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Abstract

In this paper a coarse-grained method called elastic network interpolation (ENI) is used to
generate feasible transition pathways between two given conformations of the core central
domain of 16S Ribosomal RNA (16S rRNA).  The two given conformations are the extremes
generated by a molecular dynamics (MD) simulation, which differ from each other by 10Å
in root-mean-square deviation (RMSD).  It takes only several hours to build an ENI path-
way on a 1.5GHz Pentium with 512 MB memory, while the MD takes several weeks on
high-performance multi-processor servers such as the SGI ORIGIN 2000/2100.  It is shown
that multiple ENI pathways capture the essential anharmonic motions of millions of
timesteps in a particular MD simulation.  A coarse-grained normal mode analysis (NMA) is
performed on each intermediate ENI conformation, and the lowest 1% of the normal modes
(representing about 40 degrees of freedom (DOF)) are used to parameterize fluctuations.
This combined ENI/NMA method captures all intermediate conformations in the MD run
with 1.5Å RMSD on average.  In addition, if we restrict attention to the time interval of the
MD run between the two extreme conformations, the RMSD between the closest ENI/NMA
pathway and the MD results is about 1Å.  These results may serve as a paradigm for reduced-
DOF dynamic simulations of large biological macromolecules as well as a method for the
reduced-parameter interpretation of massive amounts of MD data.

Key words:  16S ribosomal RNA, Elastic network interpolation, Intermediate conformation,
Molecular dynamics, Normal mode analysis.

Introduction

Many macromolecular structures have been solved and posted in the Protein Data Bank
(1).  There we can often find multiple conformations of certain macromolecular struc-
tures.  Some have “extended” and “compact” forms.  The structure of a macromolecule
is thought to be strongly related to its biological function.  Such functions can include
catalysis, regulation, transport, and binding of ligands (2).  The study of conformation-
al transitions among multiple forms is therefore important for understanding the rela-
tionship between structure and function.  Namely, some motions are necessary for par-
ticular functions.  Hence, comprehending conformational transitions can be useful for
understanding biological mechanisms.  This problem of elucidating transition pathways
can be viewed as a more limited problem than the folding problem.

MD simulation is used for the prediction of conformational transitions.  In MD sim-
ulation, atomic trajectories are calculated by the classical (Newtonian) equations of
motion using structural data (such as that obtained from X-ray crystallography or
NMR) as the input.  MD simulation can provide realistic molecular motions includ-
ing the effects of surrounding solvent and ions.  However, the computational cost is
very high and it is very difficult to obtain long-time-scale collective motions from
even millions of MD timesteps because MD results resemble Brownian motion in
which a time evolving conformation fluctuates rapidly.  Alternatively, NMA is used
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to analyze global behaviors of macromolecules around a low energy equilibrium
conformation (3, 4).  In NMA, the molecular potential energy is approximated as a
harmonic function using all atom empirical potentials.  A generalized eigenvalue
problem then results in eigenvalues and eigenvectors which are related to the fre-
quencies and directions of corresponding motions, respectively.  All atom NMA is
much more computationally efficient than MD simulation but still has the limitation
of data storage requirements in the case of large macromolecules.  In addition, NMA
is not able to predict large anharmonic motions and pathways.

As discussed above, MD simulation and NMA using all-atom empirical potentials
are commonly used to follow the dynamics of macromolecules.  However, the use
of atomic approaches becomes computationally inefficient as the system size
increases.  To reduce this computational burden, many authors have demonstrated
the utility of coarse-graining elastic network models by including, for example,
only Cα atoms in a protein structure representing residues and using a simplified
harmonic potential for considering internal interactions between neighboring
residues.  Such models are suitable to describe the global motions of large macro-
molecules (5-7).  Recently, NMA associated with vector quantization has been
applied for low-resolution structural data measured by cryogenic electron
microscopy (cryo-EM) to elucidate large conformational changes (8-9).

On the other hand, it is also popular to generate pathways between the two end con-
formations and visualize those conformational transitions.  Three of the most com-
mon methods are Cartesian interpolation, internal variable interpolation, and ENI.
The Cartesian interpolation approach interpolates the atomic coordinates of the two
end conformations linearly in Cartesian space (10).  The disadvantages of this
method are: (i) internal variables of solved intermediate conformations can be unre-
alistic; (ii) it can allow parts of macromolecules to pass through one another; (iii)
the resulting transition pathway depends on the orientations of the two end confor-
mations (i.e., it is not invariant under rigid-body displacements of the inputs).

An alternative interpolation approach is to use internal coordinates such as bond
lengths, bond angles, and torsion angles instead (11, 12).  If all internal variables were
interpolated simultaneously, this would produce realistic bond lengths and torsion
angles.  However, as with Cartesian interpolation, some parts of the molecule could
come unrealistically close to other parts in order to achieve a smooth simulated path-
way in the process of generating intermediate conformations.  This would produce
highly unfavorable states in the sense of high-energy interactions or steric clashes.  In
ENI we do not interpolate Cartesian or internal coordinates, but rather the two sets of
distances between spatially close atoms, which are modeled as being connected with
linear springs (13, 14).  Since we interpolate relative distance between spatially close
things, unrealistic conformations and steric clashes become less likely.

In this paper, we generate a feasible pathway for the conformational transition of the
core central domain of the 16S rRNA using the simplest potential and coarse-grained
ENI.  Our intermediates are compared with 5000 MD samples.  We can approximate,
to within a small error threshold, all MD conformations as fluctuations around our path-
way using normal modes at each intermediate.  That means the ENI method can be used
to smooth out MD results and generate average MD pathways in a computationally effi-
cient way.  Elastic network interpolation can also be used to help interpret the vast
amounts of data generated from MD simulations by identifying reaction coordinates.

Methods

NMA Using a Coarse-grained Elastic Network Model

In this section we derive a discrete mechanical model of the small conformational
changes in the core central domain of the 16S rRNA around an equilibrium.  In gen-
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eral, coarse-grained models of proteins are built by including only Cα atoms as
point masses.  Each Cα atom represents an amino acid residue.  Here we define a
coarse-grained model for RNA chains somewhat differently.  Figure 1 shows the
assembly of nucleotides and the atomic numbering that is indicated in each
nucleotide unit.  P, (O3´-O5´), (C1´-C5´), C2, C4, C5, C6, C8, N1, N3, N7, and N9
(shown as bold characters and lines in Figure 1) are chosen as point masses for a
coarse-grained representation.  The structure of the core central domain of the 16S
rRNA has been obtained at 2.6Å resolution from the PDB entry “1G1X” (15-17).
Figure 2a shows the secondary structure and sequence of the 84 nucleotides which
appear there.  This coarse-graining method reduces the system size by about 50%
so that we save substantial computational time.  We label the mass of the ith atom
as mi, and model the interaction between atoms i and j with a linear spring having
stiffness ki,j.  Given the full set of masses, stiffnesses and equilibrium positions, we
derive the global mass matrix and the global stiffness matrix.

The position of the ith atom at time t is denoted

xi(t) = [xi(t), yi(t), zi(t)]T ∈ R3. [1]

The total kinetic energy in a network of N point masses can be defined as

where δ i(t) is the small displacement vector of the ith point mass,

xi(t) = xi(0) + δ i(t), [3]

δ = [δ 1
T, …, δ N

T]T ∈ R3N, [4]

and the matrix M is the global mass matrix (14).  The total potential energy has the form

where ki,j is the (i, j) element of the “linking matrix” or “contact matrix”, which is
assumed to have a non-zero spring constant for all contacting pairs and zero for
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Figure 1: Fragment of an RNA chain with a pyrimidine
(C or U), a purine (A or G), and a phosphodiester link-
age.  Atom numbering is indicated in each nucleotide
unit.  No distinction is made between A and G and
between C and U in this coarse-grained model of RNA.
P, (O3´-O5´), (C1´-C5´), C2, C4, C5, C6, C8, N1, N3,
N7, and N9 (shown as bold characters and lines) are
chosen as point masses for the coarse-grained represen-
tation.  The other atoms are not included.

Figure 2: The secondary and the tertiary struc-
tures of the 16S rRNA.  (a) The sequence of the
core central domain of the 16S rRNA is shown.
It is composed of 5 helical sections connected by
two three-helix junctions at the ends of helix 22.
Helix 20 makes an acute angle with helix 22 in
the lower junction.  The main conformational
change appears here.  The whole swing of helix
22 relative to helix 20 is about 10Å.  In the upper
junction, helix 23a lies parallel to helix 22 and

part of helix 23b stacks on the top of helix 22.
This figure is adopted from Agalarov et al., 2000.
(b) The core central domain of the 16S rRNA is
displayed with a tube representing its backbone
with heavy atoms of the nucleotides.  Helices 20,
21, 22, 23a, and 23b are blue, yellow, purple, red,
and green, respectively.  The extended form
(right) is chosen from the MD results initiated
from the compact form (left).  This 3D figure is
generated using PyMOL (26).



pairs not in contact spatially, regardless of the atom types concerned.  Assuming
that a base ring is structurally rigid, we can impose a larger stiffness value on the
internal connections within each base in our elastic model.  In the present case, we
set the number 10 for an interaction within a base ring, while the other interactions
have 1 as a spring constant (Figure 3).  Only the ratios of stiffnesses are important
in this formulation, and hence units are unimportant.

The springs represent interactions between close atoms in identical ways and a har-
monic potential energy function defined by the elastic network model is appropri-
ate to describe small deviations from equilibrium.  In general, Eq. [5] is a nonlin-
ear potential function even though the springs themselves are linear.  However,
when we assume that the deformations are small, V can be approximated as a clas-
sical quadratic function by using the Taylor expansion

where V0 can be ignored without loss of generality, and the matrix K is the stiffness
(Hessian) matrix for the whole network (14).  Finally we get the equations of
motion that describe harmonic motions of the 16S rRNA as

Mδ̈ + Kδ = 0. [7]

Normal modes generated using this coarse-grained model can be used economically to
predict feasible collective motions about an equilibrium conformation of the 16S rRNA.

Elastic Network Interpolation

The key idea of ENI is to interpolate two sets of distances between spatially close
atoms (which are thought of as being connected by springs).  One can generate
intermediate conformations of the 16S rRNA by finding small changes in the posi-
tions of atoms induced by small changes in the distances between atoms.

Suppose that we have two extreme (“extended” and “compact”) conformations of
the 16S rRNA generated from MD simulation (Figure 2b).  In the compact form,
the 16S rRNA is bound to the ribosomal protein S15.  Helix 22 and helix 21 stack
coaxially and helix 20 lies close to helix 22 with an acute angle (18).  In contrast,
the absence of S15 induces extended conformations of the 16S rRNA in which
helix 22 swings away from helix 20 with 10Å RMSD.  Experimentally the inter-
helical angle between helix 22 and helix 20 is observed as ~120º (19) and the com-
puter simulations obtain the value of 114º (17).  The sets of Cartesian coordinates
describing representative atoms in those two conformations are denoted as {xi} and
{χ i}, respectively.  We introduce a cost function as follows

Here δ is a 3N -dimensional vector of displacements with N being the number of
atoms in each set.  An intermediate conformation is defined by the value of δ that
minimizes this cost when all other parameters are held constant.  Here the linking
matrix is formed as the “union” of the two linking matrices for {xi} and {χ i}.  The
value li,j is the desired distance between i and j, which can be chosen as

li,j = (1 - α) || xi - xj || +α || χ i - χ j ||, [9]

where α is the coefficient specifying how far a given state is along the transition from
{xi} to {χ i}.  For example, when α = 1.5, the desired conformation would be expected
to have the average value of inter-residue distances for conformations {xi} and {χ i}.

We can find values of δ that minimize Eq. [8], which itself can be approximated for
small values of || δ i || and || δ j || with the Taylor series approximation
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Figure 3: Representation of an RNA structure as an
elastic network.  For example, 4 nucleotides of 16S
rRNA are shown as collections of black dots and lines.
The spring connections between atoms within a cutoff
distance of 4Å are indicated as black and grey lines.
This network can be made either denser or sparser
depending on the cutoff rule applied.
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where Γ is a 3N × 3N matrix, γ is a 3N -dimensional row vector, and B is a constant (14).

We minimize C(δ) with respect to δ, which results in the following constraint equation:

The matrix Γ always has three zero eigenvalues corresponding to translation modes
because a translated version of γ can also minimize the cost function.  That is, the
solution to Eq. [11] is not unique.  One way we propose in this paper to address this
issue is to add a weighted Cartesian interpolation to the cost function (Eq. [8]) in
order to anchor structures in space such that

This result also depends on the position and orientation of the initially given two
end conformations.  Therefore, we superimpose {χ i} upon {xi} before simulation.
Here we choose ε = 0.1.  The new Γ matrix built by Eq. [12] is no longer singular
so that a unique δ can solve Eq. [11].

In our implementation, we calculate δ to be the solution of Eq. [12] when α = 0.01.
Then we obtain the first intermediate conformation by setting

xi → xi + δ i. [13]

The remaining intermediate conformations are then obtained in an iterative way.

MD Simulations

MD simulations are utilized to investigate the dynamic behavior of the 16S rRNA
in the absence of S15.  Both the Particle-Mesh-Ewald (PME) method and the
Generalized Born (GB/SA) model were used for computing electrostatic solvation
energies (20, 21).  The initial coordinates of the 16S rRNA were taken from the
PDB entry “1G1X” (15-17).  In this fragment, the native sequence of helix 20 and
helix 21 were truncated and helix 21 was capped by adding a GAAA tetraloop
(Figure 2a).  The sequence numbering followed that of Escherichia coli (22).
Hydrogen atoms were added to the crystal structure using the AMBER6/xleap edit-
ing program.  The simulations were performed on SGI Origin 2100 and 2000 com-
puters using the Cornell force field (23) and the Sander module in AMBER6 (21,
24).  The production runs lasted for 5ns and the time step for all simulations using
the GB/SA model was 1fs, while it was 2fs when using the PME method (17).
5000 conformations were extracted from the GB/SA data at equal time intervals for
the comparison presented in the next section.

Simulation Results

Conformational Change of 16S rRNA

From the MD simulation for the core central domain of the 16S rRNA, we obtained
5000 sampled conformations.  Figure 4 shows the RMSD between each of them
and the initial conformation.  We choose the interval between the two points indi-
cated in Figure 4 as the end conformations for a transition pathway of the 16S
rRNA, because conformation MD4698 is almost the same as the initial conforma-
tion and the swing motion of helix 22 appears clearly up to conformation MD4763.
Such a motion may be represented as a smooth collective motion with superim-
posed fluctuations.  Using these two end conformations, the ENI method generates
smoothly evolving intermediate conformations.
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Figure 4: RMSD of 5000 MD results with respect to
the initial conformation, which is indistinguishable
from conformation MD4698.  The fluctuation in RMSD
resembles Brownian motion of the 16S rRNA.  Hence,
it is very hard to recognize collective motions from
these time-involving MD results.  Two extreme confor-
mations are selected as the inputs of the ENI method
proposed in this paper.



It is well known that the characteristics of an elastic network model depend on how
the connectivity of the system is defined.  There are two common ways.  One is to
restrain a cutoff distance from one atom to its neighbors.  This method reflects the
local packing density of a system well (7).  However, the choice of this cutoff value
affects the behavior of the model.  A large cutoff makes a system very stiff with a
correspondingly large computational complexity because there are many connec-
tions.  On the other hand, a small cutoff has a computational advantage but simpli-
fies a system too much to capture the collective motions in either NMA or network
interpolation.  Alternatively, we set the cutoff to be the number of neighbors
assumed to be connected, regardless of the distance between atoms (13).  This is
suitable for generating a smooth pathway with a relatively small computational
load when using ENI.  In this context, a number cutoff of 20 is used for both end
conformations.  That is, we connect one atom to its neighbors by increasing the cut-
off distance until 20 contacts are achieved.  This ensures that all atoms are well
connected.  The linking matrix for the conformational transition is taken as the
union of the linking matrices of each end conformation (i.e., a link is defined
between any two atoms which are in contact in either end conformation).

Figure 5 shows the conformational change of the core central domain of the 16S
rRNA.  The left conformation is the initial compact form while the right one is the
final extended form.  In the middle, two intermediates are shown which are picked
from 99 intermediate conformations generated by ENI.  Helix 22 swings relative to
helix 20.  The RMSD is about 10Å during the transition.  3D movies showing this
conformational change are posted on the web (25).  One can compare the pathway
generated by the network interpolation method with MD simulation results by
observing those movies.  Our interpolation gives a smooth pathway parameterized by
RMSD while the MD simulation generates a pathway resembling Brownian motion.
Each method has its own benefits; MD models the detailed mechanics of the confor-
mational transitions, whereas ENI captures the essence of the anharmonic motions.

Comparison Between MD Simulation and ENI

In this section we compare the 5000 MD simulation results with the 101 confor-
mations (i.e. 2 end conformations + 99 intermediates) generated by ENI.  First, we
bin all the 5000 conformations according to how close each one is to the nearest of
our intermediates in the sense of RMSD.  Figure 6 shows the fluctuating motion of
the MD results.  This implies that MD conformations essentially move back and
forth along the 1 DOF pathway generated by network interpolation.  From this fact,
we hypothesize that the massive set of MD conformations fall approximately along
this pathway and the RMSD of each MD conformation from this pathway can be
thought of as a fluctuation.  The histogram in Figure 7a shows the population of
MD conformations over elastic network intermediates.  The RMSD of all the MD
members in each bin is calculated with respect to the elastic network conformation
for that bin and used to separate the histogram into three sections.

Next, we take each of our intermediates and do a normal mode analysis.  Let {xi}
be the coordinates of the elastic network intermediate that defines a particular bin
and {yi} be the coordinates of an MD conformation in that bin after optimal rigid-
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Figure 5: A diagram of the conformational transition of
the core central domain of the 16S rRNA.  A feasible and
smooth pathway for the conformational transition of the
16S rRNA is obtained incrementally by using ENI.  Two
intermediate conformations are illustrated with the two
end conformations (from left to right).  The main changes
appear around helix 22 which swings away from helix 20
associated with the RMSD of about 10Å.  The colors of
helices here are the same as those of Figure 2b.



body superposition on {xi}.  If we compute normal modes for {xi} and truncate at
a number m, which we take as 1% of the total number of degrees of freedom, then
we can define a new conformation as

where v
i
j is the displacement vector of the ith atom in the jth mode.  For each {yi},

{cj} can be determined to minimize the cost function

where c = [ci, …, cm]T.  In Figure 7b we recolor the histogram using the RMSD
minimized over 1% of the modal coordinates.  The magnitude of the RMSD is sub-
stantially reduced with 2.0Å RMSD on average.  We observe that by parameteriz-
ing fluctuations about our 1 DOF pathway using 1% of the normal modes we can
describe all MD conformations as fluctuations around our pathway.  Increasing the
number of normal modes will make this number better.  In addition, if we restrict
attention to only those MD conformations that occur between the times of the two
extreme conformations (Figure 4), the RMSD of our pathway with the superim-
posed 1% normal modes is about 1Å from the MD results as shown in Figure 8.
Figure 9 illustrates a conceptual diagram which represents the results of ENI as a
1 DOF pathway where MD data can be captured as fluctuations using a small frac-
tion of the lower frequency normal modes.
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Figure 6: Fluctuating motion of MD results along the 1
DOF pathway generated from ENI.  (a) All the 5000 MD
conformations are binned according to how close one is to
the nearest of the 101 intermediates predicted by network
interpolation.  On the vertical axis, index 0 indicates the
initial compact conformation and index 100 indicates the
final extended conformation.  MD conformations appear
to move back and forth quasi-periodically along the 1
DOF pathway generated by network interpolation in (a).
The first and the last 1000 MD conformations are viewed
at a finer scale in (b) and (c), respectively.

Σ+=
m

j=1

j
ijii c' vxx , [14]

Σ -=
N

i=1
iif 2||'||)( yxc , [15]

Figure 7: Histograms of MD conformations with
respect to the nearest elastic network intermediate.  (a)
Histogram is made up of three different sections which
are separated by RMSD values.  The bar at the upper
right corner indicates the RMSD range of each section.
(b) Likewise, another histogram is generated between
MD conformations and our intermediates.  However,
now 1% of the normal modes are used as coordinates to
parameterize fluctuations around the elastic network
pathway, and the RMSD values are substantially
reduced to 2Å deviation on average.



An Iterative Algorithm for Determining Multiple Pathways

ENI can generate a unique and smooth pathway between two extreme conforma-
tions chosen from the MD data.  This produces an “average” conformational
change which washes out fluctuations of the MD data.  However, it is not true that
all of the MD data always falls exactly along this 1-DOF pathway.  In this case we
can make a multi-pathway network which represents a variety of possible transi-
tion patterns.  Figure 10 shows an iterative algorithm for determining multiple
pathways between two states using the MD data and ENI.  The algorithm for con-
structing this network of pathways is as follows:

(1) Preprocess:
Given sampled MD sampling data, calculate the RMSD with respect
to the initial conformation in order to determine a final conformation
(which is the furthest conformation from the initial as measured in
RMSD).  Generate a unique single pathway between the initial and
final states using ENI.

(2) Decision:
Bin the MD data according to the nearest elastic network intermedi-
ates.  In each bin, calculate the RMSD of the MD samples with respect
to the representative conformation of that bin.  If the average of the
RMSD values over all bins is higher than a given threshold value, go
through the iteration process below.  Otherwise, stop here.

(3) Iteration:
Find the most heavily populated bin for the original single pathway
(i.e., the bin which has the most MD samples).  Construct a set of clus-
ters in which no pair of MD samples has higher RMSD than a given
value (i.e. users can adjust it to get the number of clusters as they want.
Increasing the number of clusters results in a denser network of path-
ways).  Select the MD point that has the lowest RMSD with others as
seed in each cluster for generating multiple pathways by using ENI.
Generate longitudinal pathways which start from the initial conforma-
tion and reach the final conformation while passing through the seeds.
Network those pathways by connecting the MD seed conformations
with conformations that are 50% along the newly calculated ENI path-
ways (see Figure 11).  Go back to the decision process.

Using the original single pathway, the average RMSD value over all bins is 4.5Å.
To illustrate the iteration process in this context, we arbitrarily set a threshold value
equal to 3.5Å.  Since the average RMSD is greater than this threshold, we move to
the iteration process.  We select the most heavily populated bin, bin35, in which we
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Figure 8: Relationship between ENI and MD over a
large motion that occurs during a short duration.  (a)
MD conformations from MD4698 (compact) to
MD4763 (extended) are binned to the nearest elastic
network intermediate.  (b) Solid line indicates RMSD
between the MD path and ours.  The worst case is about
3Å.  When we superimpose 1% of the normal modes on
our intermediates, RMSD decreases to 1Å which is dis-
played as a solid-dotted line.

Figure 9: A conceptual tube diagram for conformational
transitions.  The ENI method generates a 1 DOF pathway
between the two end conformations.  With an average
RMS error of 2Å, most MD simulation results can be cap-
tured as fluctuations in the subspace spanned by lower
normal modes of intermediates (e.g. 1% in this context).
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pathway.  We bin the MD data along this pathway

and evaluate quantitatively if this path represents
well the collective motions of the MD simulation.
If not, we can iteratively build a multi-pathway
network in order to capture all MD fluctuations
with a threshold of the average RMSD.



can choose several seed points for new multiple pathways.  Before choosing seeds,
we first make clusters as follows: (i) For example, assume the diameter of a clus-
ter to be 7.2Å.  (ii) Make the first cluster with MD samples where the RMSD with
respect to the representative conformation of the bin is less than 3.6Å.  That is,
think of this seed as the center of sphere and then take all MD samples within the
sphere’s radius.  (iii) For the remaining MD samples in the bin, make other clusters
using the rule as mentioned in the “iteration part” until nothing is left.

Including the first cluster, three different clusters are consequently built when
applying this algorithm to our current data.  The MD sample which has the lowest
RMSD with others in the same cluster is chosen as a seed from the second and third
clusters, respectively.  Using those seeds, we generate two other longitudinal path-
ways and add them to the original single pathway.  Figure 11 shows the multi-
pathway network which consists of three longitudinal pathways denoted as A, D,
and E and the additional pathways.  They are networked between three seeds and
six other points, denoted as A’, D’, E’, A’’, D’’, and E’’.

Next, we bin all of MD data again over this network of pathways.  Table I presents
the number of bins and that of MD samples in each pathway.  We then recalculate
the RMSD between the MD samples in each bin and its representative conforma-
tion.  Figure 12a shows histograms of those RMSD values.  The average RMSD is
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Figure 11: A cartoon depicting multiple path-
ways.  Each tube around a branch in this net-
work of pathways is analogous to that in
Figure 9.  The original ENI path is denoted as
A.  This can be thought of as the shortest path
between two extremes in terms of RMSD.
Two other pathways, D and E, are iteratively
added to generate a multi-pathway network.
The intermediates, A’, D’, and E’ are chosen
half way between the starting conformation
and each MD seed conformation, whereas A’’,
D’’, and E’’ are chosen half way between each
MD seed conformation and the ending con-
formation.  More detail descriptions are pro-
vided in Table I.

Table I
List of multiple pathways

Path
Name

# of
Bins

# of MD
Samples

References

A 101 87 The original ENI path. Start and end
points are included

D 99 875 The second longitudinal path
E 99 714 The third longitudinal path

AD 49 206 Transverse path between A and D
AE 49 221 Transverse path between A and E
DE 49 317 Transverse path between D and E

A’D’� 12 18 Transverse path between A’ and D’�
A’E’� 12 20 Transverse path between A’ and E’�
D’E’� 12 126 Transverse path between D’ and E’�

A’’D’’� 12 0 Transverse path between A’’ and D’’�
A’’E’’� 12 31 Transverse path between A’’ and E’’�
D’’E’’� 12 39 Transverse path between D’’ and E’’�
A’D 24 268 Longitudinal path between A’ and D
A’E 24 121 Longitudinal path between A’ and E
D’A 24 59 Longitudinal path between D’ and A
D’E 24 481 Longitudinal path between D’ and E
E’A 24 73 Longitudinal path between E’ and A
E’D 24 611 Longitudinal path between E’ and D
AD’’� 24 1 Longitudinal path between A and D’’�
AE’’� 24 71 Longitudinal path between A and E’’�
DA’’� 24 81 Longitudinal path between D and A’’�
DE’’� 24 142 Longitudinal path between D and E’’�
EA’’� 24 221 Longitudinal path between E and A’’�
ED’’� 24 217 Longitudinal path between E and D’’�



reduced from 4.5Å to 3Å, which is below the given threshold.  We can therefore
stop here.  A denser network of pathways would reduce this number further.

In addition to the above procedure for generating pathways that capture anhar-
monic motions, we perform NMA on every conformation contained in the network
of pathways.  We then allow the conformations on the pathways the freedom to
move in all the directions spanned by 1% of their normal modes.  In this way, we
can represent all MD data as fluctuations about this network of pathways at 1.5Å
RMSD on average (Figure 12b).  Table II summarizes the average RMSD values
in both single and multi-pathway cases.

Conclusions

We have described a method that uses a coarse-grained elastic network model to
generate feasible pathways for conformational transitions in the core central
domain of the 16S Ribosomal RNA.  Coarse-grained modeling and cutoffs in the
number of nearest neighbors generate a sparse and uniformly dense linking matrix
which permits efficient computations.  This is a fast method for generating confor-
mational transitions while still preserving steric constraints.  Unlike MD in which
the size of the timestep used is limited by the stiffest part of the structure, network
interpolation is purely geometric and so intermediates are generated only by the
difference in shape between the two conformations.

To compare network interpolation and MD, we take the 16S rRNA structure and
run an MD simulation from which 5000 conformations are sampled.  Then 99 inter-
mediates between the two extreme conformations are generated using ENI.
Simulation results illustrate that the ENI method presented here reliably generates
sequences of feasible intermediate conformations of the 16S rRNA without steric
clashes.  Animations produced using this method are posted on the web (25).  We
also generate a multi-pathway network based on the original single ENI pathway
and then bin all 5000 MD conformations according to how close each one is to the
nearest of our intermediates in the sense of RMSD.  By parameterizing fluctuations
about our multiple pathways using only 1% of the normal modes in each bin we
capture well all 5000 MD conformations as fluctuations.  In addition, if we only
concentrate on those conformations that occur between the two extreme conforma-
tions, the RMSD of our pathway with superimposed 1% normal modes is about 1Å
away from the MD results.  These results may play an important role in reduced-
DOF dynamic simulations of large biological macromolecules as well as the
reduced-parameter interpretation of massive amounts of MD data.
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