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Abstract
This paper introduces an algorithm to obtain the probability distribution of
the best-fit ellipsoid of an individual random-walk polymer chain from planar
projections. This algorithm allows the true three-dimensional behaviour of
polymer chains to be inferred from planar experimental measurements such as
those obtained by light microscopy. Our algorithm is effective in retrieving
the Gaussian probability density functions (PDFs) of evolving best-fit prolate
and oblate ellipsoids with axial symmetry. The implementation depends on the
properties of the projections of rigid ellipsoids from which the desired PDFs
can be retrieved by optimization. Detailed derivation of the relevant formulae
is provided, and examples are given to help to explain the algorithm. An
error analysis shows that the algorithm has good properties of convergence and
robustness. Therefore, the proposed algorithm is applicable to the analysis of
data obtained from experiments.

1. Introduction

As one of the most important gross physical characteristics of an individual random-walk
polymer, its shape has attracted many researchers’ attention. Theoretical predictions [1],
computational studies [2–7] and experiments [8, 9] have indicated that the shape of an individual
long random-walk polymer is anisotropic. However, previous research has focused mainly on
the general properties of the shape of instantaneous polymer conformations. An analysis
of the distribution of polymer shapes is lacking. This is important because, in solution, the
shape of a polymer evolves over a certain range of sizes and aspect ratios. Some researchers
simulated conformations of a random-walk chain with numerical methods and calculated
the shape distribution [2, 3], but the purpose of those studies was to prove the asphericity
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Figure 1. The relation between the best-fit ellipse and the best-fit ellipsoid.

of random walks. So far little effort has been devoted to studying the probability distribution
of the shape of an individual random-walk polymer from experimental data. This is partially
because the quantities of interest cannot be directly measured experimentally. As a step
forward, this paper proposes a computational method that will allow one to reconstruct the
distribution of spatial behaviours from planar experimental data.

Recently, researchers have used biopolymers such as actin [10, 11], keratin [12] and
DNA [13, 14] to test basic models of polymer physics. These polymers are typically
fluorescently labelled, allowed to fluctuate in solution and observed using light microscopy.
Microscopy captures two-dimensional (2D) projections of the three-dimensional (3D) shape
and motion of the polymer (figure 1) [13]. However, light microscopy techniques can only
provide a sequence of planar projections [7, 8]. No currently available method allows one to
recover 3D shape and dynamical information from 2D projections. Hence, an inverse problem
must be solved to recover the true range of 3D shape variations.

To verify the shape anisotropy of random walks, previous researchers have used the
so-called best-fit-ellipse method to approximate the shape of a long random-walk polymer
observed from experiments [8, 9]. The general idea is that from the planar projection of an
individual polymer, one can find a best-fit ellipse that encompasses the entire projection of the
polymer. This idea is easily extended to the 3D situation. That is, to use an ellipsoid to fit the
spatial conformation of the polymer. A best-fit ellipse can be considered as a planar projection
of a best-fit ellipsoid of revolution (figure 1), which is either prolate or oblate.

However, because a polymer in solution keeps changing its shape, the size, orientation
and aspect ratio of the best-fit ellipsoid, which encompasses the polymer, also change over
a certain range. The changing best-fit ellipsoid reflects the changing shape of the polymer.
Because of optical diffraction limitations, it is very difficult, if not impossible, to depict the
precise contour of a tangled polymer chain in experiments. Therefore, the best-fit ellipsoid
provides valuable information about the shape evolution of the polymer chain. Because the
best-fit ellipsoid keeps changing, it is significant from the perspective of statistical mechanics
to determine the probability distribution of its shape.

This paper shows that it is possible to retrieve the probability distribution of the evolving
shape of the best-fit ellipsoid with a large enough set of best-fit ellipses constructed from the
observed planar projections of an individual polymer. Due to limits on computing power and
the amount of data that can be reasonably collected from microscopy experiments, this paper
makes the simplifying assumption that the best-fit ellipsoid remains prolate or oblate during its
evolution process, and that the evolution of the best-fit ellipsoid follows a Gaussian distribution.
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As one can see from the following sections, a robust algorithm is developed based on these
assumptions. Given an axisymmetric ellipsoid which is randomly tumbling in space and whose
shape is changing over time, and given a finite number of snapshots of planar projections of
this ellipsoid, we seek to reconstruct the statistics of the 3D shape fluctuations. An effective
algorithm is introduced to retrieve the corresponding probability density function (PDF).

2. General principles

The main objective of this work is to develop an algorithm to retrieve the spatial probability
distribution of the evolving best-fit ellipsoid of a fluctuating polymer chain. A natural
characterization of an ellipsoid is the lengths of its three semi-axes, denoted by a, b and c
respectively with a � b � c. Therefore, the tri-variate PDF f (a, b, c) is used to describe
the evolution of its shape. Meanwhile, a number of planar projections of the evolving best-fit
ellipsoid, the best-fit ellipses, can be obtained from microscopy experiments. Denoting the
length of the minor semi-axis of the best-fit ellipse as lmin, and the length of the major semi-
axis as lmax, one can obtain the corresponding bi-variate PDF f (lmin, lmax) by calculating the
normalized frequencies of occurrence of the ellipses with different lmin and lmax [16]. With
f (lmin, lmax|a, b, c) denoting the PDF of lmin and lmax of a rotating rigid ellipsoid with specfic
values of a, b and c, there exists the relationship

f (lmin, lmax) =
∫

a

∫
b

∫
c

f (lmin, lmax|a, b, c) f (a, b, c) da db dc. (1)

This is the starting point for all the computations in this paper. The objective is to solve the
inverse problem of computing f (a, b, c) given f (lmin, lmax) and f (lmin, lmax|a, b, c).

For an evolving ellipsoid of revolution where two axes have equal length all the time,
f (a, b, c) is reduced to the bi-variate PDF f (a, b), where a denotes the short semi-axis/axes,
and b the long semi-axis/axes. Correspondingly, equation (1) is reduced to

f (lmin, lmax) =
∫

b

∫
a

f (lmin, lmax|a, b) f (a, b) da db. (2)

An evolving prolate ellipsoid has one long axis and two equal short axes. As a result, lmin = a,
and lmax changes between a and b (figure 2). Moreover, the relationship between a and lmin is
bijective, which results in the univariate PDF

f (a) = f (lmin) =
∫

lmax

f (lmin, lmax) dlmax. (3)

The conditional PDF f (lmax|a) is computed from Bayes’ rule as

f (lmax|a) = f (lmax|lmin) = f (lmin, lmax)

f (lmin)
= f (a, lmax)

f (a)
. (4)

One can obtain f (lmax|a) by

f (lmax|a) =
∫

b
f (lmax, b|a) db =

∫
b

f (lmax|a, b) f (b|a) db. (5)

Given f (lmin, lmax) generated from experiments, one can compute f (a) by equation (3), and
then f (lmax|a) by equation (4). As derived in the following sections, f (lmax|a, b) has a closed
form formula, and f (b|a) can be retrieved by using an optimization method [15, 17, 18]. Then,
the desired PDF f (a, b) is obtained by

f (a, b) = f (a) f (b|a). (6)
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Figure 2. Relationship between the axes of prolate ellipsoids and those of the projected ellipses.
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Figure 3. Relationship between the axes of oblate ellipsoids and those of the projected ellipses.

In contrast, an evolving oblate ellipsoid has one short axis and two equal long axes. As a result,
lmax = b, and lmin varies between a and b (figure 3). Equations (3)–(6) change correspondingly
into

f (b) = f (lmax) =
∫

lmin

f (lmin, lmax) dlmin, (7)

f (lmin|b) = f (lmin|lmax) = f (lmin, lmax)

f (lmax)
= f (lmin, b)

f (b)
, (8)

f (lmin|b) =
∫

a
f (lmin, a|b) da =

∫
a

f (lmin|a, b) f (a|b) da, (9)

f (a, b) = f (b) f (a|b). (10)

The following section focuses on the computation of f (b|a) of the evolving prolate ellipsoid
and f (a|b) of the evolving oblate ellipsoid.
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3. Core of the algorithm

In the case of the evolving prolate ellipsoid, we assume that f (b|a) is a Gaussian distribution

f (b|a) = 1√
2πσ(a)

exp

(
− (b − µ(a))2

2σ 2(a)

)
, (11)

where µ(a) denotes the mean value of b given a, and σ(a) is the standard deviation. To
determine f (b|a), one only needs to compute µ(a) and σ(a). To compute µ(a) and σ(a),
an effective algorithm is derived below. The core of the algorithm is an optimization method
derived from equation (5), with knowledge of f (lmax|a) and f (lmax|a, b).

To solve for f (b|a), one can discretize the domain of b into N bi values with equal
increment �b. Equation (5) changes into a discrete form

f (lmax|a) =
N∑

i=1

f (lmax|a, bi) f (bi |a)�b

=
N∑

i=1

f (lmax|a, bi)w(bi |a) = f(lmax|a, b)Tw(b|a), (12)

where w(bi |a) = f (bi |a)�b is the probability of occurrence of the intermediate rigid prolate
ellipsoid with short semi-axis of length a and long semi-axis of length bi , b is the vector of
N bi values, f(lmax|a, b) is the vector of N f (lmax|a, bi) values and w(b|a) is the vector of
N w(bi |a) values. The set of ellipses generated from the evolving best-fit ellipsoid can be
considered as originated from a set of intermediate rigid ellipsoids. To find the desired w(b|a),
an optimization method is applied.

From equation (12), one obtains∫
lmax

( f (lmax|a) − f(lmax|a, b)Tw(b|a))2 dlmax = 0, (13)

of which the discretized form is
M∑

j=1

( f (lmax j |a) − f(lmax j |a, b)Tw(b|a))2�lmax = 0, (14)

where lmax is discretized into M lmax j values.
Equation (14) can be expanded as

M∑
j=1

f (lmax j |a)2 − 2

( M∑
j=1

f (lmax j |a)f(lmax j |a, b)T

)
w(b|a)

+ w(b|a)T
M∑

j=1

f(lmax j |a, b)f(lmax j |a, b)Tw(b|a) = 0, (15)

which can be written in the simple form

C − 2dTw(b|a) + w(b|a)THw(b|a) = 0, (16)

where C = ∑M
j=1 f (lmax j |a)2 does not contain w(b|a), d = ∑M

j=1 f (lmax j |a)f(lmax j |a, b)T

and H = ∑M
j=1 f(lmax j |a, b)f(lmax j |a, b)T. From equation (16), a quadratic form

optimization problem can be constructed: namely, to find the vector w(b|a) which minimizes

M = 1
2w(b|a)THw(b|a) − dTw(b|a), (17)

subject to the constraints

0 � w(bi |a) � 1, (18)
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and

N∑
i=1

w(bi |a) = 1. (19)

Equations (18) and (19) must be satisfied because the w values are probabilities. By using a
quadratic programming optimization method, the desired w values can be computed.

From the computed w values, the mean of b can be obtained by

µ(a) =
N∑

i=1

biw(bi |a), (20)

and the standard deviation of b can be obtained by

σ(a) =
√√√√ N∑

i=1

(bi − µ(a))2w(bi |a). (21)

Then the desired Gaussian PDF is constructed by equation (11).
In the case of the evolving oblate ellipsoid, we assume that f (a|b) is a Gaussian distribution

f (a|b) = 1√
2πσ(b)

exp

(
− (a − µ(b))2

2σ 2(b)

)
, (22)

where µ(b) denotes the mean of a given b, and σ(b) the standard deviation. To compute
f (a|b), one only needs to compute µ(b) and σ(b). Discretizing the domain of a into N ai

values with equal increment �a, and denoting by w(ai |b) = f (ai |b)�b, a the vector of N ai

values, f(lmin|a, b) the vector of N f (lmin|ai , b) values and w(a|b) the vector of N w(ai |b)

values, the quadratic form optimization problem changes into

minimizing M = 1
2w(a|b)THw(a|b) − dTw(a|b), (23)

subject to

0 � w(ai |b) � 1, (24)

and

N∑
i=1

w(ai |b) = 1, (25)

where d = ∑M
j=1 f (lmin j |b)f(lmin j |a, b)T, and H = ∑M

j=1 f(lmin j |a, b)f(lmin j |a, b)T.
To construct the quadratic form (17) and (23), one must know f (lmax|a, b) for prolate

ellipsoids and f (lmin|a, b) for oblate ellipsoids in advance. The next section derives the closed
form formula of f (lmax|a, b) and f (lmin|a, b).

4. Derivation of f (lmax|a, b) and f (lmin|a, b)

In this section, the closed form formula for f (lmax|a, b) for prolate ellipsoids and that of
f (lmin|a, b) for oblate ellipsoids are derived. To derive them, the closed form formulae of lmax

and lmin are required respectively.
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4.1. Closed form formulae for lmax and lmin

The equation of a general ellipsoid is

(r − r0)
TRART(r − r0) = 1, (26)

where r denotes the position vector of a point on the surface of the ellipsoid, r0 the position
vector of the centre, R = R(α, β, γ ) is the rotation matrix describing the orientation of the
ellipsoid in space, α, β and γ are the ZXZ  Euler angles which define the orientation [19], and

A =



1
a2 0 0
0 1

b2 0
0 0 1

c2


 . (27)

The contour of the planar projection of the ellipsoid is an ellipse which consists of all the planar
projections of those points on the surface of the ellipsoid (figure 1). For a prolate ellipsoid,
a < b and

A =



1
a2 0 0
0 1

a2 0
0 0 1

b2


 . (28)

One can obtain the lengths of the two semi-axes of the ellipse as

lmin = a, (29)

and

lmax =
√

a2 + (b2 − a2) sin2 β. (30)

Equations (29) and (30) reflect the fact that when a rigid prolate ellipsoid rotates in space, the
length of the minor axis of its planar projection does not change. Only the length of the major
axis changes.

For an oblate ellipsoid, one simply switches the positions of a and b in equation (28), and
obtains the following lmin and lmax:

lmax = b, (31)

and

lmin =
√

b2 + (a2 − b2) sin2 β, (32)

where, as the rigid oblate ellipsoid rotates, the length of the major axis of its planar projection
does not change, only the length of the minor axis changes.

4.2. Closed form formulae of f (lmax|a, b) and f (lmin|a, b)

To compute f (lmax|a, b) for a prolate ellipsoid, one can sample its orientation uniformly, and
calculate the frequency of occurrence of each lmax value. Sampling the orientation uniformly
means the uniform distribution of the orientation, i.e.

ρ(R(α, β, γ )) = c, (33)

where c is a constant. From∫
SO(3)

ρ(R(α, β, γ )) dR =
∫ 2π

0

∫ π

0

∫ 2π

0
ρ(R(α, β, γ )) sin β dα dβ dγ

=
∫ 2π

0

∫ π

0

∫ 2π

0
c sin β dα dβ dγ

= 1, (34)
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one can obtain

ρ(R(α, β, γ )) = 1

8π2
. (35)

Moreover,

ρ(β) =
∫ 2π

0

∫ 2π

0
ρ(R(α, β, γ )) sin β dα dγ

=
∫ 2π

0

∫ 2π

0

1

8π2
sin β dα dγ

= sin β

2
. (36)

Because 0 � β � π , one can obtain two solutions of β from equation (30),

β1 = arcsin

√
l2
max − a2

b2 − a2
, (37)

and

β2 = π − arcsin

√
l2
max − a2

b2 − a2
. (38)

This results in the following relationship of probability:

| f (lmax|a, b) dlmax| = |ρ(β1) dβ1| + |ρ(β2) dβ2|, (39)

from which one obtains

f (lmax|a, b) = ρ(β1)

∣∣∣∣ dβ1

dlmax

∣∣∣∣ + ρ(β2)

∣∣∣∣ dβ2

dlmax

∣∣∣∣
= lmax√

(b2 − a2)(b2 − l2
max)

. (40)

For an oblate ellipsoid, one obtains two solutions of β from equation (32),

β1 = arcsin

√
b2 − l2

min

b2 − a2
, (41)

and

β2 = π − arcsin

√
b2 − l2

min

b2 − a2
. (42)

Following a similar derivation as the prolate case, one obtains

f (lmin|a, b) = lmin√
(b2 − a2)(l2

min − a2)

. (43)

5. Error analysis

The main source of error in our reconstruction method arises in the computation of f (b|a) and
f (a|b). There are two categories of errors that should not be ignored. One is the error caused
by incompleteness of the set of intermediate rigid ellipsoids which is employed to compute
the w(bi |a) values and w(ai |b) values; the other is the result of error in the input data which
is mostly caused by inaccuracies in experimental measurements.

In the following subsections, we present the results of numerical experiments with
synthetic measured data and examine the robustness of our technique to these two sources
of error.
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5.1. Error from incompleteness

The evolving best-fit ellipsoid changes its size continuously, which means that a large number
of intermediate rigid ellipsoids need to be used to retrieve the accurate f (b|a) and f (a|b).
In practice, one cannot determine the number of those intermediate ellipsoids in advance.
Therefore, an approximation with fewer intermediate ellipsoids is expected. In this situation,
some error will arise because the set of intermediate ellipsoids may not be large enough to
reflect the evolution of the best-fit ellipsoid completely. It is desirable for the retrieved f (b|a)

and f (a|b) to converge to the actual ones as the number of intermediate ellipsoids increases.
In the case of prolate ellipsoids, the convergence of the proposed algorithm can be tested

as follows.

(1) Values of a and the upper bound of b, bmax, are chosen so that b changes between a and
bmax. The domain of b is discretized into N bi values with equal increment �b, which
corresponds to N intermediate ellipsoids, where N should be a certain large integer.

(2) The mean µ0(a) and standard deviation σ0(a) of the corresponding Gaussian PDF f (b|a)

are chosen. Corresponding probability density values of f (bi |a) are calculated. Then
w(bi |a) values are calculated by w(bi |a) = f (bi |a)�b.

(3) Having derived the closed form formulae of f (lmax|a, bi) values, one constructs f (lmax|a)

using equation (12).
(4) Assuming that the PDF f (lmax|a) computed in step (3) is obtained from experiments,

the domain of b is re-discretized into K b j values which correspond to K intermediate
ellipsoids with 1 � K � N . Then the corresponding quadratic form is constructed and
the w(b j |a) values are computed by a quadratic programming optimization algorithm,
and the µ and σ are calculated. The calculated µ and σ are compared with µ0 and σ0 to
see the difference.

(5) Repeating step (4) with K = 1 to N , one obtains the relationship between the number of
intermediate ellipsoids and the errors in µ and σ . It reflects the property of convergence
of the algorithm.

As an example, we set a = 2, bmax = 12, N = 100, µ0 = 7 and σ0 = 1.5, and construct
the simulated experimental PDF as step (3). Then we retrieve the µ and σ from a set with one
intermediate ellipsoid to a set with 100 intermediate ellipsoids, and calculate the errors in µ

and σ . The plots in figure 4 show the quick convergence in µ and σ , which means that the
algorithm can be implemented with a relatively small set of intermediate ellipsoids. As one
would expect, the errors are close to zero when the number of intermediate ellipsoids increases
to 100.

The convergence in the case of oblate ellipsoids is similar to that in the case of prolate
ellipsoids, and similar plots of convergence are obtained as those in figure 4.

5.2. Error from input

The process of making experimental measurements also introduces errors that affect the
computation of µ and σ . It is important to know the impact of the input error on the output
error. That is, it is important to know how sensitive our reconstruction method is to input error.
The test procedure for the output error caused by input error is similar to that for testing the
error from incompleteness. Here, the simulated error-corrupted f (lmax|a, b) and f (lmin|a, b)

are used in the test.
In the case of prolate ellipsoids, by an input error e, it is meant that for an actual size

lmax, the measured size l ′max could be a value between lmax − e and lmax + e with a certain
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Figure 4. Convergence in mean and standard deviation.
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probability distribution. As a result, the PDF f (l ′max|a, b) is the convolution of f (lmax|a, b)

and the PDF of the error g(x), i.e.

f (l ′max|a, b) =
∫ b

a
f (lmax|a, b)g(l ′max − lmax) dlmax. (44)
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A usual type of error is the uniformly distributed error with a fixed window

g(x) =



1

2e
, −e � x � e

0, otherwise.
(45)

From equation (44), one obtains the corresponding error-corrupted PDF (figure 5)

f (l ′max|a, b) =
∫ b

a
f (lmax|a, b)g(l ′max − lmax) dlmax

=
∫ min(b,l′max +e)

max(a,l′max−e)

lmax√
(b2 − a2)(b2 − l2

max)

1

2e
dlmax

= 1

2e
√

b2 − a2

(
−
√

b2 − min(b, lmax + e)2 +
√

b2 − max(a, lmax − e)2
)
. (46)

With the error-corrupted PDF, following the same testing procedure as stated in section 5.1,
the plots of convergence in figure 6 are obtained with 0.1 and 0.01 input errors respectively.

Another type of uniformly distributed error has a changing window with a constant relative
error e with respect to its size

g(x − y|y) =



1

2ey
, −ey � x − y � ey

0, otherwise
=



1

2ey
, x

1+e � y � x
1−e

0, otherwise.
(47)

From equation (44), one obtains the corresponding error-corrupted PDF (figure 7)

f (l ′max|a, b) =
∫ b

a
f (lmax|a, b)g(l ′max − lmax|lmax) dlmax

=
∫ min(b,

l′max
1−e )

max(a,
l′max
1+e )

lmax√
(b2 − a2)(b2 − l2

max)

1

2elmax
dlmax

= 1

2e
√

b2 − a2

(
arcsin

min
(
b,

l′max
1−e

)
b

− arcsin
max

(
a,

l′max
1+e

)
b

)
. (48)

With the error-corrupted PDF, the plots of convergence in figure 8 are obtained with 0.1 × lmax

and 0.01 × lmax input errors respectively.
By comparison, one can see the same trend of quick convergence in mean and standard

deviation of both cases with and without input error. The retrieved mean and standard deviation
with an input error as high as 10% of the actual size are still very close to those without input
error. This means that the proposed algorithm can generate a fairly accurate estimate of the
actual probability distribution of the evolving best-fit ellipsoid under a potentially large input
error.

In the case of oblate ellipsoids, with the input error (45), one can obtain the corresponding
error-corrupted PDF (figure 9)

f (l ′min|a, b) =
∫ b

a
f (lmin|a, b)g(l ′min − lmin) dlmin

=
∫ min(b,l′min +e)

max(a,l′min−e)

lmin√
(b2 − a2)(l2

min − a2)

1

2e
dlmin

= 1

2e
√

b2 − a2

(√
min(b, lmin + e)2 − a2 −

√
max(a, lmin − e)2 − a2

)
. (49)
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Figure 7. Comparison between f (lmax|a, b) with and without input error e× lmax (a = 2, b = 12).

0 10 20 30 40 50 60 70 80 90 100
0 

0.02 

0.04 

0.06 

0.08 

0.1 

0.12 

0.14 

0.16 

0.18 

0.2 
Error in Mean

Mean error without input error 
Mean error with input error 0.1*size 
Mean error with input error 0.01*size 

0 10 20 30 40 50 60 70 80 90 100
0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 
Error in Standard Deviation

Standard deviation error without input error 
Standard deviation error with input error 0.1*size 
Standard deviation error with input error 0.01*size

ab
s(

µ-
µ 0

)/
µ 0

 

Number of Intermediate Ellipsoids Number of Intermediate Ellipsoids 

f (
l m

ax
|a

,b
) 

Figure 8. Comparison between convergence of cases with and without input error e × lmax.

With input error (47), one can obtain (figure 10)

f (l ′min|a, b) =
∫ b

a
f (lmin|a, b)g(l ′min − lmin|lmin) dlmin

=
∫ min(b,

l′min
1−e )

max(a,
l′min
1+e )

lmin√
(b2 − a2)(l2

min − a2)

1

2elmin
dlmin

= 1

2e
√

b2 − a2
log

min
(
b,

l′min
1−e

)
+
√

min
(
b,

l′min
1−e

)2 − a2

max
(
a,

l′min
1+e

)
+
√

max
(
a,

l′min
1+e

)2 − a2
. (50)

With the error-corrupted PDFs, similar plots of convergence are obtained to figures 6 and 8.

6. Conclusion

This paper introduces an algorithm to study the probability distribution of the best-fit ellipsoid
of an individual random-walk polymer chain from observed planar projections. The algorithm
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Figure 9. Comparison between f (lmin|a, b) with and without input error e (a = 2, b = 12).
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Figure 10. Comparison between f (lmin |a, b) with and without input error e×lmin (a = 2, b = 12).

is effective in retrieving the Gaussian PDFs of evolving best-fit prolate ellipsoids and oblate
ellipsoids. From the error analysis, one can conclude that the algorithm has good convergence
properties with respect to the number of intermediate ellipsoids employed in the approximation
procedure, and good robustness properties with respect to input error. All these mean that the
proposed algorithm is applicable to real experimental data.

The algorithm developed in this paper is a promising tool for computing the probability
distribution of the shape of a random-walk polymer chain from experimental data. An objective
of future work is to retrieve the probability distribution of evolving best-fit ellipsoids with full
3D anisotropy.
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