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Abstract— Signal alignment has become a popular problem
in robotics due in part to its fundamental role in action
recognition. Currently, the most successful algorithms for signal
alignment are Dynamic Time Warping (DTW) and its variant
‘Fast’ Dynamic Time Warping (FastDTW). Here we introduce
a new framework for signal alignment, namely the Globally
Optimal Reparameterization Algorithm (GORA). We review the
algorithm’s mathematical foundation and provide a numerical
verification of its theoretical basis. We compare the performance
of GORA with that of the DTW and FastDTW algorithms, in
terms of computational efficiency and accuracy in matching
signals. Our results show a significant improvement in both
speed and accuracy over the DTW and FastDTW algorithms
and suggest that GORA has the potential to provide a highly
effective framework for signal alignment and action recognition.

[. INTRODUCTION

With the recent emergence of new machine learning
techniques, there has been an increasing interest in robotic
action recognition. The foundation of action recognition lies
in the problem of signal alignments, in the sense that prior
to categorizing or identifying sets of sequences, one must
establish a method to temporally parameterize the sequences
that enables standardized comparisons.

Currently the most successful techniques for signal align-
ment are based on the well-known method of Dynamic Time
Warping (DTW) [1], which matches two time series with
a monotonically increasing optimal warping path satisfying
boundary conditions. Since its introduction almost 40 years
ago, DTW has been applied to a variety of fields including
speech recognition [2], action recognition [3], data mining
[4], and motion perception [5]. Due to DTW’s O(T?) time
complexity, many variants have been introduced with the
goal of striking a balance between accuracy and computa-
tional efficiency [6]-[8], the most widely-used of these being
the Fast Dynamic Time Warping (FastDTW) algorithm,
which achieves a time complexity of O(T") [7]. One of the
most recent developments in the DTW family has been the
introduction of Generalized Time Warping [9], which aligns
multiple multi-modal sequences with linear time complexity.

Recently, a novel, alternative mathematical framework for
signal alignment has been proposed, in which signals are
reparameterized to a universal standard timescale (UST)
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using principles of variational calculus [10]. The goal of this
paper is to introduce an efficient numerical algorithm for
signal alignment based on this framework, which we will
henceforth refer to as the Globally Optimal Reparameteriza-
tion Algorithm (GORA), and to provide an initial numerical
validation of this approach.

Given two or more time-evolving signal sequences, GORA
temporally reparameterizes each to a UST that allows for
pairwise comparison at each instance in time. Reparam-
eterizations are found via variational calculus to produce
mappings to new temporal variables that globally minimize
the amount of change in the sequences, representing a new
approach to the problem of signal alignment. The major
advantages of this approach are:

1. It achieves linear time complexity of O(T), where T is the
number of time instances in a signal;

2. It can simultaneously reparameterize multiple signal se-
quences to a universal time scale; and

3. It can potentially be built-upon to allow for the effects of
nuisance parameters such as noise or motion artifacts to be
minimized or eliminated [10].

The remainder of the paper is organized as follows. First,
we review GORA’s mathematical foundations, as described
in [10], and define and introduce GORA itself. We then
discuss the settings for its application to signals in the
form of both real trajectories and video sequences. This is
followed by a numerical verification of GORA’s ability to
find the globally optimal temporal reparameterization of a
given signal. We then provide an initial verification of the
algorithm by comparing its performance, in terms of both
computational efficiency and accuracy in matching signals,
relative to DTW methods. Our results show a significant
improvement in both speed and accuracy over the DTW and
FastDTW algorithms. We conclude with a short discussion
on the computational significance of the differences between
GORA and DTW methods, in addition to the authors’ plans
for the continued development of the GORA framework.

II. PROBLEM STATEMENT

Without loss of generality, any kind of temporally evolving
signal, X (t), can be considered as a mapping from the unit
interval to the space S on which that particular type of signal
evolves, i.e. X : [0,1] — S. Defining a metric d on S, (.5, d)
becomes a metric space. In general, given any two signals
X1(t), Xo(t) it is likely that

/1 d(X1(t), Xa(t)) dt > 1,
0
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even if it is suspected that both signals portray similar
dynamic phenomena, a major reason being that each signal
could have a different temporal parameterization on the the
unit interval.

The GORA algorithm is based on the notion that the
temporal misalignment between two arbitrary signals can be
compensated for by reparameterizing each to a UST. In other
words, assuming that nuisance parameters or motion artifacts
such as variations in perspective are not significantly affect-
ing the signals, if we can find two strictly monotonically
increasing functions, 77,75 € C'[0, 1] such that

/0 d(X1 (5 (), Xa(r5 (1)) dt < 1,

then we can say that X (¢t) and X5(¢) are fundamentally the
same.

Let 7 represent the set of all such C' monotonically
increasing functions on the unit interval. Denoting o as the
operation of composition of functions, namely

(T1 OTQ)(t):Tl(TQ(t)) V’Tl,TQeT,

(T, o) forms a group, which we refer to as the temporal repa-
rameterization group (TRG). For a given signal, X (t) € S,
one can use the succeeding variational calculus formulation
to find a globally optimal 7* € T such that X (7*(¢)) is
the UST parameterization of X, reducing a search for this
mapping from S to the quotient space S/7T .

III. MATHEMATICAL FORMULATIONS

Suppose one wants to find a function, x(t), that extremizes
a functional of the form

1
7= [ ok d (1)
0

where X = dx/dt. This type of problem can be addressed
by the application of Calculus of Variations, and the desired
x(t) is the solution to the Euler-Lagrange equations:

af d (df\ _
6x_dt(85<>_0 @

In general, there are no guarantees that the solution to the
preceding equations will be globally optimal, however, in
certain situations (including optimal temporal reparameteri-
zation), the structure of the function f(-) will guarantee that
the solution generated by the equations is in fact a globally
optimal solution. The following theorem is an example of
one such case.

A. Theorem and Proof of Global Optimality
THEOREM 1: [f z : [0,1] — R and the integrand in the
cost functional (1) is of the form

fla, i) = i”g(x) 3)

where g(z) : R — Rsq is C, then the solution generated
by (2) subject to the boundary conditions x(0) = 0 and
x(1) = 1 is globally minimal.

The proof of this theorem was first demonstrated in
[10], however we choose to re-demonstrate it here as it
illuminates the fundamental structure of GORA.

Proof: Evaluating (2) with (3) gives

2ig + g‘c2§—g =0. 4)
X

Multiplying both sides by & and integrating yields the exact
differential

d, .
%(93 g)=0.

Integrating both sides with respect to ¢ and isolating 2 yields
i =cg ()

where c is the arbitrary constant of integration. With the
boundary conditions z(0) = 0 and z(1) = 1, we can then
write

where

1
c= / g%(a) do.
0

The notation z* indicates that this is the unique solution
obtained from the Euler-Lagrange equations that satisfies the
boundary conditions.

The function F'(z*) =t can be inverted (F' is monotoni-
cally increasing since g(z) > 0) to yield z* = F~1(¢).

To see that this solution is globally optimal, substitute

1
it = g*%(x*)/ 92 (0) do (5)
0
into the cost functional

1
J(y) = / a(y)y’de
0

where y(t) is any function in 7. Then
2 2

J(z") = (/Olgé(m*)dw*) = (/Olgi(y)dy> :

where the second equality is simply a change of the name
of the dummy variable of integration. Furthermore, since z*
and y are both functions of time, we can change the domain
of integration as

I = ( / 1 g%@(t))ydt)

Since in general, from the Cauchy-Schwarz inequality,

( / G dt)2 < | o,

we see that by letting f(t) = g (y)y that

(f lg%<y(t>>ydt)

2

2

< / a(y)()2dt
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and hence
J(z*) < J(y)

where x*(t) is the solution generated by the Euler-Lagrange
equation and y(¢) is any function in 7. Therefore x*(¢) is a
globally minimal solution. [ ]

B. The Globally Optimal Reparameterization Algorithm
(GORA)

In the context of signal alignment, the solution to the
preceding variational problem provides a method for finding
the UST parameterization of a given signal. In particular,
taking € 7 we have z* = 7%, subject to the definition of
g(x), which measures the rate of change of the given signal
along the temporal axis. This is the backbone of Globally
Optimal Reparameterization Algorithm (GORA), defined in
Algorithm 1.

Algorithm 1: Globally Optimal Reparameterization Al-
gorithm (GORA)

Input : Input signal X (¢); Initial temporal variable ¢
Output: UST reparameterization of signal X*(¢)

1 Compute g(t);

2 ¢ = Numericallntegration(g? (v), [0, 1]);

3 F(r*) = % Numerical[ntegmtion(g%(a), [0, 7*]);

a THt) = F(t);

5 X*(t) = Interpolation(X (t), 7*(t));

Given g(t), calculating 7*(t) is relatively straightforward
and follows the first part of the proof of Theorem 1. For a
given signal, the function g(¢) should be defined analogous
to the squared magnitude of the temporal derivative of
the signal. For example, in the case of a video signal, an
appropriate definition of g(¢) could be based on the temporal
derivatives of the matrices of pixel values representing each
frame.

It should be noted that steps 2-3 in GORA can be
performed simultaneously. Additionally, the method of inter-
polation through which X*(¢) is recovered from X (¢) and
7*(t) in step 5 should be chosen based on the properties of
the input signal.

IV. NUMERICAL VERIFICATION SETTINGS

In this paper, we provide a validation of GORA using dis-
cretized signals, in the form of both synthetically generated
trajectories in R® and video sequences from the Weizmann
Action Recognition Classification Database [11], [12]. The
following section describes our experimental regime and
results.

A. Signal structure

The version of GORA implemented in our experiments
is designed for signals in the form of real trajectories.
Through vectorization, each frame of a video sequence can
be represented as an n x 1 array of pixel values where
n = width x height. As such, any video sequence can be

described by a temporally-evolving curve in Z". If we imag-
ine video sequences as collections of discretized samplings
of continuous phenomena at arbitrary time instances, any re-
sampling at new time instances produces a curve in R".

Additionally, it is important to note that for the sake of
sampling consistency, we trimmed all video sequences in the
Weizmann Database such that each trimmed video showed
only a single instance of an action being performed. For
example, videos of a person walking were trimmed to show
only a single stride (two successive placements of the same
foot) and videos of a person waving multiple times were
trimmed to show only a single wave.

B. Formulation of g(t)

For signals of the form X (¢) € R™, a natural choice for
the definition of g(¢) consistent with (3) is

2

dX
t)=||— 6
g(t) ‘ |l ©6)
where || - || denotes the Euclidean norm of a vector. In

practice, we computed dX/dt using a high order finite
difference method.

C. Error metric

Given two signals X (), X2(t) € R™ sampled at discrete
time instances {t¢;}, we defined the distance or error be-
tween them as the average euclidean distance over all time
instances, namely,

T

2 - %@l o

i=1

errorgn =

where T is the number of time instances.

V. VERIFICATIONS OF GLOBAL OPTIMALITY

One of the major advantages of GORA is its ability
to reparameterize multiple signals to their corresponding
USTs in parallel, which allows for pairwise comparison
between signals. Here we verify the global optimality of UST
parameterizations computed by GORA using both synthetic
curves in R? and video sequences in the form of vectorized
curves in R”.

In principle, the UST reparameterization found by GORA
corresponding to an arbitrary input signal minimizes the
integrand in (1) with with respect to the cost function given
by (3). Our experimental procedures for validation are sum-
marized as follows: For a given number of time instances,
we randomly selected 50 template signals. For each template
signal, X(t), we randomly generated 50 functions in the
TRG and reparameterized X(¢) with respect to each to
create 50 different input signals. We then used GORA to
obtain the UST parameterization, 7*(t), and recover the the
UST reparameterization of each input signal, X *(¢). We then
computed the value of the cost functional with respect to
7*(t) and X*(t) and compared this with the value of the
cost functional computed using the input signal and original
timescale.
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zations of a template video sequence with 20 times instances and tions of the same template video sequence with 100 times instances

their corresponding UST reparameterizations.

and their corresponding UST reparameterizations.

Fig. 1: Comparisons between the cost functional values of randomly parameterized input signals and their UST reparame-

terized counterparts found by GORA.

The results of our global optimality experiments are dis-
played in Fig. 1. Fig. la shows the percentages of UST
computed cost functional values lower than the cost func-
tional values computed using the initial signals and initial
timescales from 20 to 150 time instances. At each time
instance, the percentages were computed with respect to
the 2500 (50 x 50) input and corresponding UST signal
pairs generated using the experimental procedures detailed
in the preceding paragraph. The red and blue lines show
the results for synthetic trajectories in R? and for vectorized
video sequences, respectively.

As an example, Figs. 1b and 1c show the values of
the cost functionals for fifty different pairs of randomly
parameterized input signals and their corresponding UST
reparameterizations found by GORA with 20 and 100 time
instances, respectively. For both Figs. 1b and 1c, all input sig-

nals were generated from a single template video sequence in
the Weizmann Database. The black and green lines represent
the cost functional values for the input signals and their UST
reparameterizations, respectively.

The results indicate that in general, GORA does a re-
markably good job of finding UST parameterizations that
are globally minimal (or at least very close, depending on
numerical precision) in the sense of (1). GORA’s failure
to so consistently in the case of signals with low numbers
of time instances (e.g. Fig. 1b) can likely be explained by
its reliance on numerical differentiation of the input signal
(in the computation of g(¢)) and on numerical integration
of g(t), both of which become less accurate with larger
temporal step sizes corresponding to lower numbers of time
instances.

Additionally, this type of numerical evaluation between
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Fig. 2: The experimental work flow for evaluating GORA’s computational efficiency and accuracy in matching signals: A
template signal is selected and parameterized with respect to two randomly generated functions in the TRG to create two
input signals, represented by curves in R™. For each input signal, 7*(¢) is computed from g(¢) and used to recover the UST
parameterization of the sequence. The optimally reparameterized signals can them be compared element-wise using the error

metric in (7).

the values of the UST computed cost functionals and
cost functionals computed using the initial sequences and
timescales might provide a template for finding a lower
bound of GORA’s effectiveness with a given signal type.
When the UST parameterization found by GORA is clearly
not globally optimal, as is the case when the cost functional
computed with respect to the input signal has a lower value
than that computed using the UST reparameterization, it
cannot be considered to be accurate. When using GORA
for pairwise signal comparisons, failure to well-approximate
UST parameterizations would likely lead to a greater degree
of induced error. Depending on the properties of the input
signals and chosen methods of derivation, integration, and
interpolation, one might be able to probe for a lower bound
on the acceptable degree of coarseness for a type of signal
based on a desired accuracy threshold.

VI. ALGORITHM PERFORMANCE AND COMPARISONS

This section summarizes our comparisons between the
performance of GORA and that of the DTW and FastDTW
[7] algorithms. Specifically, we evaluate the performance of
each of the above algorithms in terms of both accuracy
in matching signals and computational efficency. All com-
parisons were performed in Python 2.7 and the DTW and
FastDTW implementations we used in our experiments were
from the official Python package [13].

A. Comparison regime

We compared the performance of GORA with the DTW
algorithm and implementations of the FastDTW algorithm
with radii of 1, 5, and 20. The procedures with which we
performed comparisons using both synthetic trajectories in
R3 and video sequences are described as follows: For a given
number of time instances, we randomly selected 50 different
template signals. For each template signal, two initial param-
eterizations in the TRG were randomly generated and used
to parameterize the original signal, creating 50 pairs of input

signals, which were then fed to GORA and the DTW and
FastDTW algorithms.

To ensure fair comparisons between algorithms, we use
a modified version of GORA designed for the pairwise
comparison of two signals, which is outlined in Fig. 2.
This version accepts two input signals, X;(¢) and Xs(¢),
computes in parallel to their respective UST reparameteriza-
tions as defined in Algorithm 1, i.e. X (¢) and X (¢), and
outputs the error between the two UST reparameterizations
given by (7). Similarly, we normalized the accumulated cost
error output by the DTW and FastDTW algorithms under the
Euclidean norm by dividing it by the length of the optimal
warping path. Run time comparisons were performed using
the clock module in Python’s time package. Given two
input signals, we defined the run time (what we called com-
putational efficiency) to be the time it took each algorithm
to output the error between them.

B. Results

Fig. 3 and Fig. 4 compare the performance of GORA
and the DTW and FastDTW algorithms using signals in the
form of trajectories in R® and vectorized video sequences,
respectively. Figs. 3a and 4a show the mean run time of each
algorithm from 20 to 150 time instances. Figs. 3c and 4c
show the corresponding standard deviations from the mean
run times for each algorithm.

For both trajectories in R® and video sequences, as the
total number of time instances increases, DTW’s run time
grows quadratically (i.e. O(T?) complexity) while all itera-
tions of the FastDTW algorithm and GORA achieve linear
complexity (i.e. O(T)). However, in both cases GORA’s
run time is less than that of all the DTW methods, and
GORA’s complexity grows more slowly than the fastest im-
plementation of FastDTW (radius = 1). In addition, GORA’s
run time has a similar degree of stability (in the sense of
smaller deviations from the overall mean run time) as that of
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Fig. 3: Algorithm performance: synthetic trajectories in R3.

the FastDTW implementation with radius = 1, and remains
significantly more stable than other DTW methods.

Figs. 3b and 4b show the mean error between signal pairs
given by each algorithm from 20 to 150 time instances. Figs.
3d and 4d show the corresponding standard deviations from
the mean error for each algorithm. In both cases, GORA is
significantly more accurate (in the sense that the computed
error between signal pairs known to represent the same
dynamic phenomena is small) than the DTW algorithm and
all implementations of the FastDTW algorithm. It was often
the case that the DTW algorithm and the implementations
of the FastDTW algorithm gave identical errors, since it is
possible for the FastDTW algorithm to construct the same
accumulated cost matrix as the DTW algorithm.

The authors believe that the disparity in accuracy between
GORA and the implementation of the FastDTW algorithm
with radius = 1 is especially significant. Since the error
produced by the implementation of the FastDTW algorithm
with radius = 1 is both highly inaccurate and unstable (in the
sense of large deviations from the mean error), especially for
input signals in the form of video sequences, this suggests

that an effective implementation of the FastDTW algorithm
requires a larger radius. As such, the run time disparity
between an effective FastDTW implementation and GORA is
likely somewhere between the implementations of FastDTW
with radius = 1 and radius = 5.

That being said, these results constitute only an initial
analysis with two types of elementary data. However, they
do suggest that GORA has potential to be a highly effective
framework for signal comparison and action recognition.

VII. DISCUSSION

A crucial difference between GORA and the DTW and
FastDTW algorithms is GORA’s reliance on interpolation
to recover the UST reparameterization of the input signal.
Depending on the context, this can be an advantage or dis-
advantage for the GORA framework. For example, consider
the problem of signal comparison or action recognition over
a space of signals where computing the error between signals
at a given time instance is itself computationally expensive
to perform. By interpolating, GORA only has to compute the
pairwise error between signals no more than 7' times, where
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Fig. 4: Algorithm performance: vectorized video sequences from the Weizmann Database.

T is the total number of time instances. On the other hand, all
DTW methods will have to compute this error between O(T')
and O(T?) times. If GORA’s chosen method of interpolation
is relatively inexpensive, this could give it a significant run
time advantage over DTW methods.

However, this could easily become a disadvantage for
GORA if the chosen method of interpolation is relatively
expensive compared to the computation the of the pairwise
error between signals at a given time instance. In particular,
this might serve to explain why GORA’s run time advantage
over the FastDTW implementation with radius = 1 is smaller
with video sequences than with trajectories in R®. For
trajectories in R3, GORA only performs three instances
of linear interpolation — one in each dimension of the
trajectory. In contrast, for video sequences GORA performs
n = width X height instances of linear interpolation along
each dimension of the trajectory in R™ representing the
vectorized video sequence. While this also means that DTW
methods have to perform pairwise error computations with
larger signals, it’s likely that the cost due to increasing the
instances of interpolation outweighs the cumulative cost of

computing the euclidean norm in R". The videos in the
Weizmann Database are relatively small (180 x 144 pixels)
and it is unknown with video sequences of larger dimensions
whether GORA’s mean run time would remain favorable
relative to other methods.

The GORA framework is very much an active work-in-
progress. Currently, we are exploring the GORA’s potential
in providing a foundation for a more robust algorithm
able to minimize or eliminate nuisance parameters while
simultaneously reparameterizing signals to a UST [10]. The
development of such an algorithm able to inherently com-
pensate for perturbations such as noise or motion artifacts
while maintaining a similar linear complexity to GORA
would mark an important milestone toward the goal of robust
robotic action recognition of human motions in real-time.
Additionally, a well-known strength of DTW methods is their
ability to effectively compare signals with different numbers
of time instances. This is something we have yet to consider
in our implementations of GORA and a topic we plan to
address in our future work.
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VIII. CONCLUSIONS

In this paper, we introduced the Globally Optimal Repa-
rameterization Algorithm (GORA) for signal alignment and
comparison. This algorithm reparameterizes signals to a uni-
versal standard timescale (UST), allowing for element-wise
comparisons between multiple signals at each instance of
time with linear time complexity of O(T'). In particular, we
defined procedures for applying this algorithm to characterize
and compare signals in the form of real trajectories and video
sequences.

Our experimental results provide both a numerical valida-
tion of GORA’s theoretical basis and suggest that the GORA
framework has the potential to become a viable alternative to
DTW methods for signal comparison and action recognition
purposes. For signals in the form of real trajectories in R3
and vectorized video sequences with a fixed number of time
instances, GORA’s computational complexity is less than
that of the FastDTW algorithm with radius= 1 and GORA’s
accuracy in matching signals representing fundamentally the
same phenomena exceeds that of both the DTW algorithm
and implementations of the FastDTW algorithm with radii
of 1, 5, and 20.
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