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ABSTRACT We present a rigid-body-based technique (called rigid-cluster elastic network interpolation) to generate feasible
transition pathways between two distinct conformations of a macromolecular assembly. Many biological molecules and
assemblies consist of domains which act more or less as rigid bodies during large conformational changes. These collective
motions are thought to be strongly related with the functions of a system. This fact encourages us to simply model a macromolecule
orassembly as a set of rigid bodies which are interconnected with distance constraints. In previous articles, we developed coarse-
grained elastic network interpolation (ENI) in which, for example, only C* atoms are selected as representatives in each residue of
a protein. We interpolate distance differences of two conformations in ENI by using a simple quadratic cost function, and the
feasible conformations are generated without steric conflicts. Rigid-cluster interpolation is an extension of the ENI method with
rigid-clusters replacing point masses. Now the intermediate conformations in an anharmonic pathway can be determined by the
translational and rotational displacements of large clusters in such a way that distance constraints are observed. We present the
derivation of the rigid-cluster model and apply it to a variety of macromolecular assemblies. Rigid-cluster ENI is then modified for
a hybrid model represented by a mixture of rigid clusters and point masses. Simulation results show that both rigid-cluster and
hybrid ENI methods generate sterically feasible pathways of large systems in a very short time. For example, the HK97 virus capsid
is an icosahedral symmetric assembly composed of 60 identical asymmetric units. Its original Hessian matrix size fora C* coarse-
grained model is >(300,000)2. However, it reduces to (84)> when we apply the rigid-cluster model with icosahedral symmetry
constraints. The computational cost of the interpolation no longer scales heavily with the size of structures; instead, it depends

strongly on the minimal number of rigid clusters into which the system can be decomposed.

INTRODUCTION

Macromolecules and their assemblages (i.e., proteins, nucleic
acids, carbohydrates, lipids, and complexes) play critical
roles in living cells. Motions and conformational transitions
are involved in the biological functions of the cell. Hence,
comprehending the mechanics of such processes is impera-
tive to understand the phenomena of life. During the last
several decades, more than 30,000 macromolecule structures
have been obtained experimentally and deposited in the
Protein Data Bank (1). Due to this large amount of structural
information, research areas such as computational biology,
bioinformatics, and protein dynamics have been growing
rapidly.

Molecular dynamics (MD) simulation and normal mode
analysis (NMA) have been utilized for the dynamic analysis
of macromolecules. Both of these are based on full-atom
empirical potential functions describing chemical properties
of macromolecules. These methodologies, however, become
computationally inefficient or impractical as the size of the
macromolecular systems of interest continues to increase. To
reduce such a computational burden, Tirion (2) originally
proposed an elastic network model in which a system is
represented as a network of linear springs. Sophisticated
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empirical potential models are replaced by a single-param-
eter Hookean potential in her elastic network model. Atilgan
et al. (3) further simplified this elastic network model by
reducing the number of degrees-of-freedom (DOF) by
coarse-graining. For example, only C* atoms in a protein
are treated as point masses and spatially proximal points are
assumed to be linked with linear springs. Only structural
(i.e., geometric) information is used to define a simple
harmonic potential function. NMA based on this coarse-
grained elastic network model has been performed to study
the dynamics of the HK97 virus capsid (4). This is com-
putationally more efficient than conventional approaches
such as MD or even NMA using full-atom empirical potentials.
Tama et al. (5) proposed the rotation-translation block meth-
od. In this approach, the macromolecule is divided into
blocks, each of which consists of a few consecutive residues,
and then the low-frequency normal modes are obtained as
a linear combination of rigid-body motions of these blocks.
NMA using the rotation-translation block method and the C*
coarse-grained elastic network model has successfully
approximated the low-frequency normal modes of large
macromolecules and assemblies (6). Although efficient meth-
ods for obtaining normal modes can be quite important, the
problem of obtaining conformational pathways addressed
here is quite different.
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To date, several approaches have been proposed to gen-
erate transition pathways using NMA. Mouawad and Perahia
(7) found four possible intermediate conformations between
the T and R states of human hemoglobin by NMA, followed
by an energy minimization process. The T structure was de-
formed iteratively along several productive modes (i.e., the
modes with the most important projection on the displace-
ment vector from T to R structures) to the distance corres-
ponding to the minimum root-mean-square deviation (RMSD)
from R. Similarly, Xu et al. (8) scaled the size of deformation
of the T structure induced by the lowest modes resulting in
a single intermediate conformation. These studies do not
yield a transition pathway between two end conformations,
but generate a few feasible intermediate conformations.

Tama and Brooks (9) succeeded to create a putative path-
way for the swelling process of an icosahedral virus by dis-
placing the initial conformation along the direction of a single
breathing mode. However, this linear method might fail to
represent anharmonic nonlinear motions such as bending and
twisting because a single normal mode only indicates in-
finitesimal motion along the direction of a more global
transformation. Miyashita et al. (10) recently addressed a
novel approach to reflect this nonlinearity of motions in
macromolecules. They iteratively generate the nonlinear
transition pathway between open and closed conformations
of adenylate kinase. In each step, NMA is performed for the
current structure and then it is displaced along several normal
modes that maximize advancement toward the final con-
formation (11-14).

Kim et al. (15) developed elastic network interpolation
(ENI), which is a purely geometry-based technique. The
essence of ENI is to uniformly interpolate the distances in
two different conformations within the context of the coarse-
grained elastic network model. ENI generates a feasible
reaction pathway between two different conformations. It is
suitable to describe the global motions of complex systems
composed of small proteins or single proteins having up to
several thousand residues within a reasonable time (i.e.,
a few hours on a desktop PC). In instances when only partial
conformational data are obtained from experiments such as
fluorescence resonance energy transfer or nuclear magnetic
resonance, ENI can be utilized to incorporate that incomplete
information in computer simulations (16). Moreover, ENI is
used to interpret massive amounts of MD data by finding
essential pathways (17).

A study of molecular dynamics has shown that most
conformational changes in macromolecules can be classified
into hinge and shear motions (18). For example, the hinge-
bending motion of lactoferrin makes the iron-ion binding site
open and close. The major conformational change in the
HKO97 viral capsid is the expansion of the capsid during the
maturation process, which is induced by the shear motion
between skewed trimers in each asymmetric unit (19). Since
these motions are associated with the collective behavior of
atoms, the structure of a macromolecule in which such
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motions play an important role can often be treated as a set of
rigid clusters. Note, however, that distributed nonlocalized
motions such as overall stretching cannot be represented with
this type of approach.

In this article, a new conformational interpolation method
called rigid-cluster ENI is addressed, which is morphing
(not NMA) of rigid clusters interconnected with distance
constraints. When two conformations of a given protein as-
sembly are reported, it is easy to verify which corresponding
substructures in the two conformations are essentially the
same up to rigid-body motion. In this case, these substruc-
tures are treated as rigid without reducing the quality of the
data used as the input or making any assumptions that have
not already been made in the process of obtaining the
original structures. In this context our method is clearly ap-
propriate, and is really the only tool available for use on a PC
to morph very large structures in a way that observes realistic
constraints on bond angles, bond lengths, and interresidue
distances.

Since the main goal of this study is to provide handy
meaningful tools to develop simple transition pathways as an
alternative to the complexities of MD, there are possible
choices of parameterization to obtain the desired combination
between model resolution and computational efficiency. For
an ideal hinge motion, rigid-cluster ENI is enough to catch its
conformational change with negligible deviation from the
target conformation. For a complex structure containing
flexible regions such as loops, we could apply the hybrid
method in which flexible regions are modeled with higher
resolution than other rigid regions (20). This tradeoff can be
adjusted by the user’s preference between resolution and
efficiency. A complete derivation is presented and then many
example systems are used to illustrate and examine these
methodologies.

METHOD
Rigid-cluster ENI

Schuyler and Chirikjian (21) recently proposed a rigid-cluster model for
which low frequency normal modes had excellent agreement with those
calculated from C* coarse-graining. The basic idea is to interconnect a set of
rigid clusters with linear springs. It is equivalent to replacing point masses
with rigid clusters in the conventional coarse-grained elastic network model.
This approach is somewhat different from the substructure synthesis method
(SSM) reported by Ming et al. (22). SSM synthesizes the normal modes for
the assembled structure from those of its substructures by applying the
Rayleigh-Ritz principle. It is much faster than directly solving the full ei-
genvalue problem. A set of constraints enforces the geometric compatibility
at the interface between adjacent substructures. However, the rigid-cluster
method assumes substructures as rigid bodies first and then NMA is perfor-
med by using standard approaches.

By adopting this rigid-cluster model, an incremental formulation is
derived here to generate intermediate conformations along an anharmonic
pathway between two conformations of the same macromolecule, which are
denoted by sets of Cartesian coordinates {X;} and {y,}, respectively. One
can build a rigid-cluster elastic network model for each of them as shown in
Fig. 1 a.
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Assume that each conformation can be treated as an assembly of N rigid
bodies. The center of mass of the i cluster is

X(t) =

1n(i)
- ia_‘iat7 1
mld;mx() (1)

where m; is the total mass of cluster i, n(7) is the number of residues in cluster

i, m; , is the mass of residue a of cluster i, and ¥; , (¢) is the vector of Cartesian
coordinates of residue a of cluster i at time 7. Hence,

n(i)
m; = Z m;,. 2
a=1

Fig. 1 b shows rigid-body motion of the /™ cluster with respect to time .
The translational displacement of cluster i is defined as

B(t) = %,(t) — %,(0), 3)

where X;(0) is calculated from the reference crystal structure. The
orientational displacement of cluster i, @;(¢), is defined as the rotation
matrix (see Appendix A),

R(@:(1)) = exp [mar(a(1))], “

where @; (7) is parallel to the axis of rotation, || @;(7) || is the angle of rotation
about that axis, and ‘‘mat’’ is the operator that converts a 3 X 1 vector into
a skew-symmetric matrix such that

0 —x x
mat(¥) = | x3 0 —x |. 5)
—X, X 0

Therefore, the position of residue @ of cluster i at time ¢ is denoted by

Foa(1) = R(&(1))(#.(0) — ,(0)) + £(0) +¥,(r).  (6)

3

Assuming small rigid-body displacements from the initial conformation,
the rotation matrix R(a;(¢)) is approximated such that

R(&(1)) ~ L + mat(&,(1)), )

where /3 is the 3 X 3 identity matrix. Substitution into Eq. 6 yields

Toa(t)27,(0) + H8,(1), ®)
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FIGURE 1 Schematic of a rigid cluster model. (@) In
this model, one rigid cluster is connected to the others
with distance constraints. This makes the system
overconstrained. Conflicts are resolved with a quadratic
penalty function as shown in Eq. 9, which is equivalent
to viewing constraints as linear springs. (b) The pose of
the /™ rigid cluster is presented. Small rigid-body
motions of a rigid cluster are assumed in this context
but exaggerated here for emphasis.

where the constant matrix H;, = [I; — mat (¥;,(0) — %(0))] € R**® and
the displacement parameter () = [/ (r) @, (r)]" € R®. Note that the
symbols ¥; and @; do not represent translational and angular velocities, but
instead describe small displacements.

We propose a cost function to calculate incremental conformational
changes of the system, which consists of N rigid clusters such that

1Nzl N n(i) n(j) . .
C= ) Z Z {Z Z kiajo(|| Xia + Hi o0

i=1 j=it1 La=1b=1
- < 2
—Xip = Hipd; || = liajs) }7 ©)
where || - || denotes the length of a vector and k; 1, is the spring constant

between residue a of cluster i and residue b of cluster j. We simply set the
value 1 for k; , j, whenever two residues are judged to be in contact in either
conformation and O otherwise (for more details, see Computational Com-
plexity, below). This cost function can be related to a classical pairwise
potential function which is a simple harmonic function at an equilibrium
state. We seek to establish a series of artificial equilibrium states between the
two end conformations by perturbing this potential at an equilibrium state.
Therefore, the goal at each iteration step is to let the system relax so that the
calculated displacement vector causes the new conformation to settle at the
new artificial equilibrium. In this way there is a penalty for the distance
between interacting pairs to deviate after each incremental motion. The value
li i 1s an estimate of the distance between these two residues in an inter-
mediate conformation, which can be chosen as

hajp = (1= @) [| ¥ia =X [| + @ [|¥ia =Fio [l (10)

where a € [0, 1] is the coefficient specifying how far a given state is along
the transition from {¥;} to {y;} (15). We only consider interconnections
among rigid clusters from the conventional elastic network model because
intraconnections within a cluster are preserved under rigid-body motions.

Intermediate conformations are generated iteratively by altering the
coefficient « linearly from O to 1. Typically we generate 100 intermediate
conformations, each of which is labeled with an index & to indicate that it is
k% along the path from {¥;} to {y,;}. For example, index O represents the
initial conformation whereas index 100 stands for the final conformation.
Unless the simulation breaks down, one can save computational time for
generating the pathway by using a larger increment value of «, which results
in reducing the number of intermediate conformations. Often protein folding
proceeds along multiple pathways. It can be anticipated that conformational
transitions can likewise follow multiple pathways, particularly if the tran-
sitions are large ones.

The square-term of Eq. 9 can be linearized as
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The above second-order terms can be written in quadratic form

X7 l xx" »
Ai' [Hi,a - H'.b]T{[z - —(13 - —)}[Hi,a - H'.b] Ai,',
N J || X H || X ||2 ] J
Giajb

(12)

where Ei,j = [ng SJT}T eRZandY = [H;, — Hj_b]&i_j. G j can be defined as
n(i) n(j)

Gi; = kiajbGiajb- (13)
a=1b=1

Likewise, the first-order terms can be expressed in a simple way such that

2(1 _%)XT[HM _H lnglJ Z zklajbgladb
X | ot
Ziajb
(14)
Eq. 9 consequently takes a simplified form with respect to &i_j as
1N 1 o7
) Z {Ai.jGi,jA,J +g,A,+B, } (15)

1l_|1+1

where Gjjis a 12 X 12 matrix, g;jis a 1 X 12 row vector, and B; is the sum
of constant terms derived in Eq. 11 such that

a(i) n(i)
=2 Y k(I X [P =20 X (| +7). (16)

a=1b=1
If we denote G;j and g;; such that
P O
Gy=|( 5 %9), g .=l v, (17)
1) Q_]l Si,j ) 1] [ 1) 1,.1]’
where P, Q, and § are 6 X 6 matrices, O;; = QJl7 and i, Vare 1 X 6 oW

vectors, then Eq. 15 can be expressed in terms of 8(r) =[5, , -- N]
€ R,

R P
C(8) = 55Tr5 + 98 +B, (18)

where I" is a 6N X 6N matrix, ¥ is a 1 X 6N row vector, and B is a constant.
They can be constructed as

ZSB.[+ Z Plb

=i+l

lfl =1, f0r1§z,j§N,
iiifi7éj

Zval + Z ulb;

=i+l

FLj ==

1Nl

Z Z Bi;, (19)

11]1+1
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where I';; is the (i, j) submatrix of I and ¥ = [y, - - -, ).
We finally obtain &, which minimizes the cost of Eq. 18 by setting its
derivative zero,

aC(S) 1 S

=T5+-9 =0 20
57 (20)

Substitution of & in Eq. 6 yields a new conformation.

Although ENI uses the elastic network model and the quadratic cost
function as discussed, this is basically not an harmonic analysis for a single
conformation such as SSM, but rather a tool to generate an anharmonic
pathway between the two end conformations. Matrix I" and vector ¥ in Eq.
20 are physically analogous to the stiffness matrix and the external force
vector, respectively.

Computational complexity

We have observed that the dynamic behavior and computational efficiency
of NMA based on elastic network models vary with the distance cutoff value
defining interactions. ENI is also sensitive to cutoff values because it is
basically derived from elastic network models. Extremely short cutoff values
representing only local interactions will cause unrealistic results that lead to
discontinuous pathways, whereas larger cutoff values will increase the
number of connections (i.e., the density of linking matrices) so that greater
computation time is required for generating intermediate transitions in large
macromolecules.

We demonstrated a way to produce uniformly sparse linking matrices not
only to increase computational efficiency for the whole interpolation process
but also to guarantee realistic results (15,16). We can connect one residue to
its neighboring residues by increasing distance until the limiting number of
contacts (i.e., 20 in this context) is reached, regardless of the actual distance
of the last connection. This enables the linking matrix to remain sparse and
uniformly dense because all residues will have the same number of connec-
tions. This is a smoothed, more uniform representation of an elastic network
for morphing of biomolecular structures.

Computational complexity varies widely depending on the choice of
model parameters. In this article we have considered two advantages of the
rigid-cluster ENI method regarding computational cost. First, we can reduce
the number of interactions from the conventional C* ENI model (Fig. 2 a).
Intraconnections within each rigid cluster can be neglected because the
distance of any two points in a rigid cluster does not change (Fig. 2 b).
Furthermore, we can eliminate most of the interconnections between every
pair of clusters because only six linear spring connections are necessary to
describe rigid-body motions of a cluster relative to another (Fig. 2 ¢). In the
present case, we leave up to 10 of the closest interconnections between every
pair of clusters. This number is still much more than needed to make a rigid-
cluster network overconstrained. That is, it is enough to describe the
structural change geometrically. However, structural details of the relatively
flexible regions such as hinges and loops will be lost and the resulting
morphed conformations could be energetically less accurate. To accommo-
date this problem, also addressed is a hybrid method representing a mixture
of rigid clusters and point masses so as not to oversimplify the flexibility of
systems.

Fig. 2 compares the density of the linking matrix based on C* ENI with
that of rigid-cluster ENI for lactoferrin. Most spring connections are
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FIGURE 2 The sparseness patterns of the linking matrices for lactoferrin. (a) The contact number of 20 is used as a cutoff in C* ENI. This map displays the
union of those constructed from the open and the closed conformations. The total number of interactions is 7562. (b) The lactoferrin structure has been simply
modeled as three rigid clusters (see Fig. 3). Intraconnections within each cluster labeled as 7, I/, and /I are eliminated and 409 interconnections remain to
represent interactions between rigid clusters. (¢) For further reduction, we leave up to 10 closest interconnections between every pair of clusters, and thus we
have only 43 connections in the union-linking matrix of rigid-cluster ENI for the lactoferrin.

eliminated and only 0.6% of all the C*~C* interactions are between rigid
clusters in this particular case. This small number of connections can save
a lot of computation time for constructing the ENI cost function in Eq. 18
from the atomic coordinates of the macromolecule provided (see T values in
Table 1).

Second, the rigid-body representation needs very few DOF to describe
system dynamics compared to an all-atom-based representation. Even C*
coarse-grained approaches applied to very large macromolecular structures
(e.g., GroEL-GroES complex, virus capsids, and ribosome) are still im-
practicable on a PC due to memory limitations. Rigid-clustering enables the
size of I to be reduced. Hence, we can save a lot of time for the matrix in-
version in Eq. 20. T, values in Table 1 shows this relationship quantitatively.
The sum of two parameters 77 and T, is a total computation time per
iteration. It is observed that rigid-cluster ENI is hundreds of times faster than
the standard C* ENI in the lactoferrin and HK97 capsid. Hybrid ENI is also
tens-of-times faster than symmetry-constrained ENI in the GroEL-GroES
complex. Unless the system dynamics is changed too much, we can simplify
large macromolecules as an assembly of rigid clusters, which can effectively
reduce many costly problems that had required a super computer to needing
only a single PC.

TABLE 1 Relationship among linking matrix density, DOF, and
computational efficiency for sample proteins
Number of
Protein* Method interactions  T[s] ' DOF T5[s] *
Lactofersin [CG] 7562 9 2073 28
[CG]+[RC] 43 0.11 18  <0.01
HK97 [CG]+[SC] 23,764 272 5376 346
[CG]+[SC]+[RC] 1037 1.5 84 <0.01
[CG]+[SC] 6910 40 1572 17
GroEL
[CG]+[SC]+[HB] 1457 2.3 162 0.08

[CG], [SC], [RC], and [HB] are the abbreviation of coarse-grained C* ENI,
symmetry-constrained ENI, rigid-cluster ENI, and hybrid ENI, respectively.
*All of the tests have been performed using MatLab on a 1.8-GHz Pentium
PC with 2-GB memory. For the HK97 and GroEL, symmetry-constrained
ENI is applied instead of the standard C* ENI because these proteins are too
large to be implemented on a PC.

The elapsed time for constructing I' and ¥ of Eq. 18 in every iteration step.
*The elapsed time for calculating the inverse of I'. It entirely depends on the
DOF of each method.

SIMULATION RESULTS

Rigid-cluster ENI is tested for various systems that consist of
several essentially rigid domains. For example, lactoferrin
can be divided into three rigid clusters for its transition.
Rigid-cluster ENI generates feasible pathways in lactoferrin.
In addition, the conformational changes of symmetric sys-
tems such as the HK97 capsid and the GroEL-GroES com-
plex are studied by using rigid-cluster ENI with symmetry
constraints. Both rigid-clustering and symmetry constraints
substantially reduce the computational cost of obtaining
transition pathways for these large macromolecular assem-
blies. Hybrid ENI is also tested for the GroEL-GroES
complex, which contains rigid and flexible domains together.
The computational complexity of these methods is discussed
at the end of this section.

Lactoferrin

To apply the rigid-cluster ENI method, we have to choose the
rigid clusters first. There is no unique way to define rigid
clusters because in general macromolecules are not rigid
structures. Rigid-clustering in this context starts with the
static comparison of two end conformations based on struc-
tural information such as secondary structures and domains.
If domains of a particular system are already defined in the
literature, we can temporarily consider them as rigid clusters.
Next, we calculate the windowed RMSD to finally define a set
of rigid clusters minimizing RMSD between the two
corresponding clusters obtained from each end conformation.
Three rigid clusters have been chosen to represent the
lactoferrin structure in Fig. 3. Clusters I, 11, and III denote
head (green), left (yellow), and right (red) lobes, respectively.
Here Thr’ and Val*° bend like hinges between two lobes so
that they can open and close the ion binding site. The RMSD
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between the corresponding parts of each of the pairs of
domains is ~1 A. This value is relatively small compared
with the large conformational change between the closed
(1LFG) and open (1LFH) forms, which is ~7 A in RMSD, so
this is a good approximation.

Fig. 4 shows the pathway computed from rigid-cluster
ENI. Clusters II and /11 separate so that the ion binding site is
exposed. RMSD of all intermediates is measured with
respect to the target (open) conformation. It decreases mono-
tonically but there is 1 A difference between the computed
open conformation and the real open conformation because
individual domains in the open conformation are not exactly
the same as those in the closed conformation (see Table 2).

Since we are taking a coarse-grained approach, we cannot
evaluate the detailed energetics as one usually does for all-
atom-based models. Alternatively, we calculate the simple
Hookean potential energy. Fig. 5 a shows the normalized
Hookean potential energy of all intermediates for lactoferrin
generated by rigid-cluster ENI. When we set the Hookean
potential energy of the final conformation to be O (i.e., the
final conformation is assumed to be an equilibrium state) and
the relative potential of the initial conformation to be 1, the
energy value monotonically converges to the offset arising
from the error of the rigid cluster assumption because each
of the rigid clusters in the two given conformations is
not identical. Consequently, simple evaluation of the torsion-
angle profile of the interesting residues provides us with an
indirect metric for the quality of the computed pathway in

5
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terms of the energetics. Fig. 5 b presents the changes of
virtual torsion angles at the two hinge points Thr’® and
Val*®°. These monotonic angle changes indicate that the
computed conformational transition seems to be naturally
favorable and energetically feasible.

To check the atomic clash problem, the minimum distance
among all pairs of C* atoms is measured for all intermediate
conformations. The minimum is 2.87 A between Cys®*” and
Pro®*® in Cluster /, and this intraconnection does not change
during the transition within the context of rigid-cluster ENIL.
Therefore, there is no other distance shorter than this mini-
mum intraconnection. This means that rigid-cluster ENI does
not cause any steric problems among the rigid clusters in
case of lactoferrin, which is true, at least, for this case.

The computational performance in rigid-cluster ENI is
significantly better than that of C* coarse-grained elastic
network interpolation (C* ENI). In this particular case, the
DOF in the rigid-cluster model is only 6 X 3 = 18, whereas
that of C* ENI is 3 X 691 = 2073.

HK97 Capsid: symmetry-constrained
rigid-cluster ENI

In our previous article (4), the maturation process of the
HK97 virus capsid was studied by using C* ENI with
symmetry constraints. This icosahedral symmetric capsid is
an assembly of 60 identical asymmetric units. Each unit
consists of one hexamer plus an additional subunit from an

FIGURE 4 The conformational changes of
lactoferrin generated by rigid-cluster ENIL. The
closed (left) and open (right) conformations are
displayed with two intermediate conformations
(middle) calculated from rigid-cluster ENI.

open
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TABLE 2 Three rigid clusters of lactoferrin

Cluster Residue number RMSD#*
I Gly*! ~ Lys®! 1.0
i His”' ~ Val*> 0.5
I Gly' ~ Thr*, Pro®' ~ Leu®® 12

*RMSD between two corresponding rigid clusters that come from the
closed and open conformations of lactoferrin, respectively, in units of A.

adjacent pentamer as shown in Fig. 6. In this context,
“‘subunit’” means a capsid protein unit, which is the fun-
damental element from which to construct asymmetric units
by copying itself. A subunit consists of the rigid core (A and
P domains) and two motifs (N-arm and E-loop) named by
Conway et al. (23). The rigid core (Asnlgz—Ser383) and
E-loop (Leu'**-Ala'®") are each defined as rigid clusters.
Since the pseudo-atomic model in the Prohead conformation
(1TIFO0) has been obtained by the rigid-body mapping into the
cryo-EM map (19), RMSD between corresponding clusters
in the Prohead and Head (1FH6) conformations is obviously
negligible (i.e., RMSD between the rigid cores is 0.1 A and
that of E-arms is 0.3 A). However, the flexible N-arm
(Gly'?®-Ala'"") is discarded in this context only to test the
rigid-cluster ENI method. Fig. 6 presents a rigid-cluster
model for the HK97 capsid. An asymmetric unit is rep-
resented by 14 rigid clusters (i.e., 7 subunits X 2 clusters).

Given two end conformations, rigid-cluster ENI can be
modified with symmetry constraints. It offers a significant
computational advantage because it is not necessary to
consider the whole structure but only a repeated asymmetric
unit with symmetry constraints induced by the manner of
assembly. The complete derivation is presented in the
Appendix B. It should be noted that some slow modes of
motion are not obtained in normal mode calculations when
this symmetry condition is applied (24). Fig. 7 illustrates the
conformational transition of the HK97 capsid generated with
this methodology. During the simulation, no steric clashes
occur between every possible pair of rigid clusters, regard-
less of their locations. This pathway is compared with that of
C® symmetry-constrained ENI in Fig. 8. The DOF of the
HKO97 capsid in various models is calculated in Table 3. Both

(@)

-
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rigid-clustering and symmetry constraints tremendously
reduce the number of parameters so that one can save sub-
stantial computation time.

GroEL-GroES complex: hybrid ENI

The GroEL-GroES complex assists protein folding with the
consumption of ATP. X-ray crystallography has revealed
that this chaperonin complex is formed by GroEl, GroES,
and seven bound ADP molecules (PDB code: 1AON). The
overall shape is elongated with the sevenfold symmetry as
shown in Fig. 9. Seven GroEL units comprise a ring structure
and then two rings are stacked back to back. The GroES caps
one end of the GroEL ring which is tapered toward the
GroEL-GroES interface (25,26). The GroEL and GroES
share one rotation axis and each unit of the GroEL ring is
composed of equatorial (Ala*Pro'®’ and Val*''-Pro°%),
intermediate (Cys'**-Gly'®? and Val’’°-Gly*'%), and apical
(Met'?*-Gly*") domains. A shape change of the GroEL ring
is associated with the GroES binding. When the GroES binds
to the apical surface of the GroEL ring, it is observed that the
apical and intermediate domains arise, which results in the
expansion of the cavity volume. This is called the cis ring. In
contrast, the release of the GroES from the cis ring triggers
the conformational change back to the unliganded GroEL
called the trans ring (27).

Since the equatorial domains show only a small movement
to preserve the strong interface between the rings during the
transition (28), it is not necessary that a rigid equatorial
domain be modeled as a C* coarse-grained ENI. By contrast,
oversimplification when using rigid-cluster ENI for other
flexible domains may not represent such a system well.
Hence, we treat rigid regions of each domain as rigid clusters,
whereas relatively flexible regions that connect one domain
to another domain remain as point masses in our elastic
network model. Fig. 10 shows a schematic of the hybrid
elastic network model in which rigid clusters and point
masses are linked to one another with distance constraints
(see Appendix C for the derivation). This hybrid ENI method
compromises the computational benefit of low DOF param-
eterizations with the motion detail of high DOF parameter-
izations.

(b) FIGURE 5 Characteristics of the simulated
conformational transition in lactoferrin. (a) The
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normalized Hookean potential energy is calcu-
lated for each intermediate conformation. It
decreases monotonically as the initial confor-
mation follows the rigid-cluster pathway to-
ward the final conformation. Here we note that
the rigid-cluster pathway is energetically favor-
able. (b) Virtual torsion angles for Thr’® and
Val>** vary monotonically during the transi-
tion. They act like hinges that open or close the
two lobes. These results show that the rigid-
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Chain A and Chain H are selected from 1AON as repre-
sentatives of cis and frans conformations of an asymmetric
unit of the GroEL ring, respectively. A windowed RMSD is
calculated to determine rigid and flexible regions as shown in
Fig. 11. As aresult, 11 rigid clusters and four flexible regions
are chosen as shown in Table 4. RMSD between the
corresponding clusters of cis and frans conformations is
within 1.5 A. This is relatively small when compared to the
12.4 A conformational change of a GroEL subunit during its
transition. In this particular case, Hybrid ENI with symmetry
constraints reduces the number of DOF by 98.5% compared
to conventional C* ENI (see Table 5). It also generates
a feasible pathway between cis and trans conformations as
illustrated in Fig. 12. All intermediate conformations are
compared with those of C* ENIL No steric clashes are
observed during the transition and the hybrid ENI pathway
follows the C* ENI pathway to within a 1.7 A deviation.

CONCLUSIONS

In this article, the standard C* ENI method is extended to
rigid-cluster systems. The conformational change of a rigid-
cluster system can be represented by rigid-body motions
such as hinge and shear motions. To represent these it is not
necessary to model rigid domains of the structure in atomic
detail. Only six parameters are required to capture the

intermediates
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FIGURE 6 A rigid-cluster model of the
HK97 capsid. An asymmetric unit of the ico-
sahedral symmetric structure of the Head con-
formation is represented as 14 rigid clusters (i.e.,
seven E-arms, black; and seven rigid cores,
rainbow).

translational and rotational motions of each rigid cluster.
This strategy has a big impact on computational cost because
it only depends on the number of rigid clusters modeled,
regardless of the size of the molecules. Rigid-cluster ENI has
been applied to lactoferrin. Even though the system is
modeled with many fewer parameters than in C* ENI, the
results are in good agreement with those of C* ENI. Fur-
thermore, rigid-cluster ENI is exploited to be applicable to
a symmetry-constrained system such as the HK97 capsid.
Both rigid-clustering and symmetry constraints allow us to
generate a feasible pathway of the HK97 capsid using
<0.1% of the degrees of freedom of the C* ENI. For a system
that has both rigid and flexible domains together, C* ENI and
rigid-cluster ENI are combined as hybrid ENI. This is
applied to the GroEL-GroES complex. The computed path-
way shows that hybrid ENI not only simplifies the modeling
of rigid domains, but also interpolates the motions of flexible
parts at atomic detail. Animations produced by this work are
posted on the web at http://custer.me.jhu.edu/research/
protein_kinematics/pathway_generation.html. Rigid-cluster
models may serve as a powerful and practical tool for the
study of conformational transitions in large macromolecules
where MD might not be feasible. Once again, the purpose of
this study is not to generate the unique and fully detailed
pathway, but to provide feasible and coarse-grained path-
ways at various resolutions by using several elastic network

FIGURE 7 The transitional pathway of the
HKO97 capsid from the rigid-cluster ENI. The
conformational change of an asymmetric unit is
displayed as 14 rigid clusters. The lower DOF
representation resulting from rigid-clustering
saves substantial computational time as shown
in Table 3, and produces acceptable results
compared to those of the C* ENI method.
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(a)
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FIGURE 8 Comparison between C* ENI
and rigid-cluster ENI for the HK97 capsid. (a)
The minimum RMSD of all intermediates

(b)

generated by C* ENI with respect to each
intermediate conformation generated by rigid-
cluster ENI is displayed. The rigid-cluster ENI
pathway is quite close to that of C* symmetry-
constrained ENL. It is within 1.3 A during the
swelling process of capsid with 16 A RMSD.
(b) The minimum distance between every pair
of C* atoms of each intermediate conformation
shows that rigid-cluster ENI (dotted line) also
generates a feasible pathway without steric
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models presented here (e.g., coarse-grained, rigid-cluster,
and hybrid). The pathways we have generated thus far when
applying these methods to a variety of structures have been
largely similar to one another with little local deviation. How-
ever, it may certainly be the case that in some instances residues
at critical locations can have major impact.

APPENDIX A: RIGID-BODY KINEMATICS

A rigid-body motion preserves both distance and orientation between
internal points before and after the motion. That is, if p and § are any two
points in a rigid-body, then

I ¢@)—2¢@ l=lF-ql.

where j,§ € R, g is an operator that represents a rigid-body trans-
formation, and || - || denotes the length of a vector. Fig. 13 a illustrates the
relative orientation of a body-fixed frame, denoted as {B}, with respect to
a space-fixed frame of reference, denoted as {S}. A rotation matrix is defined
by stacking the coordinates of the principal axes of {B} relative to {S},

denoted as d, 5, and ¢, respectively (29):

@

-

R =1[@bécleR™. (22)

This matrix is interpreted as a coordinate transformation when the point p
is represented by two different frames such that

Ps = Repy, (23)

where pg and py are the coordinates of point p with respect to {S} and {B},
respectively.

TABLE 3 DOF of the HK97 capsid in
various parameterizations

Asymmetric
Method* units Residues DOF Total DOF Fraction®
[CG] 60 1792 3 322,560 100
[CG]+[SC] 1 1792 3 5376 1.67
[CG]+[SC]+[RC] 1 14 clusters 6 84 0.03

The total DOF of the HK97 capsid in this particular modeling method.
*All the notations follow those in Table 1.

The fraction of the DOF of each method with respect to that of C* ENI is
displayed as a percentage.

40

clashes as does C* ENI (solid line). Note that
there is no other distance shorter than the
minimum distance of the initial (Prohead) con-
formation.

60 80 100

Index of conformations

Many different parameterizations have been developed to describe
rotations. In particular Fig. 13 b illustrates the axis-angle parameterization. A
rotation matrix can be considered as an operator that rotates a vector
resulting in a different vector under the same frame of reference (30). The
orientational displacement, @, in Eq. 4 can be decomposed into the rotation
axis vector, 7, and the rotation angle, 6, such that

@ = 0, 24
whereii = @/ || @ ||€ $? and § =|| & | € [, 7]. Here S is the unit sphere
whose center is at the origin. Using these parameters, a rotation matrix can
be written as

R(@) =I5 + (sin )N + (1 — cos 6) N°
(6N)*
|

2

where N is the skew-symmetric matrix such that N = mat(#i) (31). For
infinitesimal rigid-body motions, sin # ~ 6 and cos 6 ~ 1. Hence, Eq. 25 is
approximated such that

= exp[mat(&)], (25)

R(®) =~ I; + ON = I; + mat(&). (26)

APPENDIX B: SYMMETRY-CONSTRAINED
RIGID-CLUSTER MODEL

Suppose that a symmetric system consists of m asymmetric units and each
asymmetric unit is represented by N rigid clusters. That is, the whole system
is treated as an assembly of m X N rigid clusters. Any arbitrary residue a of
cluster i in asymmetric unit j can be related to its corresponding residue in
the reference asymmetric unit 1 by

(1) = ijil,a(t)’

X

la

@7

where R’ is the rotation matrix from asymmetric unit 1 to asymmetric unit ;.
A superscript j indicates the j™ asymmetric unit, whereas a subscript i
describes the i cluster in asymmetric unit j. In particular, i is 1-14 and j is
1-60 in the HK97 capsid. From Eq. 6, ¥/, can be written as

1 -1
R(&, (1))(¥

i ia

=1

xi.a (t)

Multiplying by R on both sides of the equation yields

(1) = RR(&; (1))(¥,,(0) = ¥](0)) + R¥} (0) + R¥ (7).
(29)

(0) = %(0)) +%,(0) +¥,(r). (28)

i—1
R'%.

ia
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Compared to Eq. 27, the left-hand side of the above equation is equal
to fjla(t) and the right-hand side of it can be expressed in a different way
such that

Kim et al.

FIGURE 9 A cartoon of the GroEL-GroES
chaperonin complex. (@) An asymmetric unit of
GroEL is illustrated with a space-filling
representation. Seven identical subunits com-
prise a GroEL ring structure. (b) The cis and
trans conformations of GroEL are displayed.
During the conformational transition between
cis and trans, the equatorial (brown) domain
acts like a rigid body. However, the interme-
diate (magenta) and apical (yellow) domains
are flexible.

Let the whole displacement vector 8(¢) be

50 =&, -

—m

A (I)T}T c R6mN, (33)

¥ (1) = RR(&.(1))R"R (¥ (0) — X! (0)) + R%} (0) + R¥/ (r) = RR(&@, (1))R" (¥ (0) — ¥(0)) + ¥}(0) + R'¥} (¢)

ia ia

= Rlexp[mar(@} (1)) | R"(£],(0) — £/(0)) + £(0) + R (1
(1)) (%,(0) — £(0)) + £(0) + R (1) = R(R'G (1)) (¥

¥ (0)

ia

= exp|[mat(R'@)

When compared to Eq. 6, it is verified that

&)(1) = R'a| (1)
(1) =R, (). G1)

= o1
From this fact, we can derive the relationship between 8{([) and §, () such
that

- RV (1 R 0 v (t
ai(t) — »VI]( ) — 3 _‘11( )
R&! (1) 0, ®)\a(
R
—R5.(1), for i=1,---,N. (32)

FIGURE 10 Schematic of the hybrid elastic network model. Rigid
clusters and point masses are considered together in this model. Solid lines
represent interconnections between objects with linear springs.
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= exp [ijm(aj (£))R™](# ,(0) — ¥(0)) + X¥I(0) + R¥, (1)

ia

0) —(0)) +#(0) + RV (). (30)

]

where &'(1) =[5 0", BT ERN (= 1. m). Using the
relationship in Eq. 32, A (¢) can be related to A (7) as

—j ol

A(r) =RA (1), (34)

12
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FIGURE 11 The windowed RMSD between cis and trans conformations
of GroEL. Values shown are for 30 consecutive residues per window. Three
domains are distinguished from one another by vertical lines. A, /, and E are
the apical, intermediate, and equatorial domains, respectively. The two
highest peaks are observed near the borders between intermediate and apical
domains. We also find other small peaks near the interface between
equatorial and intermediate domains. It shows these regions are much more
flexible than the core regions of each domain. In the Hybrid ENI model, we
keep those flexible regions as point masses, whereas rigid domains are
treated as rigid clusters based on these windowed RMSD values.
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TABLE 4 Hybrid modeling of the GroEL ring structure

Residue number Domain* Cluster/point mass
Ala? ~ Asp* Equatorial Cluster 1 (1.0)
Lys®> ~ Leu'** Equatorial Cluster 2 (0.8)
Ser'3 ~ Asp!4 Equatorial < Intermediate Point mass 1-6
Ser'*! ~ Lys'®® Intermediate Cluster 3 (0.4)
Val'® ~ Asp'®® Intermediate Cluster 4 (1.0)
Glu'*® ~ Gly'? Intermediate < Apical Point mass 7-13
Met'?? ~ Leu?? Apical Cluster 5 (1.5)
Ala®? ~ Leu® Apical Cluster 6 (1.4)
Val2®? ~ [1e30! Apical Cluster 7 (1.3)
Ser’® ~ Gly*’ Apical Cluster 8 (1.1)
Glu® ~ Leu®” Apical Cluster 9 (1.4)
Ala®”® ~ The3® Apical < Intermediate Point mass 14-26
Glu**¢ ~ Glu**® Intermediate Cluster 10 (0.7)
Glu?® ~ Gly4l4 Intermediate < Equatorial Point mass 27-32
Gly*'® ~ Pro®* Equatorial Cluster 11 (1.2)

RMSD between two corresponding rigid clusters is displayed in parenthesis
in units of A.

*The symbol, <>, indicates an interface between two domains listed. These
flexible regions are modeled as point masses.

where
R 0 - 0
P O¢ R € RONXON. (35)
0 - 0, R

Combining Eq. 34 with Eq. 18 reduces the DOF of a system by the factor m
so that

cis intermediate

53

TABLE 5 DOF of the GroEL ring structure in various
parameterizations

Asymmetric
Method* units Residues DOF Total DOF Fraction
[CG] 7 524 3 11,004 100
[CG]+[SC] 1 524 3 1572 14.29
[CG]+[SC]+[HB] 1 32 3 162 1.47
11 clusters 6
*All the notations follow those in Table 1.
where
G BIT 5i
I' =Y RT R,
j=1
Y =% (37)

where I'” is a 6N X 6N matrix and ¥’ is a 1 X 6N row vector. After finding
A (¢), which minimizes the cost function in Eq. 36, the new conformation
for the whole system can be constructed by copying the calculated reference
unit m times.

APPENDIX C: HYBRID MODEL

In this model, a point mass can be treated as a rigid cluster in which the
center of mass is the position of the point mass itself and the orientation is
not defined. Hence, H; , and 8;(¢) in Eq. 8 can be redefined as

Hi, = [I50;] € R
< =T 0 T 6
&i(1) =, (1) 03] € R, (38)
where ai,a(O) — %(0) = 0 and & (1) = 0,x3. Since the displacement vector
of rigid cluster i, denoted as gi(t), has a trivial (zero) part corresponding to
orientation in the case of a point mass, the cost function of rigid-cluster ENI
in Eq. 18 can be described in a reduced form with respect to only nontrivial
terms.
For example, consider a system that consists of one point mass and one

rigid cluster. If the point mass is treated as rigid cluster 1, then
81(r) = [FT(£) 01x3]". On the other hand, the displacement of the second

FIGURE 12 The transitional pathway of the GroEL ring structure in hybrid ENI. () Hybrid ENI is applied to generate a conformational transition from cis to
trans conformations of an asymmetric unit of GroEL with symmetry constraints. Each intermediate conformation of the single ring structure is constructed by
juxtaposing seven copies of a calculated asymmetric unit conformation. (b) A perpendicular view of the GroEL structure. During the transition from cis to
trans, two helices (black) composed of Glu®*® through Ile*>* and Asp®®" through Lys®’" in Cluster 9 swing outward, resulting in the collapse of the apical
domain by 13 A along the rotation axis.
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(real) rigid cluster is denoted as 8, () = [71(r) @ ()]". Using this notation,
the cost function is written in component form as

[ a b a b
r, i, I, I', v,
C d c d =
1, 7 = T T Fu I, Fl,z r, 055,
CZE(VI O1x3 ¥, wz) a b a b =
FzA,l Fz.l Fz,z Fz.z V2
C d C d D
_FZ.I FZ‘I Fz‘z Fz,z @2
Vv
1, . . A o 63x1
AEIC AR ) I 2 (39)
V2
@,

After deleting rows and columns that multiply the zero vector (i.e., matrix
elements written as bold letters), the reduced cost function for hybrid ENI is
obtained as

| T T Tl /5
C=5(0 ¥ @), T;p || v
F;.l F;.z Fg,z @)
1 ”
3 % m) || B (40)
W,
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