δ(θ − vt). But in the case of degenerate
diffusions on noncommutative Lie groups, it is not
necessarily the case that the covariance matrix will have
a zero eigenvalue just because the diffusion matrix does.
This is because in (27) the Ad(·) matrix can “mix” the
diffusion coefficients in a way that leads to a nonsingular
covariance.

Nevertheless, there are application areas such as
stochastic completion and inpainting in image analysis
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[13], [14], [31], [15], [35], visual perception [4], [5],
[11], [12], [21], and phase noise in optical communica-
tions [30], in which the diffusion equation has a diffu-
sion coefficient even more singular than the kinematic
cart with noise.

In such equations the Fokker-Planck equation is of
the form

∂f(g, t)

∂t
=

[
vX̃1 +

1

2
D
(
X̃3

)2]
f(g, t). (28)

In this case

µ(t) =




1 0 vt

0 1 0
0 0 1




and

D(t) =




0 0 0
0 0 0
0 0 D


 .

Using (27) in this case gives

Σ(t) = 0 ⊕ Σ2×2(t).

This degeneracy of the Gaussian solution can be regu-
larized by substituting a small positive constant value,
ǫ, in place of the zero in the above expression for Σ(t).
In contrast Fourier solution has a built-in mechanism
for regularization, which is truncation of the infinite-
dimensional Fourier matrices at finite size. This is some-
what like approximating a classical Dirac delta with a
sinc function.

Instead of a regularized solution, it is possible to
construct one in this case that is based on the Gaussian
solution but retains the singular nature. In particular,

f(g; t) =
1

2π|Σ2×2(t)|
1
2

δ
(
e1 · log∨(µ−1(t) ◦ g)

)
·

exp

(
−1

2
[log∨(µ−1(t) ◦ g)]T2 Σ−1

2×2(t)[log
∨(µ−1(t) ◦ g)]2

)

(29)
where [log∨(µ−1(t) ◦ g)]2 denotes the two-dimensional
vector consisting of the last two entries of log∨(µ−1(t)◦
g).

V. NUMERICAL COMPARISON

We set h1 = rwν, h2 = 0, h3 = 0, so

µ(t) =




1 0 rwνt

0 1 0
0 0 1


 .

And comparing (5) and (9) we see that

D(t) =




Dr2w
2 0 0
0 0 0

0 0
2Dr2w
l2



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Fig. 2. Degenerate Diffusions Using Fourier Methods
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Fig. 3. Degenerate Diffusions as a Gaussian

(which is constant).

Substitute these into (27) and calculate Σ(t) in closed
form

Σ(t) =




Drw2t
2 0 0

0
2Dr4wt3ν2

3l2
Dr3wt2ν

l2

0
Dr3wt2ν

l2
2Dr2wt

l2




Then, since µ(t) and Σ(t) are known, evaluate (24) with
µ(t = 1) and Σ(t = 1). Comparison the results of
the SE(2) Fourier solution and Gaussian solution under
the same conditions are shown in Fig.2-Fig.3 ,when
D = rw = t = v = l = 1, θ = 0. Since the
matrix U is infinite dimensional, we must truncate it
to finite dimension as (2L + 1) by (2L + 1) matrices
when doing numerical computations, where L = 4. p is
the frequency introduced by the Fourier transform. We
truncate it from 0 to 20 in the numerical computations.
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TABLE I

THE ERRORS BETWEEN THE GAUSSIAN AND FOURIER

DESCRIPTIONS WITH DIFFERENT D

D Eerror

0.1 0.1376
0.25 0.2469
0.5 0.3041
1 0.3216

1.5 0.3046
2 0.3181

The error is

Eerror =

√√√√
∫
x

∫
y
(f1(x, y, 0)− f2(x, y, 0))

2dxdy
∫
x

∫
y
(f1(x, y, 0))2dxdy

,

where f1 is the PDFs of dead-reckoning errors obtained
from Fourier method, f2 is the PDFs from Gaussian
method. The errors between the Gaussian and Fourier
methods for different values of D are shown in Table.I.

We also compute the overall position error by com-
puting

f̃i(x, y) =
1

2π

∫ π

−π

fi(x, y, θ)dθ

and evaluating

Ẽerror =

√√√√
∫
x

∫
y
(f̃1(x, y)− f̃2(x, y))

2dxdy
∫
x

∫
y
(f̃1(x, y))2dxdy

,

The plots of f̃i(x, y) are Fig.4 and Fig.5 We can see the
errors results in Table.II.

−1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x(m)

y(
m

)

 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fig. 4. Fourier Description of f̃i(x, y)

The probability of the real robot’s location is de-
pendant on D. Using both methods, we compare the
probability density of the point (r̃, θ̃) = (1, 0), which is
what the real robot’s location would be if it were not
noisy. The results are shown in the Table.III.
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Fig. 5. Gaussian Description of f̃i(x, y)

TABLE II

THE ERRORS BETWEEN THE GAUSSIAN AND FOURIER

DESCRIPTIONS WITH DIFFERENT D

D Ẽerror

0.1 0.1282
0.25 0.2869
0.5 0.2342
1 0.1869

1.5 0.2349
2 0.2883

TABLE III

PROBABILITY DENSITY EVALUATED AT THE ROBOT’S TARGET

LOCATION COMPUTING BY GAUSSIAN AND FOURIER METHODS

D Gaussian method Fourier method
0.1 4.92 4.78
0.25 1.24 1.31
0.5 0.44 0.47
1 0.16 0.18

1.5 0.085 0.098
2 0.055 0.064

VI. CONCLUSIONS

We present a comparison of Gaussian and Fourier
methods for degenerate on SE(2) in this paper.
The stochastic differential equations (SDEs) of dead-
reckoning errors in mobile robotics are solved by the two
methods. Plots of the solutions show them to be qualita-
tively similar. But as the diffusion parameter increases,
the mean of the Gaussian solution appears to travel too
far relative to that of the Fourier solution, leading to
increasing errors. We believe that improvements can be
made to (25) to make these solutions match better over
a wider range of diffusion constants.
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