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Abstract

A new technique for generating statistical properties of chain-molecule conformations is presented. Conditional probability density
functions (PDFs) describing the frequency of occurrence of the relative position and orientation of frames of reference affixed to selected
backbone atoms serve as the inputs. Ensemble statistical properties of whole chains are generated by performing multiple generalized
convolutions of these conditional PDFs. The formulation is shown to include classical theories such as the hindered and freely rotating
chains, the Gaussian random walk, and the rotational isomeric state model. The convolution model is modified to include the long-range
effects of excluded volume. An analytical example is used to illustrate the procedure. A general algorithm to calculate the ensemble
properties of an arbitrary chain macromolecule is presented. In this algorithm, each of theN degrees of freedom (e.g. torsion angles) is
assumed to haveK discrete states. Using the convolution procedure, a chain is divided intoP statistical units. The computational requirement
is reduced from anO(KN) calculation (corresponding to direct enumeration) to one which isO�P�C 1 KN=P�� whereC is the computational
complexity of the convolution procedure. In the case of a homopolymer, computations are reduced further toO�C log�P�1 KN=P�: q 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The study of conformation-dependent properties of
macromolecular systems is quite old. The use of statistical
techniques in polymer chemistry dates back to the 1930s
with the work of Kuhn [1] and was extensively explored
in the 1950s [3–5]. The rotational isomeric state (RIS)
model was popularized in the 1960s with the advent of
Flory’s classic book [6], and continues to be of interest
today [9]. Work in the area of statistical analysis of macro-
molecular conformations has received much attention up to
the current day (see, e.g. Refs. [7,15,18–22,25–29]). A
number of idealized models such as Gaussian random
walks, jointed chains (with or without fixed bond angles
and hindered torsion angles), and worm-like chains have
been explored in great detail, and are explained thoroughly
in classic books in polymer science [6,8,10–14].

As a general rule, the analysis is easiest when the effects
of conformational energy can be disregarded (i.e. when all
conformations can be considered to have the same energy).
In this case, purely kinematical models such as the freely
jointed chain are used. The next level of sophistication is
when the energy of local interactions is modeled. Then
comes the RIS model in which pairwise interdependent

potentials are used. At another level of approximation, the
longer range effects of excluded volume are modeled using
self-avoiding walks [20,28]. An altogether different
approach is to do direct molecular dynamic simulations
(see Refs. [23,24] for a recent example). The primary draw-
back of molecular simulations is the intensive computa-
tional requirements.

Regardless of which technique is used, a potential func-
tion that closely models the physical reality is quite impor-
tant. One of the most popular choices is the Lennard-Jones
potential [16]. Due to the high computational cost of direct
molecular simulation, one of the most popular approaches in
conformational analysis of macromolecules is the Monte
Carlo method [17]. While Monte Carlo sampling is a very
general and powerful technique, it too has some drawbacks,
the most obvious of which is its poor performance in
capturing the “tails” of certain kinds of PDFs in polymer
science.

The approach taken in this paper is to apply an altogether
different statistical analysis of conformational properties of
macroscopically serial1 chain molecules. The basic concept
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1 A macromolecule which may contain local loops or branches, but
appears serial on large enough length scales (e.g. DNA).
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behind this work is not new: a number of reference frames
are affixed to the backbone of the molecule, and the statis-
tical properties for each segment connecting neighboring
frames are independently generated. The novelty of this
formulation results from the recognition that a generalized
convolution (in the sense defined in the next section) of
frame distributions generates the statistics for the whole
molecule. This distribution contains all the information
commonly calculated in polymer science, such as mean
squared radius of gyration and mean squared end-to-end
distance. The benefit of the method is that it also provides
a tool for naturally including the effects of conformational
energy and excluded volume (at least qualitatively) while
retaining the simplicity of a statistical analysis.

The remainder of this paper is structured as follows:
Section 2 introduces the concept of frame distributions
and reviews the mathematics of generalized convolutions.
Section 3 shows how this concept can be used to generate
macromolecule properties when the effects of excluded
volume and other long-range effects can be ignored, and
illustrates the technique with analytical examples. In
Section 4, long-range interactions are modeled and incorpo-
rated into the framework. In Section 5, closed-form analy-
tical examples based on the mathematical formulation of
this paper are described.

2. Mass density, frame density, and generalized
convolutions

In this section we define three statistical properties of

macromolecular ensembles. Later it will be shown how
these quantities are used to model the interactions of
segments which may be far apart as measured along the
chain, but are proximal in space. Before introducing these
definitions, some notation is required.

Let R3 denote three-dimensional space, andG denote the
set of all rigid-body motions.�x [ R3 is a position vector,
andg� �R; �r� [ G is a rigid-body transformation whereR
is a 3× 3 rotation matrix and�r is a translation vector. Some-
times it is convenient to represent a rigid-body motion in
three-dimensional space as a 4× 4 homogeneous
transformation matrix:

H�g� �
R �r

�0T 1

 !

(see, e.g. Ref. [9. p. 114]).
Two rigid-body motions are composed asg1+g2 �

�R1R2;R1 �r2 1 �r1�; which is the same as performing the
matrix productH�g1�H�g2� � H�g1+g2�:

The composition of rigid-body motions can also be
viewed geometrically as a sequential change of reference
frames. The inverse of anyg [ G and the identity (do noth-
ing) motion are given, respectively, asg21 � �RT

;2RT �r� and
e� �I ; �0� whereI is the 3× 3 identity matrix. The elements
of G act on position vectors inR3 asg+ �x� R�x 1 �r : A more
detailed review of rigid-body motions, including invariant
integration and convolution of functions of motion is
presented in Appendix A.

The three statistical quantities of importance in the
present formulation are: (1) the ensemble mass density for
the whole chainr� �x�;(2) the ensemble tip frame densityf(g)
(whereg is the frame of reference of the distal end of the
chain relative to the proximal); (3) the functionm�g; �x�;
which is the ensemble mass density of all configurations
which grow from the identity frame fixed to one end of
the chain and terminate at the relative frameg at the other
end. These quantities can be thought of as histograms onR3,
G, andG × R3 (this last quantity is the set of all pairs of the
form �g; �x� for g [ G and �x [ R3) corresponding to the
collections of conformations illustrated in Fig. 1.

The functionsr , f, andm are related to each other. Given
m�g; �x�; the ensemble mass density is calculated by adding
the contribution of eachm for each different end position
and orientation:

r� �x� �
Z

G
m�g; �x� dg: �1�

This integration is written as being over all motions of the
end of the chain, but only framesg in the support ofm
contribute to the integral. dg denotes the invariant
integration measure forG reviewed in Appendix A.

In an analogous way, it is not difficult to see that integrat-
ing the �x-dependence out ofm provides the total mass of
configurations of the chain starting at framee (at the prox-
imal end) and terminating at frameg (at the distal end).
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Since each chain has massM, this means that the frame
densityf(g) is related tom�g; �x� as:

f �g� � 1
M

Z
R3

m�g; �x� d�x: �2�

We note the total number of frames attained by one end of
the chain relative to the other is

F � KN �
Z

G
f �g� dg

when each of the chainsN degrees of freedom hasK
preferred states. It then follows thatZ
R3

r� �x� d�x� F·M:

If the functionsr� �x� and f(g) are known for the whole
chain then a number of important thermodynamic and
mechanical properties of the polymer can be determined.
For instance, the moments of any positive integer power
of the end-to-end distance,ku�r uml; can be calculated from
f �g� � f �R; �r� by first integrating out the orientational
dependence:

~r��r� �
Z

SO�3�
f �R; �r� dR

where dR is the normalized invariant integration measure
for SO(3) (the set of all 3× 3 rotation matrices). Then

ku�r uml �
Z
R3

u�r um ~r 0��r� d�r

where d�r � dr1 dr2 dr3 is the usual integration measure for
R3 and ~r 0 � ~r =Kn is the normalized version of~r : The PDF
of end-to-end distances is given as

d�r� � r2
Z

S2
~r 0��r� d�u �3�

where in spherical coordinates�r � r �u: Here �u [ S2 is a
point on the unit sphere and d�u is the area element for the
unit sphere. In the special case when~r 0��r� is spherically
symmetric d�r� � 4pr2 ~r 0�r�: More generally, it follows thatZ
R3

~r 0��r� d�r �
Z∞

0
d�r� dr :

The functionsr� �x� and ~r��r� are also related in the follow-
ing way. Imagine the chain is made up ofn units,2 each of
which hasK preferred energy states, and theith of which has
massmi. Then the function~r i��r� relating the distribution of
points reachable by the distal end of theith unit relative to
the proximal end of the first unit is related to the mass
density of the collection of all units as

r� �x� <
1

Kn

Xn2 1

i�0

miK
n2i ~r i� �x�:

The weightsKn2i reflect the fact that units at the base of the

chain will be counted more times than those at the top since
they contribute to all subsequent units.

From an analytical viewpoint, all the information above
can be calculated ifm�g; �x� is known for the whole chain. If,
however, one views the problem from a computational
perspective, it is difficult to rationalize storing numerical
values of the functionm�g; �x� becauseG is a six-parameter
space (three for translation and three for rotation),R3 is
three dimensional, and the computational storage required
for accurate approximation of a function on the nine-
dimensional spaceG × R3 is prohibitive. For example, a
hundred sample points in each coordinate direction would
require 1018 memory locations. However, calculatingr� �x�
and f(g) separately with the same sampling makes the
problem literally a million times easier to handle.

Moreover, there are two major problems that must be
addressed in order to accurately and efficiently calculate
the functionsr� �x� and f(g): (1) for a chain with N [
�100;10 000� units, each neighboring pair of which hasK
potential wells, it is impossible with current technology to
enumerate theKN conformations of the chain corresponding
to all possible combinations of potential wells; (2) the long-
range interactions of units that are distant in the chain but
proximal in space cannot be modeled using only the func-
tions r� �x� and f(g). Both of these problems are addressed
using the recursive procedure outlined in the following
sections.

3. Generating ensemble properties for purely
kinematical models

This section explores mathematical and computational
methods for generating statistical ensembles of macro-
scopically serial chain macromolecules. In particular,
given ensemble properties of subchains, we explore how
the properties of the whole chain can be generated if the
effects of conformational energy between segments are
ignored. While this can be a valid approximation in
situations when the energy of interaction is considered
negligible, our goal in neglecting energy effects in this
section is purely a matter of pedagogy. That is, introducing
useful syntax in the context of a purely kinematical model
makes the definitions and concepts used in subsequent
sections (where energy effects are incorporated) easier to
understand.

Because of the exponential growth in the number of
conformations as a function of the number of backbone
atoms, it is not possible to generate the functionsr� �x� and
f(g) for the whole chain by explicitly enumerating all
configurations. This is well known in the polymer science
literature. As reviewed in Section 1, the standard approaches
to avoiding this exponential growth are: (1) asymptotic
approximations in which the ensemble properties are
assumed to be Gaussian asN ! ∞; and (2) Monte
Carlo simulations which choose a small portion of the
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conformations and approximate overall behavior based on
appropriate sampling.

In this section a completely different approach is taken.
At the core of this approach remains the philosophy of
considering ensemble properties of subsegments of the
chain. This idea is not new, its roots go back more than a
half century [1]. However, the way in which properties of
the whole chain are calculated based on the properties of
segments of the chain is quite different than traditional
approaches.

The basic idea is that we imagine dividing the chain up
into P statistically significant segments.P is chosen large
enough so that the continuum approximations to the
ensemblesr� �x� and f(g) meet acceptable measures of
accuracy. For example, ifN < 1000 andK � 3 (as might
be the case for torsion angles in a polyethylene molecule)
we might chooseP < 40: In this way KN/P is a number
which can be managed with a personal computer.

3.1. The mathematical formulation

For each of theP statistical segments in the chain we can
calculateri� �x� and fi(g) where g is the relative frame of
reference of the distal end of the segment with respect to
the proximal one. For a homogeneous chain, such as
polyethylene, these functions are the same for each value
of i � 1;…;P:

In the general case of a heterogenous chain, we can calcu-
late the functionsri;i11� �x� andfi;i11�g� for the concatenation
of segmentsi and i 1 1 from those of segmentsi and i 1 1
separately in the following way:

ri;i11� �x� � Fi11ri� �x�1
Z

G
fi�h�ri11�h21+ �x� dh �4�

and

fi;i11�g� � �fi p fi11��g� �
Z

G
fi�h�fi11�h21+g� dh: �5�

In these expressionsh [ G is a dummy variable of inte-
gration. The meaning of Eq. (4) is that the mass density of
the ensemble of all conformations of the two concatenated
chains segments results from two contributions. The first is
the mass density of all the conformations of the lower
segment (weighted by the number of different upper
segments it can carry, which isFi11 �

R
G fi11 dg). The

second contribution results from rotating and translating
the mass density of the ensemble of the upper segment,
and adding the contribution at each of these poses (positions
and orientations). This contribution is weighted by the
number of frames that the distal end of the lower segment
can attain relative to its base. MathematicallyL�h�ri11� �x� �
ri11�h21+ �x� is a left-shift operation which geometrically has
the significance of rigidly translating and rotating the func-
tion ri11� �x� by the transformationh. The weightfi�h� dh is
the number of configurations of theith segment terminating
at frame of referenceh.

The meaning of Eq. (5) is that the distribution of frames
of reference at the terminal end of the concatenation of
segmentsi and i 1 1 is thegeneralized convolutionof the
frame densities of the terminal ends of each of the two
segments relative to their respective bases. A more detailed
explanation of why the convolution of frame densities
generates the density of the concatenation of segments can
be found in the author’s previous work in the context of
highly articulated robot arms [31]. A short review of inte-
gration over rigid-body motions and the concept of general-
ized convolution is presented in Appendix A. A review of
the Fourier transform of functions onG (which is a tool for
performing such convolutions) can be found in Ref. [30].

Eqs. (4) and (5) can be iterated withri;i11 andfi;i11 taking
the places ofr i andfi, andri;i12 andfi;i12 taking the places
of ri;i11 and fi;i11: This is described in detail later.

Later in the paper the effects of interaction between distal
segments of a macromolecule are approximated in an aver-
age sense3 by considering how the functionsmi;i1j�g; �x� and
mi1j11;k�g; �x� overlap fork $ i 1 j 1 1: In order to calculate
the interaction of these functions, one must first calculate
the functions mi;i1j�g; �x� from the set of functions
�mi;i11�g; �x�;…;mi1j21;i1j�g; �x��: In analogy with the way
ri;i1j� �x� andfi;i1j�g� are calculated by repeating the compu-
tations in Eqs. (4) and (5),mi;i1j�g; �x� is constructed recur-
sively by first calculatingmi;i11�g; �x� from mi�g; �x� and
mi11�g; �x�:

This is achieved by observing that

mi;i11�g; �x� �
Z

G
�mi�h; �x�fi11�h21+g�

1 fi�h�mi11�h21+g;h21+ �x�� dh: �6�
This equation says that there are two contributions to
mi;i11�g; �x�: The first comes from adding up all the contribu-
tions due to eachmi�h; �x�: This is weighted by the number of
upper segment conformations with distal ends that reach the
frame g given that their base is at frameh. The second
comes from adding up all shifted (translated and rotated)
copies ofmi11�g; �x�; where the shifting is performed by the
lower distribution, and the sum is weighted by the number
of distinct configurations of the lower segment that
terminate ath. This number isf1�h� dh:

The veracity of this derivation may be confirmed by inte-
grating the resulting functionmi;i11�g; �x� overRN andG and
comparing with Eqs. (4) and (5). Note that segmenti has
massMi, segmenti 1 1 has massMi11; and soMi;i11 �
Mi 1 Mi11 is the value ofM in Eq. (2) in the context of
the present discussion.

3.2. Computationally efficient strategies for calculating f(g)
andr� �x�

Given the above means for calculating the functions
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ri;i11� �x� and fi;i11�g� from the functionsfi�g�; fi11�g�; ri� �x�;
and ri11� �x�; it is now possible to formulate algorithms for
generating these functions for the whole chain:r� �x� � r1;P� �x�
andf �g� � f1;P�g�:

On a serial processor the most straightforward way to do
this is to sequentially start at one end of the chain and
repeatedly perform the required integrations. It does not
matter at which end we begin. Starting at the base and work-
ing toward the distal end, we would calculate the sequence
of functions �r1;2� �x�; f1;2�g��;…; �r1;i� �x�; f1;i�g��;…;

�r1;P� �x�; f1;P�g��: Starting from the other end we would
calculate �rP21;P� �x�; fP21;P�g��;…; �rP2i;P� �x�; fP2i;P�g��;…;

�r1;P� �x�; f1;P�g��: In either case, viewing the number of
computations required to calculate Eqs. (4) and (5) as a
constant, the recursive computation of these convolution-
like integrals requiresO(P) calculations. This is after each
of the functionsri� �x� andfi(g) have been calculated, which
can be achieved inO�P·K�N=P�� calculations. That
is, O�K�N=P�� calculations to explicitly enumerate
configurations of each of theP segments.

The computational speed of the above approach on a
parallel computer withP processors is much faster than
on a single processor. Clearly, in this case the enumeration
of segment conformations is reduced to anO�K�N=P�� time
calculation since each of theP ensembles can be calculated
separately. Furthermore, instead of explicitly computing a
P-fold convolution requiringO(P) time, convolutions of
adjacent functions can be calculated in a pairwise fashion
on different processors. This reduces the running time to
O(log2 P). For example, ifP� 8; then the convolutions
f1;2 � f1 p f2; f3;4 � f3 p f4; f5;6 � f5 p f6; and f7;8 � f7 p f8
are all performed at the same time using 4� P=2 processors.
Then f1;4 � f1;2 p f3;4 and f5;8 � f5;6 p f7;8 are calculated at
the next level using two processors. Finally,f1;8 �
f1;4 p f5;8 is performed using a single processor. Thus, we
have in this example an eight-fold convolution calculated
in the same time as 3� log2�8� convolutions on a serial
processor.

It is worth noting that the same speed-up achieved for a
heterogeneous chain calculated on a parallel processor is
valid in the case of a homogeneous chain calculated on a
single processor. In this special caseO�K�N=P�� time is
required for brute force enumeration of one segments of
length N/P. Similarly, a P-fold convolution of the same
function with itself only requiresO(log2 P) distinct
convolutions, and thus this order of time. For example, the
three convolutionsf1 � f p f ; f2 � f1 p f1; and f3 � f2 p f2
generate the same result as an eight-fold convolution off
with itself.

4. Incorporating conformational energy effects

Including the effects of conformational energy, the
density function describing the distribution of tip-to-base
positions and orientations of a macromolecule may be

written in the form

f �g�Vol�D�g�� �
Z

�f[Im�D�g��
e2E� �f �=kBT d �f �7�

where in the case of a serial chain�f � �f1;f2;…;fn21� is
the set of all torsion angles, and d�f � df1…dfn21:

D(g) is a small six-dimensional voxel (box) inG con-
taining g, and Vol(D(g)) is the volume of this voxel. Since
the support off is finite, it can be divided into a finite number
of voxels,M. g� �f � is the end frame of reference of the chain
relative to its base for given torsion angles�f ; and Im(D(g))
is the set of all torsion angles such thatg� �f � [ D�g�:

Each torsion angle takes its values from the unit circle,T1,
and so the whole collection of angles takes its values from
the n 2 1-dimensional torusTn21 � T1 × …× T1

:

One can normalizef(g) in Eq. (7) by observing that the
sumXM
i�1

f �gi�Vol�D�gi�� �
XM
i�1

Z
�f[Im�D�gi ��

e2E� �f �kBT d �f

becomesZ
G

f �g� dg�
Z

�f[Tn2 1
e2E� �f �=kBT d �f

for sufficiently small voxels.
We note that as kBT ! ∞; f(g) reduces to the purely

kinematic model discussed earlier. In the following sub-
sections we examine how the density function in Eq. (7)
is related to the generalized convolution model under a
wide variety of conditions.

4.1. Nearest-neighbor energy functions

One of the simplest kinds of conformational energy
functions is one of the form

E� �f � �
Xn2 1

i�1

Ei�fi�: �8�

This kind of conformational energy function models
nearest-neighbor interactions and leads to a separable
partition function.

The frame density function for the concatenation of two
chain molecules with this kind of energy function is again
given by a generalized convolution. That is, since the energy
function is additive, and the partition function is separable,
the PDFs of two concatenated segments are multiplied and
integrated as

�f1 p f2��g� � f �g�:
This is derived by substituting the energy function in Eq. (8)
into Eq. (7) for a chain withn� n1 1 n2 torsion angles. The
functionsr andm are calculated analogously.

4.2. Interdependent potential functions

The rotational isomeric state (RIS) model [2] is perhaps
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the most widely known method to generate the statistical
information needed to weight the relative occurrence of
polymer conformations in a statistical mechanical ensem-
ble. There are two basic assumptions to the RIS model
developed by Flory:

• The conformational energy function for a chain molecule
is dominated by interactions between each set of three
groups of atoms at the intersection and ends of two
adjacent bond vectors. Hence the conformational energy
function can be written in the form

E� �f � �
Xn2 1

i�2

Ei�fi21;fi� �9�

where �f � �f1;f2;…;fn21� is the set of torsion angles.
• The value of the conformational partition function

e2E� �f �=kBT is negligible except at the finite number of
points whereE� �f � is minimized, and hence averages of
conformation-dependent functions may be calculated in
the following way:

kf l �

Z
Tn2 1

f � �f � e2E� �f �=kBT df1…dfn21Z
Tn2 1

e2E� �f �=kBT df1…dfn21

<

X
�fh[Tn2 1

f � �fh� e2E� �fh�=kBT

X
�fh[Tn2 1

e2E� �fh�=kBT
:

Here the finite set of conformations {�fh} are local
minima of the energy functionE� �f �:
As a consequence of the above two assumptions, con-

formational statistics are generated in the context of the
RIS model using statistical weight matrices.

One drawback of this technique, as pointed out in Ref.
[9], is that the actual distribution of end-to-end distance is
not calculated using the RIS method. The traditional tech-
nique for generating statistical distributions is to use Monte
Carlo simulations. While this is a quite effective technique,
it has the drawback that it will, by definition, not pick up the
tails of a rapidly decreasing distribution. In contrast, the
generalized convolution technique can be made to conform
with the RIS assumptions and provides a numerical tool to
generate the statistical distributions of interest.

When interdependent potential functions are used, it is
not possible to completely separate the conformational
partition function and perform straight generalized con-
volutions. Instead, one can write the conformational energy
function (9) as

E� �f � � E1�f1;…;fi�1 Ei11�fi ;fi11�1 E2�fi11;…;fn21�:

Then frame densities for the lower and upper segments are
generated as before. However, unlike the previously

discussed cases, these frame densities are not only functions
onG, but also depend on the bond angles contributing to the
energy of interaction between the two chain segments.
Hence we definef1 andf2 by the equalities

f1�g0;fi�Vol�D�g0��

�
Z

{ Ti 2 1ug�f1;…;fi �[Im�D�g0��}
e2E1�f1;…;fi �=kBT df1…dfi21

and

f2�g0;fi11�Vol�D�g0��

�
Z

{ Tn2 i 2 2ug�fi 1 1;…;fn2 1�[Im�D�g0��}
e2E2�fi11;…;fn21�=kBT

× dfi12…dfn21:

The functionsf1 andf2 are written more cleanly in the limit
of very small voxels using the Dirac delta as

f1�g0;fi� �
Z

Ti 2 1
e2E1�f1;…;fi �=kBTd�g21�f1;…;fi�+g0�

× df1…dfi21

and

f2�g0;fi11� �
Z

Tn2 i 2 2
e2E2�fi12;…;fn21�=kBT

× d �g21�fi11;…;fn21�+g0� dfi12…dfn21

where

d�g� �
0 g Ó D�e�

1=Vol�D�e�� g [ D�e�

(
where e is the identity of G (i.e. corresponding to no
motion).

These two contributions add to give the composite frame
density function using a combination of convolution and
weighted integration over the last torsion angle of the first
chain segment and first torsion angle of the second chain
segment:

f �g� �
Z

T2

Z
G

f1�h;fi�f2�h21+g;fi11�

× e2Ei11�fi ;fi11�=kBT dh dfi dfi11:

This follows from the evaluation of (7) with (9). From
the forms given above forf1 and f2, and the properties of
the Dirac delta (see Appendix A) it is clear that the
normalization

Z
G

f �g� dg�
Z

Tn2 1
e2E� �f �=kBT d �f

holds.
The assumption of discrete sampling of most probable

values of torsion angles, as in the RIS model, reduces
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the integrations overT2 to summations. Hence, from a
computational perspective, interdependent energy functions
require K2 convolutions instead of one, whereK is the
number of sample points for each torsion angle. Typically
for an organic chain moleculeK � 3:

This procedure is iterated in analogy with the algorithm
developed in the previous section for the purely kinematic
model. Namely, instead of breaking a chain molecule into
two imaginary pieces, it can be broken into an arbitrary
number of statistically significant segments, and an
energy-weighted convolution of each pair of adjacent
segments can be performed.

Hence convolution-like integrals of the form

fi;l�g;fi ;fl� �
Z

T2

Z
G

f1�h;fi ;fk�fk11;l�h21+g;fk11;fl�

× e2Ei11�fk;fk11�=kBT dh dfk dfk11 (10)

are performed, where now both the values of base and distal
torsion angles must be recorded so that the process can be
iterated. The drawback of this is that if theT2 integral is
approximated as a sum overK2 values, then theK2 con-
volutions onG must be performed for each of theK2 values
of the pairs �fi ;fl�: Hence, K4 convolutions onG are
required at each step. While this is troublesome, we note
that these calculations are independent and hence can be
distributed over a parallel computer.

4.3. Ensemble properties including long-range
conformational energy

In this section we model the long-range interactions in a
macroscopically serial chain using an averaging approach
which builds on the formulation of the previous sections.
The model uses the functionsm�g; �x� which were not
explicitly needed in the purely kinematical model.

Accurately modeling interactions of atoms which are
distal in the chain but proximal in space (due to bending
of the chain) is one of the most difficult problems in the
study of macromolecules, independent of whether they are
man-made polymers, proteins, or DNA. Explicitly account-
ing for all such interactions for all possible configurations
by brute force enumeration requires a mind-boggling
amount of computational time. At the other extreme, the
simplified closed-form analytical models such as the
Gaussian random walk do not explicitly account for these
interactions. Furthermore, models based on self-avoiding
walks and renormalization group methods are respectively
limited to rather short chains�N p 100� or very long ones
�N ! ∞�:

A number of different approaches are considered here to
incorporate the effects of energy. Perhaps the most straight-
forward is to penalize contributions in Eq. (6) so that when
the support of appropriately shifted functionsm i andmi11

intersect, these functions would be disallowed from con-
tributing to the computation ofmi;i11: Clearly this would
generate ensemble statistical distributions which would be
lower estimates of those generated from the self-avoiding
walk model. A slightly more sophisticated model would
calculate the energy of interaction of the distributionsm i

and mi11 and use this information in an appropriate
conformational partition function. We now quantify this
discussion. The interaction of segmenti and i 1 1 is
approximated by considering the interaction of the
corresponding functionsm i andmi11 as:

Ei;i11�h; g� �
Z
R3

Z
R3

mi�h; �x�mi11�h21+g; h21+ �y�

× V� �x 2 �y� d�x d�y: �11�
We assume here that the potential between any two atoms
located at positions�x and �y is V� �x 2 �y�: Then Eq. (11) is an
approximation of the interaction of all configurations of
segmenti which terminate at frameh and all configurations
of segmenti 1 1 with distal end atg and proximal end ath
(hence the relative displacementh21+g). In the case when
the potential function is used to represent pure hard-sphere
repulsion and no attraction, then a reasonable model forV(·)
is

V� �x� � E0d� �x�:
In this case one writes

Ei;i11�h; g� � E0

Z
R3

mi�h; �x�mi11�h21+g;h21+ �x� d�x: �12�
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This may then be used to approximatemi;i11 as

mi;i11�g; �x� �
Z

G
�mi�h; �x�fi11�h21+g�

1 fi�h�mi11�h21+g;h21+ �x�� e2Ei;i11�h;g�=kBT dh:

�13�

By definition, it follows that

fi;i11�g� � 1
Mi 1 Mi11

Z
R3

mi;i11�g; �x� d�x

�
Z

G
fi�h�fi11�h21+g� e2Ei;i11�h;g�=kBT dh: �14�

In this way, the purely kinematical model is modified so as
to take into account the energy of interaction of two adjacent
segments. AsE0=kBT becomes large, the only contributions
tomi;i11 are from the shifted versions of the functionsm i and
m i11 which do not overlap at all. This extreme case is a
lower bound on themi;i11 that the self avoiding walk
would generate. This follows for largeE0=kBT because the
model in (13) would not only disallow the intersection of
two adjacent segments, but also would disallow any contri-
bution if (12) is nonzero, i.e. ifm i andmi11 overlap. On the
other hand, for smaller values ofE0=kBT the present model
may provide more realistic statistics than lattice self-avoid-
ing walks since there is no artificial restriction on bond and
torsion angles that restrict conformations to a lattice in the
present model. In the next section the present formulation is
compared with a number of traditional models.

5. Analytical examples

The convolution integral of frame densities for two

adjacent segments may be written more explicitly as

�f1 p f2��R; �x� �
Z

SO�3�

Z
R3

f1�R; �j �f2�RTR;RT� �x 2 �j ��

× d �j dR: (15)

In the above equation the integration overG has been
rewritten as integration over position and orientation sepa-
rately, and the volume element is rewritten by observing
that it is the product of the volume element for SO(3) and
R3. That is, dh� d �jdR where h� �R; �j �; d �j �
dj1 dj2 dj3; and dR is given in Appendix A.

It has been reasoned [12] that for chains with more than a
few links, the orientation dependence of the chain PDFs
vanishes. That is, to good approximation

�f1 p f2��R; �x� � �f1 p f2�� �x� �
Z

SO�3�

Z
R3

f1� �j �

× f2�RT� �x 2 �j �� d �j dR:

If, in addition, the PDFsf1 andf2 are spherically symmetric,
so that fi��r� � fi�r� where r � u�r u; then f2�RT� �x 2 �j �� �
f2� �x 2 �j �; and so we can calculate the frame density of
two adjacent segments using the usual convolution:

�f1 p f2�� �x� �
Z
R3

f1� �j �f2� �x 2 �j � d �j :

5.1. The Gaussian chain

Perhaps the most common model for the distribution of
end-vector distribution is the Gaussian distribution:

fG�R; �r�=Kn � ~r 0G��r� � 3
2pkr2l

� �3=2

exp 2
3r2

2kr2l

" #
: �16�

This distribution is spherically symmetric (and hence
depends only onr � u�r u). It is normalized so that it is a
probability density function,Z
R3

~r 0G��r� dr1 dr2 dr3 � 4p
Z∞

0
~r 0G�r�r2 dr � 1:

One observes the equalitykr2l � nl2 for a chain withn links
each with lengthl.

It is easy to verify that the PDF for the concatenation of
two Gaussian chains is

� ~r 0G1
p ~r 0G2

��r�

� 3
2p�n1 1 n2�l2

� �3=2

exp 2
3r2

2�n1 1 n2�l2
" #

:

That is, the convolution of Gaussians corresponding to
segments of lengthn1l and n2l results in a Gaussian
corresponding to a segment of length�n1 1 n2�l:
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5.2. The freely jointed chain

The freely jointed chain model assumes that each link is
free to move relative to the others with no constraint on the
motion and no correlation between the motion of adjacent
links. A derivation of the statistical distribution of end posi-
tions of a freely jointed chain can be found in Ref. [6], and is
given as

r�n�F ��r� �
1

2p2r

Z∞

0
sin�qr��sin�ql�=ql�nq dq �17�

where againr � u�r u andn is the number of links.
Application of the usual Abelian Fourier transform yields

F�r�n�F ��r�� � �sin�ql�=ql�n

where q� u �qu and �q is the vector of Fourier parameters.
From this fact it is clear by the classical (Abelian)
convolution theorem that

r�n1�
F p r�n2�

F � r�n11n2�
F :

5.3. Self-interacting chains

The previous two examples illustrate that the generalized
convolution model agrees with classical formulations in the
degenerate case of a spherically symmetric density function
without dependence on orientation when the effects of
excluded volume are not included. We now show how this
formulation can be used to approximate the effects of
excluded volume using an analytically defined functionm .

To begin, let us assume that segmenti is long enough to
be considered completely flexible (though inextensible).
Then the functionmi�g; �x� will only depend on the magni-
tude of the translationr � u�r u whereg� �R; �r�: If the length
of this segment isLi, then for givenr, all configurations of
the segment will be contained within an axially symmetric
ellipsoid with axis in the direction of�r ; and foci at the

proximal and distal ends of the segment. For the moment
let us assume that�r � �r ; 0;0�T: Then this ellipsoid will be
defined by the equation

Di�r ; �x� � x 2 r =2
ai

� �2

1
y2 1 z2

b2
i �r�

2 1� 0:

The parametersai andbi(r) are derived fromr andLi as

bi�r� � 1
2

����������
L2

i 2 r2
q

; ai � Li =2:

A corresponding model for the functionmi�g; �x� is

mi�r ; �x� � Mifi�r�
4
3 paib2

i �r�
step�2Di�r ; �x��:

Here step[x] is the unit Heaviside step function which takes
the value 1 forx $ 0 and zero otherwise. The denominator
in the fraction above is the volume of an ellipsoid of revolu-
tion defined by major axis with lengthai and minor axes
with lengthbi. Hence thism i is constant over the interior of
the ellipsoid, zero outside of it, and normalized so thatR
R3 mi d�x� Mifi :
The energy of interaction between the ensembles for two

adjacent segments is then of the form

Ei;i11�f; r1; r2�

� E0MiMi11fi�r1�fi11�r2�
4
3 paib

2
i �r1�· 4

3 pai11b2
i11�r2�

Z
R3

step�2Di�r1; �x��

× step�2Di11�r2;Rz�2f� �x�� d�x:
The integral is simply the volume of intersection of two
ellipsoids which share one of their foci and are rotated rela-
tive to each other by anglef . Clearly this energy function is
2p-periodic inf and has the symmetries

Ei;i11�f; r1; r2� � Ei;i11�2f; r1; r2� � Ei;i11�f; r2; r1�:
Since we have assumed thatfi�g� � fi�r�; Eq. (14) reduces

to

fi;i21�r� � 2p
Z∞

0
fi�p�

Zp

0
fi11

������������������������
r2 1 p2 2 2rp cosu

q� �

× exp
21
kBT

Ei;i11 f�r ;p; u�;p;
������������������������
r2 1 p2 2 2rp cosu

q� �� �
× p2 dp du: (18)

The functional relationship betweenf and the variablesr,
p, andu is easily derived from Fig. 2 using trigonometry as

sinf � r sinu������������������������
r2 1 p2 2 2rp cosu

p ;

cosf � p 2 r cosu������������������������
r2 1 p2 2 2rp cosu

p :

These are inverted using theAtan2( ) function to yield
f (r,p,u).
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As a numerical example, we takefi and fi11 to be
Gaussian withni � ni11 � 10 and l � 0:05: Substituting
into Eq. (18), the resultingfi;i11 (normalized to be a prob-
ability density function) is shown in Fig. 3 for the values of
e � MiMi11E0=kBT indicated. Fig. 4 plots the end-to-end
distance function d(r) defined in Eq. (3) for the values of
e shown. These plots agree with the qualitative sense that
the mean end-to-end distance should increase with the
degree of repulsion.

6. Conclusions

The ensemble properties of chain macromolecules are
generated by convolving functions of rigid-body motion.
Analytical examples demonstrate the technique for both
the case when interactions between distal segments in the
chain are modeled and when they are not. A general numer-
ical scheme to implement the analytical formulation is
outlined, and the complexity of the approach is analyzed.
This computational approach is very general, and can be
made to conform to a variety of steric constraints and
conformational energy functions. Analytical examples
show that the present formulation includes classical models
such as the Gaussian and freely jointed chains. The present
work also shows how the PDF of end positions and orienta-
tions for the RIS model as well as models including the
long-range effects of excluded volume can be generated.
Finally, it is worth noting that while the formulation
presented here is for PDFs defined on continuous domains,
the restriction of chains to lattices, and the use of the corre-
sponding discrete crystallographic motions in place of
continuous rigid-body motions may lead to even faster
numerical implementations.
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Appendix A. Integration and convolution of motion-
dependent functions

An arbitrary rigid-body motion can be viewed as the pair
g� �R; �r� where R [ SO�3� (i.e. R is a 3× 3 rotation
matrix), and �r [ R3 is a translation vector in three-
dimensional space. The composition law isg1+g2 �
�R1R2;R1 �r2 1 �r1�: The action of the motiong on a position
vector �x [ R3 is g+ �x� R�x 1 �r :

The collection of all rigid-body motions is denoted in this
paper asG. Any g [ G can be faithfully represented with a
4 × 4 homogeneous transformation matrixof the form:

H�g� �
R �r

�0T 1

 !
:

Henceforth no distinction is made betweenG and the set of
all 4 × 4 homogeneous transformation matrices.

A.1. Invariant integration

Orientations (or rotations) in three-dimensional space are
parameterized withZXZEuler angles (Flory calls these the
“Eulerian Angles” [6, p. 404])

R�f; u;c� � Rz�f�Rx�u�Rz�c�

�
cccf 2 cusfsc 2sccf 2 cusfcc susf

ccsf 1 cucfsc 2scsf 1 cucfcc 2sucf

susc sucf cu

0BB@
1CCA

where ‘s’ is shorthand for ‘sin’ and ‘c’ is shorthand for ‘cos’.
The range of these angles is 0# f; c # 2p and 0# u # p:
The volume element forG is given by

dg� 1
8p2 sinu df du dc dr1 dr2 dr3

which is the product of the volume elements forR3 �d�r �
dr1dr2dr3�; and for SO(3)�dR� �1=8p2� sinu df du dc�:
The normalization factor in the definition of dR is so thatR

SO�3� dR� 1:
The fact that this volume element is invariant to right and

left translations, i.e.

dg� d�h+g� � d�g+h�
is well known in certain communities (see, e.g. Refs.
[32,33]).

We note the following shorthands used throughout
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the paper:Z
SO�3�

�
Z2p

f�0

Zp

u�0

Z2p

c�0
;

Z
R3
�
Z∞

r1�2 ∞

Z∞

r2�2 ∞

Z∞

r3�2 ∞
;

andZ
G
�
Z
R3

Z
SO�3�

:

A.2. Geometrical interpretation of convolution on G

Suppose there are three frames in space,F1, F2 andF3, as
shown in Fig. 5. The first frame can be viewed as fixed,
the second frame as moving with respect to the first, and
the third frame as moving with respect to the second. Let the
homogeneous transformH describe the position and
orientation ofF2 w.r.t. F1, and H 0 describe the position
and orientation ofF3 w.r.t. F2. Then the position and
orientation ofF3 w.r.t. F1 is H �HH 0: The position and
orientation ofF3 w.r.t. F2 can then be written as

H 0 �H21H:

We may divide upG into volume elements, or “voxels,”
of finite but small size. The volume of the voxel centered at
H [ G is denotedDH, and as the element size is chosen
smaller and smaller it becomes closer to the differential
volume element dH.

The motion ofF2 relative to F1 and the motion ofF3

relative toF2 can both be considered elements ofG, and
no distinction is made between these motions and the trans-
formation matricesH and H 0 which represent these
motions.

Assuming we moveH andH 0 through a finite number of
different positions and orientations, letf1 be a function that
records how often theH frames appear in each voxel,
divided by the voxel volumeDH. Likewise, let f2 be the
function describing how often theH 0 frames appear in each
voxel normalized by voxel volume.

To calculate how often theH frames appear in each voxel
in G for all possible values ofH andH 0, we may perform
the following steps:

• Evaluatef1 � f1�H� (frequency of occurrence ofH).
• Evaluate f2 � f2�H 0� � f2�H21H� frequency of

occurrences ofH 0 �H21H).
• Weight (multiply) the left-shifted histogram,f2�H21H�;

by the number of frames which are doing the shifting.
This number isf1�H�DH for eachH.4

• Sum (integrate) over all these contributions:

�f1 p f2��H� �
Z

G
f1�H�f2�H21H� dH:

Using this definition of convolution, the Diracd-function
defined in the text has the property

d p f � f p d � f

for any well-behavedf(g).
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