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Abstract

A ubiquitous problem in pattern recognition is that of
matching an observed time-evolving pattern (or signal) to
a gold standard in order to recognize or characterize the
meaning of a dynamic phenomenon. Examples include
matching sequences of images in two videos, matching au-
dio signals in speech recognition, or matching framed tra-
Jectories in robot action recognition. This paper shows that
all of these problems can be aided by reparameterizing the
temporal dependence of each signal individually to a uni-
versal standard timescale that allows pointwise compari-
son at each instance of time. Given two sequences, each
with N timesteps, the complexity of the algorithm has a cost
of O(N), which is an improvement on the most common
method for matching two signals, i.e., dynamic time warp-
ing. The core of the approach presented here is that the
universal standard timescale is found by solving a varia-
tional calculus problem in which the cost functional reflects
the amount of change that takes place as measured in the
original temporal variable, and then produces a mapping
to a new temporal variable in which the amount of change
is globally minimized. The result builds on known facts in
differential geometry.

1. Introduction

Consider two time-evolving sequences, or signals, X7 (t)
and X5 (t) which can be scalar, vector, matrix, or Lie group
quantities of the same type. Without loss of generality, let
t € [0,1]. Let S denote the space in which all such signals
evolve. Then X (t) can be viewed as a map

X:[0,1] = S

and the space of all signals is [0, 1] x S.

Suppose that there exists a metric (distance function)
d:S xS — Rsg, thereby making (S, d) a metric space.
In general it can be the case that d(X(t), X2(¢)) will not

be small even if X (t) and X5(t) represent fundamentally
the same dynamic phenomenon. This can happen for two
reasons: (1) The sequences can have a different temporal
evolution along the fundamentally same path; (2) Nuisance
parameters such as perspective, background noise, or signal
decimation can cloud the underlying similarity. The first of
these problems can be addressed by considering the inter-
nal (temporal) dependence of the signal that act on the time
interval [0, 1], and the second can be described by external
transformations that act on the space .S. In this paper both
of these are considered, as well as joint transformations that
act on the whole space [0, 1] x S in a coupled way.

As a first example, consider when X;(¢) are two scalar
functions each describing the audio signal of spoken text
“The rain in Spain stays mainly in the plain.”! X; (¢) could
be the template of how this phrase should be spoken, and
X>(t) could be how someone with an accent says (or sings)
the same phrase. Though d(X (t), X2(¢)) will not be small
if the second person has a strong accent or carries certain
syllables longer while singing, the expansion or contrac-
tion of certain syllables over time can be compensated for
by instead reparameterizing both to a standard timescale by
defining

Yi(t) = Xi(m(1)) M

where
7;:[0,1] — [0,1]

are smooth monotonically increasing functions with smooth
inverse. The set of all such functions forms a group (7, o)
under the operation of composition of functions. That is,
giventy, 2 € T,

(ror)(t) = 7(7'(1)

is also in 7T, and satisfies all of the group axioms such as
associativity, and the inverse group element 7 1(¢) is the
inverse of the function 7(¢) which exists due to monotonic-
ity, and the identity element is e(t) = t. Let us call this the

1See YouTube for this part of the movie My Fair Lady



temporal reparameterization group, TRG. This is actually
an infinite-dimensional group of transformations that act on
[0, 1]. Then we can say that X; (¢) and X5 () are fundamen-
tally the same if there exist 71,75 € 7T such that?

/0 1[d(Y1 (t), Ya(t))])?dt = 0 (2)

even if d(X(t), X2(t)) > 0 for all values of ¢.

Of course, it would not be feasible to construct a search
over the space 7 x T since 7 is infinite dimensional. Herein
lies one of the fundamental contribution of this paper: It is
possible to independently obtain 7;(¢) resulting in reparam-
eterizations Y;(¢) each on a universal standard timescale,
UST, using a particular variational calculus formulation that
is realizable in O(N') computations where N is the number
of time steps in the recorded sequence.

This is not limited to the scalar case described in the au-
dio example. For example, if a robot arm is doing free-
form manufacturing with a milling tool as its end effector,
it could be that the same path is traversed by two different
trajectories implementing the same task, but with different
dwell times or different rates along different parts of the
trajectory. In this case the problem might be modelled with
S = SE(3), which is the 6-dimensional Lie group of rigid-
body displacements with group operation being matrix mul-
tiplication when elements are expressed as matrices of the

form
R t

X = . 3)
o 1
Here R is a 3 x 3 rotation matrix, t is a 3D translation vector,
and 07 is a row of zeros. Then a metric (distance function)
on this space is

d(X1, Xs) = || log(X{ " X2)||r )

where || X || = /tr(X XT) is the Frobenius matrix norm.
Note that d(X;,X2) is left invariant in the sense that
d(XQXl, XoXQ) = d(Xl, X2) for arbitrary X(), Xl, XQ €
SE(3).

Group theory appears in several ways in this problem.
In additional to .S possibly being a group in some contexts
(such as when the signal is a robot trajectory), and the TRG
is a group which is used to internally quotient out the effects
of temporal fluctuations, it can be desirable to simultane-
ously quotient out the effects of other “nuisance groups”
[23] that externally act on S. For example, if two video
sequences of a person waving is presented from two differ-
ent viewpoints, and we wish to discern whether the actions
are actually those of waving as opposed to throwing a ball,
then the the effects of viewpoint on each image in each of

2As a practical matter, often one seeks to minimize the integral of the
square of a metric to eliminate square roots under the integral.

the sequences can be quotiented out as well. For example,
if G is a group such as SL(3,R) when considering homo-
graphies [16], or SE(2) when considering rigid template
matching in the image plane [7], or SO(3) when consider-
ing image matching from fish-eye lenses [17], or an affine
transformation approximating a perspective transformation
in a pinhole camera [12], then [7]

Dg(Xl,Xg) Zmlnd(thXg) (5)
geG

is a metric on the quotient space G\S where - denotes
the action of G on S. Invariant recognition of signals
then becomes one of matching in the double quotient space
G\S/T. The contribution of this paper is developing the
mathematical framework to do this. But first, a brief review
of what is usually done in the literature is provided.

1.1. Related Literature

The pattern recognition literature is immense, and is di-
vided into the subcommunities centered around different
application areas such as computer vision and image under-
standing, speech recognition, and robotics. In all of these
areas deep learning has made tremendous strides in recent
years. See, for example, [14, 15, 22]. A method used in in-
formation processing and pattern recognition, originally de-
veloped for audio signals [2, 19], is dynamic time warping.
In the simplest implementation of this method, a measure
of similarity between each point in two sequences is used
to generate a pairing cost in a bipartite graph. The resulting
matching is usually computed in O(NN?) time when there
are O(NN) points in each sequence, though algorithms exist
to reduce this computational burden somewhat [21].

This paper provides the mathematical framework for a
very different alternative. Rather than morphing (or warp-
ing) one audio or image sequence to fit another, the goal
here is to reparameterize each time-varing object to its own
natural time scale, and to simultaneously quotient out the
effects of nuisance groups. (Much of this paper is con-
cerned with the theoretical underpinnings justifying how
to do these computation). Then two sequences can be
compared directly pointwise. Since the optimization of
each trajectory consisting of N points requires O (V) com-
putations, and since there are no computations associated
with cross-comparison between trajectories in this approach
(only pointwise comparison after reparameterization), the
whole approach has O(N) complexity. The genesis of this
idea (without the nuisance groups) was a discussion on this
topic in the context of a particular application with Ms.
Yixin Gao [11].

Peripherally related works on sophisticated geometric
methods for shape analysis in computer vision include
[3, 9, 18, 24, 25]. The present formulation follows from
the author’s concrete work in robotics in [5, 6].



1.2. Structure of the Remainder of the Paper

In Section 2 a class of problems in the Calculus of Varia-
tions that is directly related to efficiently selecting elements
of the temporal reparameterization group, 7, for establish-
ing correspondences between signals in general Rieman-
nian metric spaces (9,d) is articulated. In particular, a
proof is given that this class of variational calculus prob-
lems yields a globally optimal solution. Section 4 then dis-
cusses more widely the question of when variational calcu-
lus problems are guaranteed to have globally optimal solu-
tions generated by the Euler-Lagrange equation, and how a
bootstrapping procedure can be used to expand the scope of
problems that have such globally optimal solution.

2. Global Optimality in Variational Calculus to
Reduce Searches Over S to S/T

The Calculus of Variations addresses the problem of
seeking vector-valued functions x(t) that extremize func-
tionals of the form

1
J= / F (x5, 8) dt ©)
0

where X = dx/dt. As in usual calculus, the result can be ei-
ther saddle-like solution or local or global minimum, maxi-
mum. Necessary conditions for such solutions are given by
the Euler-Lagrange equations:

af d (of\
8xdt(8x>0 ™

where derivatives with respect to vectors are interpreted as
gradients. When x(t) is one dimensional it is denoted as
x(t).

The Euler-Lagrange equations only provide “first order”
necessary conditions for a local (or weak) extremum.
Stronger necessary condition due to Jacobi also exist, but
even then there is usually no guarantee that a solution of
the Euler-Lagrange equations will be globally optimal.
However, in certain situations (including optimal temporal
reparameterization), the structure of the function f(-) will
guarantee that the solution generated by the Euler-Lagrange
equations is in fact a globally optimal solution. In particu-
lar, we have the following.

THEOREM 1: When the integrand in the cost func-
tional (6) is of the form

[z, i) = i*g(x) (8)

where g(x) is differentiable and g(x(t)) > 0 for all values
of t € [0,1], then the solution generated by (7) subject to
the boundary conditions x(0) = 0 and x(1) = 1 is globally
minimal. 3

3Such cost functions arise in reparameterization in natural ways.

Proof. Evaluating (7) with (8) gives

g
2ig + 222 — 0. ©)
Ox
Multiplying both sides by & and integrating yields the exact

differential
d

dt
Integrating both sides with respect to ¢ and isolating & yields

(i°g) = 0.

#=cg ()

where c is the arbitrary constant of integration. With the
boundary conditions 2(0) = 0 and x(1) = 1, we can then
write

where

1
c:/ g%(cr) do.
0

The notation z* indicates that this is the unique solution
obtained from the Euler-lagrange equations that satisfies
the boundary conditions.

The function F'(z*) = ¢ can be inverted (¥ is monoton-
ically increasing since g(z) > 0) to yield z* = F~1(¢).

To see that this solution is globally optimal, substitute

1
i :9’%(96*)/ 0
0

into the cost functional

[N

(0)do (10)

1
J(y) = /O o(y)ida

where y(t) is any function in 7. Then

2

J(x*)—(/olgéu*)dx*) —(/Olg

where the second equality is simply a change of name of the
dummy variable of integration. Furthermore, since x* and
y are both functions of time, we can change the domain of
integration as

s =( lg%@(t))ydt)

Since in general, from the Cauchy-Schwarz inequality,

( / G dt)2 <[ o

we see that by letting f(t) = g2 (y)g that
2

('

2

(y) dy) ;

Nl

2

Nl=

1
<y<t>>ydt) < / o(y)(§)%dt



and hence
J(z*) < J(y)

where 2* (¢) is the solution generated by the Euler-Lagrange
equation and y(¢) is any function in 7. Therefore 2*(t) is a
globally minimal solution. O

Note: The condition that g(x) is differentiable was re-
quired to use the Euler-Lagrange equation, but if (10) had
been hypothesized independently, this condition could be
relaxed to continuity (which is still required in order to be
able to invert F'(+)), and the global optimality of the solution
would persist.

As an example of how (8) arises, consider when S =
R™>™ and the metric d is a matrix norm of the difference
of two elements. Then

A(X (t+dt), X (1)) = | X (t+dt) — X(8)|| = ||dX/dt] dt.

Recall that Y(¢) = X (7(t)) is the reparameterized version
of X (t). Then minimizing the integral over ¢ € [0, 1] of

2

dy L2 2.
1% = X = 1) 72

- HiX“(t”

gives an f(-) of the form in (8), with 7 taking the place of
and g(7) = || X’ (7)||?. (Here, of course, X'(7) = dX/dr.)
In other words, identifying the element of the TRG that op-
timally reparameterizes time boils down to precisely solving
the globally optimal variational calculus problem addressed
in the above theorem. The global optimality is critical be-
cause it means that there is a unique way to reparameterize
the temporal dependence of a signal so that the temporal
fluctuations are spread out as evenly as possible.

3. Bootstrapping Global Optimality to Larger
Spaces

The theorem presented in the previous section begs the
more general question of when solutions to variational
problems are globally optimal. To the author’s knowledge
two classes of such problems have been addressed in the
literature.

First, in Riemannian geometry, a cost function of the
form

f(X, X) =

where T' denotes the transpose of a vector or matrix and
G(x) is the metric tensor for a Riemannian manifold
with negative sectional curvatures is know to have unique
geodesics, which hence globally minimize the functional
(6). For example, in the Poincaré solid n-dimensional open
unit ball model of the hyperbolic space, the metric tensor
G(x) = [gi;(x)] withx € B" C R™ is

45“

(1-xTx)?

xTG(x)x

gij(x) =

where 6;; is the Kronecker delta. This G(x) is known to
have constant negative sectional curvature of value —1, thus
guaranteeing that any geodesic connecting two points has
minimal length [1, 4, 10, 20]. In contrast, for a space of non-
negative curvature such as the torus or sphere, geodesics
exist that are not necessarily minimal length (e.g., one can
take the long way around a great arc to connect two points),
and hence global minimality of length is not guaranteed for
geodesics between arbitrary points in general Riemannian
manifolds.

The second class of functions that globally minimize
(6) have been studied in the variational calculus literature.
These are cost functions f(x,x,t) where x € R™ and f
is jointly convex in both x and x [13, 26]. (This idea
also generalizes to non-Euclidean spaces with the notions
of geodesic convexity.)

Note that the theorem presented in the previous section
does not fall neatly into either of these categories since
no curvature or convexity restrictions are placed on g(z).
Moreover, as will be shown shortly, higher dimensional
globally optimal solutions that build on the results of the
previous section can be constructed which neither corre-
spond to a geodesic in a negatively curved space, nor corre-
spond to f(-) being convex. (Recall that the only constraints
to do the operations in the proof were that g(x(t)) > 0 for
all t € [0, 1] and g(x) needed to be differentiable.)

One way to construct higher dimensional variational
problems with globally optimal solutions is when

KTGx) % =) gilw) i3
=1

Then n decoupled one-dimensional problems of the sort in
the previous section result. Hence, if a problem exists that
can be decoupled into the above form by a change of coordi-
nates, the variational problem will have a globally minimal
solution even though G(x) may not correspond to a space
of negative curvature, nor would f(x,X,t) necessarily be
convex.

The following theorem addresses a class of multi-
dimensional globally optimal variational problems which
will be useful in the context of joint optimization over an
externally acting nuisance group and the internally acting
TRG. In this theorem, the notation ||s||yy = (sZWs)2 (the
weighted Euclidean vector norm with symmetric positive
definite m x m matrix W) is used.

THEOREM 2: Suppose that the Euler Lagrange
equations provide a global minimum to the problem in (6)
with x € R™ with specified boundary conditions x(0) and
x(1). Then if s € R™, the new variational problem in
the variable q = [x*,sT]T € R"™™ will have a globally
optimal solution with specified boundary conditions q(0)



and q(1) when f is replaced with ¢ as

P(a,q,t) = f(x,%,t) + c(x,%,8,1) (1D

where 1
c(x,%,8,t) = 5[5~ Ay,

A(x) = [Ai;x)] is any differentiable m x n matrix satisfy-
ing
8Aj1- 3Ajk
= 12
ox, oz; ’ (12)
and W = W (t) is any differentiable positive definite mxm
matrix function of time.

Proof. The Euler-Lagrange equations for this problem,
0 d (0
90 _2(92) ~o (13)
oq dt \0q

reduce to two sets of equations, one associated with the vari-
able x of the form

af d (0f d 7 ) .
+§X [XTAT(x)] W (s — A(x)%) =0, (14)
and one in s of the form

dc d (0c d ) .
o g (85) = S W(E- AKX} =0 (9

Integrating (15) with respect to time gives
W(s—A(x)x) =a (16)

where a is an arbitrary constant vector in R™,
Substituting (16) back into (14) and using the chain rule
together with (12) gives

% (AT(X)) = ({% [XTAT(X)] ,

which means that (14) reduces to (6), and so the optimal
solution for the “x-part” of the problem again will be x*(t)
of the original variational problem in x. Then, with this
x*(t) computed, the solution to (15), or equivalently (16),
will be

s*(t)=b + i {WE]rfa+ Ax*() x* (')} dt’

where a and b are determined by fixing s(0) and s(1). The
cost associated with f(x*,%*,t) is as low as it can be since
x*(t) is by definition the global minimizer of the original
variational calculus problem. The cost

1
Za"wla

o(x*,x*,8",t) = 5

is as low as it can be while satisfying initial conditions. This
can be observed by adding any perturbation to s*(¢) that
preserves the boundary conditions — the result is an increase
in the cost ¢. Hence q*(t) is the globally optimal solution
defined by (x*(t),s*(t)). O

In the case when

f(x,%x,t) = %ng(x)x,

then the integrand in the functional for this composite prob-
lem can be written as

x]" %
o(x,%,8,t) = % G(x,t) . (17)
where
G(x) + AT(x)W () A(x) AT (x)W(t)
G(x,t) =

This sort of globally optimal variational calculus problem
does not generally fall into the negative curvature scenario
(even when restricting W to be constant), nor will f(-) be
convex in general.

A consequence of this reasoning is that it can be iterated.
In other words, now that a globally optimal solution is ob-
tained to the variational calculus problem with functional
o(q*(t),q*(t),t), an even higher dimensional problem can
be built on this, and so on. This is why the approach is re-
ferred to here as bootstrapping. The next section explains
how this theorem can be used in the simultaneous mini-
mization over internal (temporal) alignment via reparam-
eterization, and external alignment by removal of nuisance
group parameters such as differences in individual perspec-
tive, pose, etc.

4. Searches Over G\ S

Consider a signal that evolves on the intersection of a
solid block B C R" (i.e., interior of a cube) and the integer
lattice Z", resulting in S = Z™ NB, as would be the case for
video images when n = 2. If we think of the n-dimensional
block of data as being infinitely zero padded, then the block
of data can be viewed as*

Xei 29z, = h(z,t)

where z = (21, 29, ..., 2,]T € Z". Moreover, we can in-
terpolate pixel values off lattice so that for each value of
t € [0,1] the function  : R™ x [0,1] — R is well
defined.

4Here the values in each matrix entry is taken to be a non-negative
scalar, but for color video it could be viewed as vector valued.



Now suppose that G is a Lie group that reflects nuisance
parameters, and suppose that data is collected from a dy-
namics scene as

(Here the different actions on X and x are both denoted
as -, but there is no ambiguity because they are clear from
the context.) It can be that g(¢) is dynamic in scenarios
such as a hand-held video camera, or g(t) = go could be a
fixed unknown element of GG. Regardless, it is desirable to
quotient out the effects of G.

The static case can be handled by using a metric on the
space of images that is left invariant, because then for any
pair of two images in the sequence

d(go - X(t1), 90 - X (t1)) = d(X (t1), X (t1)).

Moreover, in cases where the data evolves directly on G, the
invariances of G can be used to quotient out the unknown
go € G and search over a reduced space. An example of
this when G = SE(3) is given later in the paper.

In the dynamic scenario, an approach to minimizing the
effects of extraneous motion in an image block X (¢) is to
introduce a variable g(t) to compensate for unwanted mo-
tion by minimizing a cost functional of the form

=L

Using the chain rule while observing that g = ¢(t) gives

L ho(e) o1

2
dx} dt. (18)

%h(g‘1 x,t) =
(Vg x0T L) x + G

where Vh(x,t) = 0Oh/0x. Note that 4(g71) =

—g7 199! = —Eg ! where g'g = £ = 30, & By is the
body-fixed velocity associated with g(t) which evolves in
the Lie algebra of G. ¢ is expressed in the basis { E;} with

€ = [&,....,En]T where N is the dimension of1 G. Using

this and making the change of variables y = g~ - x gives
1t . oh|?
G = 5/ {/ (VRO (€ y) = 57 dy} A(g)dt
0 n

where the Jacobian determinant A(g) = |dx/dy| will be
equal to unity for groups such as G = SE(n) or G =
SL(n,R) acting on R™ in the usual way, but not in gen-
eral. For example, for A € GL(n,R) acting as y = Ax,
A(A) = |det(A)] # 1.

The structure of the above calculations results in a cost
function of the form

1
G = % / {€"M(g,1)€ —26Tb(g,t) + (g, 1)} dt
0

1
/O Flg. & )dt (19)

Interestingly, in the case when A(g) = 1, the quantities M,
b, and ¢ become independent of g. Regardless, there are two
ways to approach this variational problem. One way would
be to introduce coordinates, g, and express g = g(q) and
¢ = J(a)qand to write f(g(q), J(q)q,t) = ¢(q,q,t) and
then to use (13). Alternatively, the lesser-known general-
ization of the Euler-Lagrange equation known as the Euler-
Poincaré equation can directly address variational mini-
mization of (19) in a coordinate-free way by solving

d (0f\ | ~~ Of 0oz

= Zloke =B 20
dt (afz') * Z o0&, & f @9
J,k=1

where { F;} is any basis for the Lie algebra of G, the direc-
tional derivatives F; f are defined as

(Bif)o) = (g0 exp(tEr)

)

t=0

and ij are the structure constants of the Lie algebra such
that [E;, Ej] = 37, CF; Ey. For a matrix Lie group such as
SE(3), the Lie bracket, [-, -], is simply the matrix commu-
tator.

For a detailed derivation of (20) and special cases in
which global optimality of solutions to the Euler-Poincaré
equation can be guaranteed, see [8].

Substituting (19) into (20) in the case when A(g) = 1
gives

d N

o <; My (t)& — bi(t)> +

N N

Z (Z My (t)& — bk(t)> Ché& =0 2D

4,k=1 \I=1

If we seek the solution £*(¢) that minimizes this with the
boundary conditions left free, the result is simply

¢ () = [M(®)]"b(t). (22)
But if boundary conditions other than &(0) =

[M(0)]~'b(0) and £(1) = [M(1)]"'b(1) are required,
then (21) would need to be solved numerically.



5. Reducing Searches to G\ S/T

Three problems have been considered previously:
(1) globally optimal temporal reparameterization; (2)
bootstrapping global optimality to higher dimensional
spaces; and (3) variational minimization over Lie groups to
ameliorate the effects of nuisance parameters. This section
ties these topics together by addressing simultaneous
minimization over G x 7.

THEOREM 3: If A(g) = 1, then the globally mini-
mal solution to the variational problem with cost function

2
dx} dt

in the variables (g(t),7(t)) € G x T with 7(0) = 0 and
7(1) = 1 and free boundary conditions on g(t) and its
derivatives, is equivalent to first globally minimizing the
variational problem in (19) over G, followed by solving the
temporal reparameterization problem over T in (8).

d, 1

Zh
T (g

'X7T)

Proof. Following the same steps as those which led to (19),
when A(g) = 1, C5 can be rewritten as

2

dy} dt.

1 [t oh
“=3 /0 { L.
1

% /0 {€"M (7)€ — 26" b(7)7 + c(1)7?} dt

(V) 7€ y) - 52

The result is of the form

Cy =

1
/0 fEr ) dt, 23)

where the components of b(7) are

b(r) = [ 1T (B 3) 5y

The resulting variational equations (combination of E-P
and E-L) are

7 <ZM11 )& — bi(T)T >

7)§ — bi(7)7 > Cri&; =004
and
d 1 d
ZAe(r)F = €Tb(r)} = 5o
(25)
Denote the solution to the variational problem in (19) as
& (t), which for given ¢(0) defines g7 (¢). Explicitly, & ()

{TdM erb db

£—

is given in (22) when the boundary conditions on () are
free and A(g) = 1. Let g(¢) = g7(7(¢)) and use the chain
rule. This results in £(¢) = &7 (7(¢)) 7(¢), which after sub-
stituting in (23) changes the functional to

F&r, 7, 7) = ga(r)7? (26)
where
*\ T 1
()7b(r) + 5e(7)
b" (7)[M(7)]"'b(7)}.

) = SE)TMEE -
1
= e -

The notation go(7) denotes that the computation of this g(7)
follows the computation of &7 (t).

Variationally minimizing the functional with (26) over
over 7(t), which is of the form in Theorem 1, then gives
75(t). It is easy to see that £ = & (7)7 solves (24) for
the same reason that &5 () solves (19), independent of the
behavior of 7(t). Moreover, substituting

(9(t), (1)) = (91 (72 (1)), 72 (1)),

and hence

§(t) = &1 (3 (1)) 72 (1), 27)
into (25) reduces to exactly the same thing as (9) with
z(t) = 75 (t) and g(x) = g2(7) since

e(7)T = (€1)"b(1) = 2g2(7)

and

TdM Tdb lde dg,

ST G @ D=

Therefore solving (24) after first computing &5 (7)7 in
for £(t) reduces (24) to the variational problem of minimiz-
ing the functional with integrand (26), the form of which is
known from Theorem 1 to produce a global minimum. [

Note that the integrand in (23) can be rewritten as
r b(r)b” (1) . b)Y’
e (i) - P e et (7 - 257

which becomes the bootstrapped cost in Theorem 2 in the
trivial case when M, b, and c¢ are all independent of 7.

6. An Action Recognition Example

Consider a random person who is asked to come into
a room and stand at an arbitrary position and orientation
and is asked to remain stationary other than moving his/her
arm. Assume that the room is retrofitted with video and/or
RGBD cameras so that this imaging system unambiguously
recovers a trajectory of the person’s shoulder, elbow, and



hand, so that a trajectory: Xi1(t) = (S(¢), E(t),H(t)) €
SE(3) x SE(3) x SE(3) is observed. The goal is to de-
termine whether or not this trajectory might correspond to a
known behavior. Suppose that in a database, trajectories for
the acts of waving, throwing, scratching one’s head, giving
a thumbs up, raising a hand to ask a question, and rubbing
ones’ eyes are stored. Suppose that the trajectories for each
of these behaviors has already been observed from several
recordings of previous people also at random positions in
the room, and and has already been stored with temporal
variations quotiented out, as well as normalizing for scaling
effects due to the different sizes of the people. Let X5(t)
be any of these prior annotated behaviors which have been
stored using an optimally reparameterized timescale.

The methodology presented earlier in this paper then
provides a way to rapidly compare X (t) with each can-
didate X5(t) by allowing the freedom to temporally repa-
rameterize X1 (¢) as X;(7(¢)). The problem of quotienting
out the effects of nuisance groups in this scenario is partic-
ularly amenable to efficient solution because S = [SE(3)]3
is a Lie group, which is acted on by g(t) € G = SE(3) as

g9(t)-(5(t), E(t), H(t)) = (9(t) S(t), g(t) E(t), g(t) H(t)).

Since both the current person as well as those who con-
tributed to the database stand in the room at random po-
sitions and orientations, one might think that the effect of
this unknown pose (which corresponds to g in the above
equation and in (5)) would need to be accounted for. Tt
might seem like this would require a lot of effort to sam-
ple a lot of values to do the minimization, but there are
better ways. For example, new variables (S(t)"'E(t),
S(t)"tH(t), E(t)~"*H(t)) could be recorded that automat-
ically quotient out the effect of G = SE(3) in (5)). Sim-
ilarly, using the trajectory as an object rather than each in-
stance in the trajectory gives

Xi(t) ' Xy (t+ At) =
(S()T'S(t+ At), B(t) " E(t + At), H(t) ' H(t + At)).

which is invariant to X, and which can be optimally repa-
rameterized using the methodology resulting from Theorem
1 to compare directly with previously observed behaviors.

Another way to minimize the effects of the nuisance
group is by using the fact that SFE(3) has two screw in-
variants. One corresponds to the angle 6 in the expression
R = exp(fn) where 11 is a 3 x 3 skew-symmetric matrix
with the property that hx = n x x where n is the axis of ro-
tation and x € IR3 is arbitrary. The second, d = n”'t where
t is the translation vector in (3), corresponds to the distance
travelled along the screw axis. The meaning of these invari-
ants is that they are constant with respect to conjugation in
the sense that for any A, B € SE(3)

0(ABA™') = 9(B) and d(ABA™') = d(B).

Consequently, even though (E(t)S(t)~1, H(t)S(t)™1,
H(t)E(t)~1) and X; (t+At) =1 X (t) (with inverses on the
right), the screw parameters provide two scalar signals that
can be be used to match with scalar signals in a database.
And so reparameterization can take place either at the level
of a trajectory in the group [SFE(3)]® with g(t) € SE(3)
quotiented out, or the reparameterization can take place at
the level of signals in the space of invariants.

In contrast, if only one rigid-body can be tracked instead
of multiple features such as shoulder, elbow and hand, then
there is no way to remove the effects of g(¢) by considering
relative motions, and then the heavier computation involved
in Theorem 3 becomes the appropriate tool.

7. Conclusions

This paper presented a framework for globally optimal
reparameterization of the temporal dependence of signals
(or trajectories). This serves as a way to optimally align
two signals with O(NN) computations when each signal
consisting of N values (e.g, amplitudes, images, feature
vectors, etc.). This linear performance is achieved because
the reparameterization depends on the local rate of change
of the signal in each individual sequence and an integral
over each individual sequence, followed by pointwise
matching at the end of the process when both signals are
renormalized to a universal time scale. The methodology
builds on a class of problems in variational calculus with
globally minimal solutions, which appears not to be known
in the wider literature. The resulting method is in contrast to
how matching is currently done, which often uses dynamic
time warping. The internal (temporal) reparameterization
approach introduced here automatically provides a way
to directly compare scalar signals. Moreover, it is shown
that for the case of multidimensional signals, the effects of
nuisance groups (such as those due to changes in pose, per-
spective, etc.) which act “externally” (i.e., at each instant of
time) can be eliminated either a priori by using invariants,
or simultaneously with the the temporal reparameterization.
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