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Abstract

A new technique for generating statistical properties of chain-molecule conformations is presented. Conditional probability density
functions (PDFs) describing the frequency of occurrence of the relative position and orientation of frames of reference affixed to selected
backbone atoms serve as the inputs. Ensemble statistical properties of whole chains are generated by performing multiple generalized
convolutions of these conditional PDFs. The formulation is shown to include classical theories such as the hindered and freely rotating
chains, the Gaussian random walk, and the rotational isomeric state model. The convolution model is modified to include the long-range
effects of excluded volume. An analytical example is used to illustrate the procedure. A general algorithm to calculate the ensemble
properties of an arbitrary chain macromolecule is presented. In this algorithm, eachMfdggrees of freedom (e.g. torsion angles) is
assumed to haug discrete states. Using the convolution procedure, a chain is divideB Bigistical units. The computational requirement
is reduced from a@(K") calculation (corresponding to direct enumeration) to one whigh(i%C + K'F)) whereC is the computational
complexity of the convolution procedure. In the case of a homopolymer, computations are reduced futtGslogtP) + KN?). © 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction potentials are used. At another level of approximation, the
longer range effects of excluded volume are modeled using
The study of conformation-dependent properties of self-avoiding walks [20,28]. An altogether different
macromolecular systems is quite old. The use of statistical approach is to do direct molecular dynamic simulations
techniques in polymer chemistry dates back to the 1930s(see Refs. [23,24] for a recent example). The primary draw-
with the work of Kuhn [1] and was extensively explored back of molecular simulations is the intensive computa-
in the 1950s [3-5]. The rotational isomeric state (RIS) tional requirements.
model was popularized in the 1960s with the advent of Regardless of which technique is used, a potential func-
Flory’s classic book [6], and continues to be of interest tion that closely models the physical reality is quite impor-
today [9]. Work in the area of statistical analysis of macro- tant. One of the most popular choices is the Lennard-Jones
molecular conformations has received much attention up to potential [16]. Due to the high computational cost of direct
the current day (see, e.g. Refs. [7,15,18—-22,25—-29]). A molecular simulation, one of the most popular approaches in
number of idealized models such as Gaussian randomconformational analysis of macromolecules is the Monte
walks, jointed chains (with or without fixed bond angles Carlo method [17]. While Monte Carlo sampling is a very
and hindered torsion angles), and worm-like chains have general and powerful technique, it too has some drawbacks,
been explored in great detail, and are explained thoroughlythe most obvious of which is its poor performance in
in classic books in polymer science [6,8,10—14]. capturing the “tails” of certain kinds of PDFs in polymer
As a general rule, the analysis is easiest when the effectsscience.
of conformational energy can be disregarded (i.e. when all The approach taken in this paper is to apply an altogether
conformations can be considered to have the same energy)different statistical analysis of conformational properties of
In this case, purely kinematical models such as the freely macroscopically seridichain molecules. The basic concept
jointed chain are used. The next level of sophistication is
when the energy of local interactions is modeled. Then ! A macromolecule which may contain local loops or branches, but
comes the RIS model in which pairwise interdependent appears serial on large enough length scales (e.g. DNA).
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(a) macromolecular ensembles. Later it will be shown how
these quantities are used to model the interactions of
segments which may be far apart as measured along the
chain, but are proximal in space. Before introducing these
definitions, some notation is required.

Let R® denote three-dimensional space, &denote the
set of all rigid-body motionsx € R® is a position vector,
andg = (R ) € Gis arigid-body transformation wheie

(b) L is a 3x 3 rotation matrix and is a translation vector. Some-

\/ ( times it is convenient to represent a rigid-body motion in
three-dimensional space as a X4 homogeneous
( transformation matrix:

Hea) — R r
<9>—(OT 1)

(c) (see, e.g. Ref. [9. p. 114)).

Two rigid-body motions are composed ageg, =
(R{Ry, RF5 + 1), which is the same as performing the
matrix productH(gy)H(gz) = H(g1°9>).

The composition of rigid-body motions can also be
viewed geometrically as a sequential change of reference
frames. The inverse of any& G and the identity (do noth-

Fig. 1. The functions (a)(®). (b) (@) and (c)u(g. . ing) motion are given, respectively,gs' = (R", —R'r) and
e= (1,0) wherel is the 3x 3 identity matrix. The elements
behind this work is not new: a number of reference frames Of G act on position vectors iR asgex = Rx + . A more
are affixed to the backbone of the molecule, and the statis-detailed review of rigid-body motions, including invariant
tica' properties for each Segment Connecting neighboringintegration and ConVOIUtion Of fUnCtionS Of mOtion iS
frames are independently generated. The novelty of this Presented in Appendix A.
formulation results from the recognition that a generalized ~The three statistical quantities of importance in the
convolution (in the sense defined in the next section) of Present formulation are: (1) the ensemble mass density for
frame distributions generates the statistics for the whole the whole chairp(%);(2) the ensemble tip frame densf(g)
molecule. This distribution contains all the information (whereg is the frame of reference of the distal end of the
commonly calculated in polymer science, such as meanchain relative to the proximal); (3) the function(g, %),
Squared radius of gyration and mean Squared end_to_enthiCh iS the ensemble mass density of a.” Configurations
distance. The benefit of the method is that it also provides Which grow from the identity frame fixed to one end of
a tool for naturally including the effects of conformational the chain and terminate at the relative fraghat the other
energy and excluded volume (at least qualitatively) while €nd. These guantities can be thought of as histograrfi’on
retaining the simplicity of a statistical analysis. G, andG x R° (this last quantity is the set of all pairs of the
The remainder of this paper is structured as follows: form (g,%) for g € G and x € R%) corresponding to the
Section 2 introduces the concept of frame distributions collections of conformations illustrated in Fig. 1.
and reviews the mathematics of generalized convolutions. The functionsp, f, andu are related to each other. Given
Section 3 shows how this concept can be used to generateX(9. %), the ensemble mass density is calculated by adding
macromolecule properties when the effects of excluded the contribution of eachu for each different end position
volume and other long-range effects can be ignored, andand orientation:
illustrates the technique with analytical examples. In
Section 4, long-range interactions are modeled and incorpo-p(X) = J (g, X) dg. 1)
rated into the framework. In Section 5, closed-form analy- ¢
tical examples based on the mathematical formulation of This integration is written as being over all motions of the
this paper are described. end of the chain, but only frames in the support ofu
contribute to the integral. gl denotes the invariant
integration measure fdé reviewed in Appendix A.
2. Mass density, frame density, and generalized In an analogous way, it is not difficult to see that integrat-
convolutions ing the x-dependence out g& provides the total mass of
configurations of the chain starting at framméat the prox-
In this section we define three statistical properties of imal end) and terminating at frang (at the distal end).
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Since each chain has makk this means that the frame chain will be counted more times than those at the top since

densityf(g) is related tou(g, X) as: they contribute to all subsequent units.
1 From an analytical viewpoint, all the information above
f(g) = M JW (g, X) dX. ) can be calculated (g, %) is known for the whole chain. If,

however, one views the problem from a computational
We note the total number of frames attained by one end of perspective, it is difficult to rationalize storing numerical

the chain relative to the other is values of the functionu(g, X) becauses is a six-parameter
space (three for translation and three for rotatidR},is

F=KV= J f(g) dg three dimensional, and the computational storage required

¢ for accurate approximation of a function on the nine-

when each of the chainbl degrees of freedom hais dimensional spac& x R® is prohibitive. For example, a

preferred states. It then follows that hundred sample points in each coordinate direction would
require 13® memory locations. However, calculatingg)

JRg p(X) dx = F-M. and f(g) separately with the same sampling makes the
problem literally a million times easier to handle.

If the functionsp(x) and f(g) are known for the whole Moreover, there are two major problems that must be

chain then a number of important thermodynamic and addressed in order to accurately and efficiently calculate
mechanical properties of the polymer can be determined. the functionsp(x) and f(g): (1) for a chain withN €

For instance, the moments of any positive integer power [100 10 00q units, each neighboring pair of which hs

of the end-to-end distancéf|™), can be calculated from  potential wells, it is impossible with current technology to
f(g)=f(R ) by first integrating out the orientational enumerate th&" conformations of the chain corresponding

dependence: to all possible combinations of potential wells; (2) the long-
3 range interactions of units that are distant in the chain but
p(r) = qu)f(R, r drR proximal in space cannot be modeled using only the func-

_ _ S _ tions p(X) andf(g). Both of these problems are addressed
where (R is the normalized invariant integration measure using the recursive procedure outlined in the following
for SO(3) (the set of all & 3 rotation matrices). Then sections.

(™ = JR3 Ir["p"(r) dr
3. Generating ensemble properties for purely

where d@ = dr, dr, drg is the usual integration measure for kinematical models

R*andp’ = p/K" is the normalized version gf. The PDF

of end-to-end distances is given as This section explores mathematical and computational

o i methods for generating statistical ensembles of macro-
dry=r J p'(r) da &) scopically serial chain macromolecules. In particular
[ ’

given ensemble properties of subchains, we explore how
the properties of the whole chain can be generated if the

effects of conformational energy between segments are
ignored. While this can be a valid approximation in
situations when the energy of interaction is considered
o © negligible, our goal in neglecting energy effects in this
JRs pin ar = Jo d(r) ar. section is purely a matter of pedagogy. That is, introducing
useful syntax in the context of a purely kinematical model

makes the definitions and concepts used in subsequent

sections (where energy effects are incorporated) easier to

understand.

Because of the exponential growth in the number of
conformations as a function of the number of backbone
atoms, it is not possible to generate the functip® and
f(g) for the whole chain by explicitly enumerating all

n-1 _ configurations. This is well known in the polymer science
p(R) = Kn Z mK"™'5(%). literature. As reviewed in Section 1, the standard approaches
=0 to avoiding this exponential growth are: (1) asymptotic
The weightK,,_; reflect the fact that units at the base of the approximations in which the ensemble properties are
assumed to be Gaussian &— co; and (2) Monte
2These could be either segments of the chain or single monomer units. Carlo simulations which choose a small portion of the

where in spherical coordinates=ro. Herea € S is a
point on the unit sphere andids the area element for the
unit sphere. In the special case whgftr) is spherically
symmetric dr) = 4wr24'(r). More generally, it follows that

The functionsp(X) andj(F) are also related in the follow-
ing way. Imagine the chain is made upmfinits? each of
which hax preferred energy states, and ttreof which has
massm. Then the functiorp;(r) relating the distribution of
points reachable by the distal end of fitle unit relative to
the proximal end of the first unit is related to the mass
density of the collection of all units as
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conformations and approximate overall behavior based on The meaning of Eq. (5) is that the distribution of frames

appropriate sampling.

In this section a completely different approach is taken.

of reference at the terminal end of the concatenation of
segments andi + 1 is thegeneralized convolutionf the

At the core of this approach remains the philosophy of frame densities of the terminal ends of each of the two
considering ensemble properties of subsegments of thesegments relative to their respective bases. A more detailed
chain. This idea is not new, its roots go back more than a explanation of why the convolution of frame densities

half century [1]. However, the way in which properties of

generates the density of the concatenation of segments can

the whole chain are calculated based on the properties ofbe found in the author’s previous work in the context of
segments of the chain is quite different than traditional highly articulated robot arms [31]. A short review of inte-

approaches.

gration over rigid-body motions and the concept of general-

The basic idea is that we imagine dividing the chain up ized convolution is presented in Appendix A. A review of

into P statistically significant segmentB.is chosen large

the Fourier transform of functions da (which is a tool for

enough so that the continuum approximations to the performing such convolutions) can be found in Ref. [30].

ensemblesp(X) and f(g) meet acceptable measures of
accuracy. For example, N = 1000 andK = 3 (as might

Egs. (4) and (5) can be iterated wjgh,; andf;;, ; taking
the places op; andf;, andp;;;, andf;;., taking the places

be the case for torsion angles in a polyethylene molecule) of p; ;.1 andf;.,. This is described in detail later.

we might chooseP =~ 40. In this way KNP is a number
which can be managed with a personal computer.

3.1. The mathematical formulation

For each of thé® statistical segments in the chain we can
calculatep;(x) and fi(g) whereg is the relative frame of

Later in the paper the effects of interaction between distal
segments of a macromolecule are approximated in an aver-
age senseby considering how the functions; (g, X) and
Mi+j+1x(0, X) overlap fork = i + j + 1. In order to calculate
the interaction of these functions, one must first calculate
the functions w;;;j(g,X) from the set of functions

(Mij+1(9: ¥, ..o ti+j-1i+j(G:X). In analogy with the way

referenceT of the distal end of the segment With respect to pij+j(® andf;;;(g) are calculated by repeating the compu-
the prOXImaI one. For a homogeneous Chaln, such aStations in Eqs (4) and (5)‘l“i,i+j(g7 X) is constructed recur-
polyethylene, these functions are the same for each valuesjyely by first calculatingu;+1(g,X) from w;i(g,%) and

ofi=1..P.

l"LH-l(g’ )_()

In the general case of a heterogenous chain, we can calcu- This is achieved by observing that

late the functiong; ;..,(X) andf;;1(g) for the concatenation
of segments andi + 1 from those of segmentsandi + 1
separately in the following way:

pii+1(X) = Fp(X) + JG fi(h)pi11(h %) dh (4)
and
fi2(@) = ( * fo)(Q) = JG f(Nf,. 1(h~2eg) dh. 5)

In these expressions€ G is a dummy variable of inte-

Mi,i+l(g7 )_() = JG (Nﬂ(h, )_()fi+l(h71°g)

+ fi(M a4 2(h”teg, h™tex)) dh. (6)

This equation says that there are two contributions to
1ii+1(9, X). The first comes from adding up all the contribu-
tions due to eacjp;(h, X). This is weighted by the number of
upper segment conformations with distal ends that reach the
frame g given that their base is at frante The second
comes from adding up all shifted (translated and rotated)

gration. The meaning of Eq. (4) is that the mass density of copies ofy,,1(g, X), where the shifting is performed by the
the ensemble of all conformations of the two concatenated lower distribution, and the sum is weighted by the number
chains segments results from two contributions. The firstis of distinct configurations of the lower segment that
the mass density of all the conformations of the lower terminate ah. This number ig;(h) dh.

segment (weighted by the number of different upper

segments it can carry, which B, = [¢fi+;dg). The

The veracity of this derivation may be confirmed by inte-
grating the resulting functiop; ;+1(g, X) overR" andG and

second contribution results from rotating and translating comparing with Egs. (4) and (5). Note that segmiehas
the mass density of the ensemble of the upper segmentmassM;, segmenti + 1 has masdV;,, and SOM; 41 =

and adding the contribution at each of these poses (positiongvi; + M, ; is the value ofM in Eq. (2) in the context of
and orientations). This contribution is weighted by the the present discussion.

number of frames that the distal end of the lower segment

can attain relative to its base. Mathematicaliy)p; . 1(X) =
pi+1(h1ox) is a left-shift operation which geometrically has

the significance of rigidly translating and rotating the func-

tion p;i;1(X) by the transformatiom. The weightf;(h) dh is
the number of configurations of tlih segment terminating
at frame of referencé.

3.2. Computationally efficient strategies for calculating f(g)
and p(x)

Given the above means for calculating the functions

® The meaning of this “average sense” is made precise later in the paper.
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pii+1(X) andf;;1(g) from the functions;(g), fi+1(9), pi(X), written in the form

and p; +1(X), it is now possible to formulate algorithms for _ B

generating these functions for the whole chaii) = p; p(X) f(g)Vol(A(g) = J&e o) e BT dgp (7
m(A(g

andf(g) = f1p(9). B
On a serial processor the most straightforward way to do where in the case of a serial chapn= (¢, ¢, ..., Pp_1) iS
this is to sequentially start at one end of the chain and the set of all torsion angles, angd= d¢;...dd,_ 1.
repeatedly perform the required integrations. It does not A(g) is a small six-dimensional voxel (box) & con-
matter at which end we begin. Starting at the base and work-taining g, and Vol(A(g)) is the volume of this voxel. Since
ing toward the distal end, we would calculate the sequencethe support ofis finite, it can be divided into a finite number

of functions (p1.2(X), T12(0)), ..., (p1i(X), T (D)), ..., of voxels,.#.g(¢) is the end frame of reference of the chain
(pLp(X), f1p(@)). Starting from the other end we would relative to its base for given torsion angkésand ImQ(g))
calculate (pp—1 p(X), fp—1p(@), ..., (Pp—ip(X), fo—i p(Q)), ..., is the set of all torsion angles such tlgath) € A(Q).

(pLp(X), f1p(@)). In either case, viewing the number of Each torsion angle takes its values from the unit cirEle,
computations required to calculate Egs. (4) and (5) as aand so the whole collection of angles takes its values from
constant, the recursive computation of these convolution- then — 1-dimensional torug"* = T*x ---x T%.
like integrals require®(P) calculations. This is after each One can normaliz€&g) in Eq. (7) by observing that the
of the functionsp;(X) andf(g) have been calculated, which sum
can be achieved inO(P-KN?) calculations. That P
is, O(K™P) calculations to explicitly enumerate Zf(gi)vm(A(gi)) - Z J'
configurations of each of the segments. i= i=1 J $€IMA@))
The computational speed of the above approach on a
parallel computer withP processors is much faster than
on a single processor. Clearly, in this case the enumeration _ —E($)KksT 4 T
- - (NP 4 J f(g)dg = J e d¢
of segment conformations is reduced to GfK"™"”’) time G peTn-t
calculation since each of tHeensembles can be calculated
separately. Furthermore, instead of explicitly computing a
P-fold convolution requiring®(P) time, convolutions of
adjacent functions can be calculated in a pairwise fashion
on different processors. This reduces the running time to
0(log, P). For example, ifP = 8, then the convolutions
fro="fixfy faa="1faxfy fsg="Tsxfs, and f;g="1;*fg
are all performed at the same time using 4/2 processors. 4 1. Nearest-neighbor energy functions
Thenf,, =f,*f3,4 andfsg = f55 * f;5 are calculated at
the next level using two processors. Finallfyg = One of the simplest kinds of conformational energy
f14*f5g is performed using a single processor. Thus, we functions is one of the form
have in this example an eight-fold convolution calculated ne1
in the same time as 3 l0g,(8) convolutions on a serial  E(4) = z Ei(¢h). (8)
processor. -1
It is worth noting Fhat the same speed-up achieved for e}This kind of conformational energy function models
heterogeneous chain calculated on a parallel processor is . : )
o . nearest-neighbor interactions and leads to a separable
valid in the case of a homogeneous chain calculated on a

single processor. In this special cageK™™) time is partition funcion.
ge p ) P . The frame density function for the concatenation of two
required for brute force enumeration of one segments of

length N/P. Similarly, a P-fold convolution of the same chain molecules With this kind .Of energy fun_ction Is again
function  with itself’ only requires ¢(log, P) distinct given by a generalized convolution. That is, since the energy

. ; . function is additive, and the partition function is separable,
convolutions, and thus this order of time. For example, the g
. the PDFs of two concatenated segments are multiplied and
three convolutiond; =f =f, f, =f; «f;, andf; =f, *f,

generate the same result as an eight-fold convolutioh of integrated as
with itself. (fL *T2)(@) = f(Q).

e E(d)ksT dd_)

becomes

for sufficiently small voxels.

We note that as KT — oo, f(g) reduces to the purely
kinematic model discussed earlier. In the following sub-
sections we examine how the density function in Eq. (7)
is related to the generalized convolution model under a
wide variety of conditions.

This is derived by substituting the energy function in Eq. (8)
into Eq. (7) for a chain witm = n; + n, torsion angles. The

4. Incorporating conformational energy effects functionsp and w are calculated analogously.

Including the effects of conformational energy, the 42 |nterdependent potential functions
density function describing the distribution of tip-to-base
positions and orientations of a macromolecule may be The rotational isomeric state (RIS) model [2] is perhaps
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the most widely known method to generate the statistical discussed cases, these frame densities are not only functions
information needed to weight the relative occurrence of onG, but also depend on the bond angles contributing to the
polymer conformations in a statistical mechanical ensem- energy of interaction between the two chain segments.
ble. There are two basic assumptions to the RIS model Hence we definé, andf, by the equalities
developed by Flory: £.(q, $VOl(A))
¢ The conformational energy function for a chain molecule

is dominated by interactions between each set of three :J

groups of atoms at the intersection and ends of two {1 Yg( b1, dDEIMAQ )}

adjacent bond vectors. Hence the conformational energy g

function can be written in the form

f2(d', di+1)VOl(A(G)

e Eildr...di)keT de..de_;

e Ea(dis1,.wPn-1)/KeT

n-1
E($)= > E(¢i-1.4) ©) J
B = {T" 777 2l9(¢i + 1. - DEIMAE))}
where¢g = (1, o, ..., Ppy_1) is the set of torsion angles. q q
e The value of the conformational partition function X Adbi+2.. A1

—E(p)kgT FPNs Hs . . . ..
e 5#T is negligible except at the finite number of The functions, andf, are written more cleanly in the limit

pOintS WhereE(q’_)) is minimized, and hence averages of of very small voxels using the Dirac delta as
conformation-dependent functions may be calculated in

the following way: fi(g’, ) = j R (¢ B R Lo )
Ti-1
JTnfl f(4) g el Ay ddns X depy..depy—y
(fy= -
JTH e E@eT g . depy_1q and
Z H(db,) o E@ kaT f2(0, di1) = J'Tniiiz e Bz dn-vkeT
~ BeT X 8(0 (P11 on Q) Ay 0
Z e*E(J)n)/kBT . g i+15 +-» Pn-1)°0 i+2+-Y4¥n-1
$,eTn 1 where
Here the finite set of conforrn_ationsd?{n} are local 8(g) = 0 9¢ A
minima of the energy functiok(¢). 1/Vol(A(e)) g & A(e)

As a consequence of the above two assumptions, con-where e is the identity of G (i.e. corresponding to no
formational statistics are generated in the context of the motion).

RIS model using statistical weight matrices. These two contributions add to give the composite frame
One drawback of this technique, as pointed out in Ref. density function using a combination of convolution and
[9], is that the actual distribution of end-to-end distance is weighted integration over the last torsion angle of the first
not calculated using the RIS method. The traditional tech- chain segment and first torsion angle of the second chain

nique for generating statistical distributions is to use Monte segment:

Carlo simulations. While this is a quite effective technique,

it has the drawback that it will, by definition, not pick up the f(g) = J J fi(h, d)i)fz(h_log, biv1)
tails of a rapidly decreasing distribution. In contrast, the TJe

generalized convolution technique can be made to conform % @ Br1(diDksT 4 de; debi 1.
with the RIS assumptions and provides a numerical tool to _ _
generate the statistical distributions of interest. This follows from the evaluation of (7) with (9). From

When interdependent potential functions are used, it is the forms given above foly andf,, and the properties of
not possible to completely separate the conformational the Dirac delta (see Appendix A) it is clear that the
partition function and perform straight generalized con- normalization
volutions. Instead, one can write the conformational energy

function (9) as J f(g) dg = J g E@)keT dé
G Tn-1

E(¢) = Ex(¢y, ... d) + Eira(i, div1) + Ex(iva, .. dnon).

holds.
Then frame densities for the lower and upper segments are The assumption of discrete sampling of most probable
generated as before. However, unlike the previously values of torsion angles, as in the RIS model, reduces
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4.3. Ensemble properties including long-range
conformational energy

Jri+p*—2mcos 6

In this section we model the long-range interactions in a
macroscopically serial chain using an averaging approach
which builds on the formulation of the previous sections.
The model uses the functiong(g,X) which were not
explicitly needed in the purely kinematical model.

Accurately modeling interactions of atoms which are
distal in the chain but proximal in space (due to bending
of the chain) is one of the most difficult problems in the
study of macromolecules, independent of whether they are
man-made polymers, proteins, or DNA. Explicitly account-
ing for all such interactions for all possible configurations
by brute force enumeration requires a mind-boggling
amount of computational time. At the other extreme, the
simplified closed-form analytical models such as the
Gaussian random walk do not explicitly account for these
interactions. Furthermore, models based on self-avoiding
walks and renormalization group methods are respectively
limited to rather short chain@\ < 100) or very long ones
(N — 0).

A number of different approaches are considered here to
incorporate the effects of energy. Perhaps the most straight-
forward is to penalize contributions in Eq. (6) so that when

Fig. 2. Approximating excluded volume interactions usjng, X). the support of appropriate|y shifted functiom and Lis1

intersect, these functions would be disallowed from con-

tributing to the computation ofs;;,,. Clearly this would
the integrations ovefl? to summations. Hence, from a generate ensemble statistical distributions which would be
computational perspective, interdependent energy functionslower estimates of those generated from the self-avoiding

require K? convolutions instead of one, whet¢ is the walk model. A slightly more sophisticated model would
number of sample points for each torsion angle. Typically calculate the energy of interaction of the distributiqus
for an organic chain moleculé = 3. and ui.q and use this information in an appropriate

This procedure is iterated in analogy with the algorithm conformational partition function. We now quantify this
developed in the previous section for the purely kinematic discussion. The interaction of segmentand i +1 is
model. Namely, instead of breaking a chain molecule into approximated by considering the interaction of the
two imaginary pieces, it can be broken into an arbitrary corresponding functiong; and y;. as:
number of statistically significant segments, and an
energy-weighted convolution of each pair of adjacent Ei;:i(h, g)=J SJ 3,ui(h,>‘<);u«i+1(h‘1og, h™Loy)
segments can be performed. "R

Hence convolution-like integrals of the form X V(X — y) dx dy. (11
¢ B £(h ‘ o1 We assume here that the potential between any two atoms
(9 i, b) = JTZ JG 1(N. &> dficr 117G, dier 1, 1) located at positiong andy is V(X — ). Then Eq. (11) is an
’ approximation of the interaction of all configurations of
X @ BnedaeT dh dey deby (10) segment which terminate at framhb and all configurations

of segment + 1 with distal end ag and proximal end af

. . 710
are performed, where now both the values of base and distal(hence the relative displacemeimi™qg). In the case when

torsion angles must be recorded so that the process can béhe po'tential function is.used o represent pure hard-sphere
iterated. The drawback of this is that if tA& integral is _repulsmn and no attraction, then a reasonable moddai(Fr

approximated as a sum ovir values, then th&? con-
volutions onG must be performed for each of thé values V(X) = Ex8(R).
of the pairs(¢;, ¢). Hence, K* convolutions onG are

required at each step. While this is troublesome, we note

that these calculations are independent and hence can b _ 1 i1
distributed over a parallel computer. %"i+1(h’ 9 =B JR3 wi(h. Rpieg(hog, bRy ar. - (12)

In this case one writes
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4r adjacent segments may be written more explicitly as
RO = || (DA RA R~ )
sO3) JR3
x dé d2. (15)

In the above equation the integration ov@r has been
rewritten as integration over position and orientation sepa-
rately, and the volume element is rewritten by observing
that it is the product of the volume element for SO(3) and
R® That is, c=déd# where h=(%§), dé=
d¢; d&, d&;, and d% is given in Appendix A.

It has been reasoned [12] that for chains with more than a
few links, the orientation dependence of the chain PDFs
vanishes. That is, to good approximation

Radial Position Density

0 0.1 02 03 04 05 06 07 08 09 1
Radial Distance

Fig. 3. Energy-weighted PDF for end position. (fl " fz)(R R) = (fl " fz)(x) — J J fl(é)
so3) J w3
This may then be used to approximatg.; as x f(2T(x — &)) d d2.
N o o el If, in addition, the PDF$, andf, are spherically symmetric,
Hii+a(Q.%) = JG (pi(h, Q)fi 1 (0 "0) so thatf,(r) = fi(r) where r =|r|, then f,(2"(x — £)) =
. 1 Bk f,(x — &), and so we can calculate the frame density of
+ fi(huira(h "eg, h7ex)) e =276 dh., two adjacent segments using the usual convolution:
(13
- (b0 = | f@R— ) dE.
By definition, it follows that R?
j— 1 \v4 /
fijra(@) = M+ Mg Jwe Mij+1(9,X) dX 5.1. The Gaussian chain
_ _E. Perhaps the most common model for the distribution of
_ 3 : 1, Eiir1(hg/keT - . . : o ;
- JG fi(fia(h"eg) dn. a4 end-vector distribution is the Gaussian distribution:

. . . . e 32 2
In this way, the purely klnematlca_l model_ is modified S08S f (R F/K" = jia(F) = ( 3 . ) exp[— iz ] (16)
to take into account the energy of interaction of two adjacent 27(r?) 2(r?)

segments. A&y/kg T becomes large, the only contributions

to u;;+1 are from the shifted versions of the functigusand ~ This distribution is spherically symmetric (and hence
wis2 which do not overlap at all. This extreme case is a depends only om = |f|). It is normalized so that it is a
lower bound on thew;;,; that the self avoiding walk  Probability density function,

would generate. This follows for largey/kg T because the o

model in (13) would not only disallow the intersection of , p(f) dry drydrg = 417J poOr’dr = 1.

two adjacent segments, but also would disallow any contri- 0

bution if (12) is nonzero, i.e. if; andu;, 1 overlap. Onthe  One observes the equality’) = nl? for a chain withn links
other hand, for smaller values Bf/kgT the present model  each with length.

may provide more realistic statistics than lattice self-avoid- |t is easy to verify that the PDF for the concatenation of
ing walks since there is no artificial restriction on bond and two Gaussian chains is

torsion angles that restrict conformations to a lattice in the

present model. In the next section the present formulation is (5 s, * £ c,)(r)

compared with a number of traditional models.
3 32 3r2
=— e - |
(2’1T(n1 + nz)lz) Xp 2(“1 + n2)|2

5. Analytical examples That is, the convolution of Gaussians corresponding to
segments of lengthnyl and nyl results in a Gaussian
The convolution integral of frame densities for two corresponding to a segment of length + n,)l.
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25¢ proximal and distal ends of the segment. For the moment
01 : let us assume that= [r,0,0]". Then this ellipsoid will be
defined by the equation

X — r/2)2+y2+z2 B
3 b?(r)
The parametersg, andbi(r) are derived front andL; as

1
bi(r) = E\IL? -r2,  a=L/2

A corresponding model for the functiqu (g, X) is

Di(r,)_() = (

15¢

05t

Probability Density of End-to-End Distance

M;fi(r)
i(r,X) = ————ste@—D;(r, X)].
mi(r, %) %ﬂa,blz(r) A i(r,X)]
% o1 02 03 04 05 08 07 08 09 | Here stepf] is the unit Heaviside step function which takes
Radial Distance the value 1 forx = 0 and zero otherwise. The denominator

in the fraction above is the volume of an ellipsoid of revolu-
tion defined by major axis with lengta and minor axes
with lengthb;. Hence thisu; is constant over the interior of
5.2. The freely jointed chain the ellipsoid, zero outside of it, and normalized so that
IR3 Mi d)_( = Mifi~

The energy of interaction between the ensembles for two
adjacent segments is then of the form

Fig. 4. Energy-weighted end-to-end distance PDF.

The freely jointed chain model assumes that each link is
free to move relative to the others with no constraint on the
motion and no correlation between the motion of adjacent
links. A derivation of the statistical distribution of end posi- Ejj;+1(¢,11,12)
tions of a freely jointed chain can be found in Ref. [6], and is
given as _ EoMiMifi(rpfis(rp)

- sted—D;(r1, X)]
Smab?(ry)-§ma 102 1(rp) Jws =Dilry

A1) = jo sinan[sin@l/qll"q dq (17

2mr X sted —Dj41(r2, R(— $)X)] dx.

where agairr = |r| andn is the number of links. _ The integral is simply the volume of intersection of two
Application of the usual Abelian Fourier transform yields  ellipsoids which share one of their foci and are rotated rela-

F (o™ = Isincab/al’” tive to each other by anglg. Clearly this energy function is

7 (pe () = [sinaly/all 2m-periodic in¢ and has the symmetries

whereq = |g| and q is the vector of Fourier parameters. E . F I =E (= Trtr) = E ot

From this fact it is clear by the classical (Abelian) i@ 12) = Bija(= i1 T2) = Bjea(b 2. ).

convolution theorem that Since we have assumed tlfigt) = f,(r), Eq. (14) reduces
pf:nl) " p;znz) _ pE:nl+n2). to

fiica(n) = ZTTJ fi(p)J fi+1(\/r2 +p? -2 C059)
0 0
5.3. Self-interacting chains

-1

The previous two examples illustrate that the generalized exp(m Eivi+1(¢’(r’ P. 6).p, \/rz +p? — 2rp cos 0))
convolution model agrees with classical formulations in the
degenerate case of a spherically symmetric density function X p? dp dé. (18)
without dependence on orientation when the effects of
excluded volume are not included. We now show how this The functional relationship betweeh and the variables,
formulation can be used to approximate the effects of p, and#é is easily derived from Fig. 2 using trigonometry as
excluded volume using an analytically defined function rsing

To begin, let us assume that segmeistlong enoughto  sin¢ =
be considered completely flexible (though inextensible).
Then the functionu;(g, X) will only depend on the magni- p—r cosé
tude of the translation = |r| whereg = (R, T). If the length cos¢ =
of this segment i;, then for givenr, all configurations of
the segment will be contained within an axially symmetric These are inverted using th&tan2() function to yield
ellipsoid with axis in the direction of, and foci at the &(r,p,0).

JrZ+p? —2rpcosh’

JrZ+p2—2rpcosé’
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techniques originally developed by the author for the field

of robotics be applied in the polymer context. The work that

gave rise to this was supported under NSF grants NSF-IRI/
RHA 97-31720 and a 1994 Presidential Faculty Fellow

Award. D. Stein is acknowledged for generating the figures
in this paper.

Appendix A. Integration and convolution of motion-
dependent functions

An arbitrary rigid-body motion can be viewed as the pair
g= (R ) where Re SQQ) (i.e. R is a 3x 3 rotation
matrix), and F € R® is a translation vector in three-
dimensional space. The composition law @g°g, =

Fig. 5. Concatenation of homogeneous transformations. (RiRp, Ry +3 rl)- The action of the motioig on a position
vectorx € R”is gox = RX + T.
As a numerical example, we takk and f,; to be The collection of all rigid-body motions is denoted in this

Gaussian withn; = n;; = 10 and| = 0.05. Substituting paper ass. Any g € G can be faithfully represented with a
into Eq. (18), the resulting;,; (normalized to be a prob- 44 homogeneous transformation matokthe form:
ability density function) is shown in Fig. 3 for the values of R 1

€ = MM, 1Eo/kgT indicated. Fig. 4 plots the end-to-end H(g) = (_ )

distance function d defined in Eq. (3) for the values of 0" 1

€ shown. These plots agree with the qualitative sense that
the mean end-to-end distance should increase with the
degree of repulsion.

Henceforth no distinction is made betwe@rand the set of
all 4x 4 homogeneous transformation matrices.

] A.1. Invariant integration
6. Conclusions

Orientations (or rotations) in three-dimensional space are

The ensemble properties of chain macromolecules areparameterized witiXZ Euler angles (Flory calls these the
generated by convolving functions of rigid-body motion. “Eulerian Angles” [6, p. 404])
Analytical examples demonstrate the technique for both
the case when interactions between distal segments in theR(®, 6, ) = RAD)R(ORA(h)
chain are modeled and when they are not. A general numer-
ical scheme to implement the yanalytical f?)rmulation is Cyce — chspsy  —sych — cospey  sosd
outlined, and the complexity of the approach is analyzed. = | cis¢ + cchpsy —syPsp + cocpcy  —sbcd
This computational approaqh is very g_eneral, anpi can be Sosi soco o
made to conform to a variety of steric constraints and
conformational energy functions. Analytical examples where ‘s’ is shorthand for ‘sin’ and ‘c’ is shorthand for ‘cos’.
show that the present formulation includes classical models The range of these angles is0¢, ¢ = 2rand 0= 6 < .
such as the Gaussian and freely jointed chains. The presentrhe volume element fo& is given by
work also shows how the PDF of end positions and orienta-
tions for the RIS model as well as models including the gy — isingdd, dé dy dry dr, drs
long-range effects of excluded volume can be generated. 8m?

Finally, it is worth noting that while the formulation \yhich is the product of the volume elements R} (dr =
presented here is for PDFs defined on continuous domainsdrldrzdrg) and for SO3)(dR = (1/8w2) sin 0 de o dy).
the restriction of chains to lattices, and the use of the corre- 1o norm,alization factor in the definition oRds so that

sponding discrete crystallographic motions in place of sag dR= 1.

continuous rigid-body motions may lead to even faster ° “The fact that this volume element is invariant to right and
numerical implementations. left translations. i.e.

dg = d(heg) = d(geh
Acknowledgements g = d(h°g) = d(g°h)

is well known in certain communities (see, e.g. Refs.
Thanks go to D. Healy, G. Domokos and M. Donohue [32,33)).
for each independently suggesting that mathematical We note the following shorthands used throughout
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the paper:

2n  m (2w
JSCX3) =J¢:o L;:o ,[¢:o;
o oo o0
JR3 N Jrlzfoo Jrzzfoo Jrg}:*w;

and
JG =,[R3 qusf

A.2. Geometrical interpretation of convolution on G

Suppose there are three frames in sphkeeh, andF3, as
shown in Fig. 5. The first frame can be viewed as fixed,
the second frame as moving with respect to the first, and
the third frame as moving with respect to the second. Let the
homogeneous transform#’ describe the position and
orientation of F, w.r.t. F;, and H' describe the position
and orientation ofF; w.r.t. F,. Then the position and
orientation ofF; w.r.t. F; is H = s#H’. The position and
orientation ofF; w.r.t. F, can then be written as

H' = 7 'H.

We may divide ugG into volume elements, or “voxels,”
of finite but small size. The volume of the voxel centered at
H € G is denotedAH, and as the element size is chosen
smaller and smaller it becomes closer to the differential
volume element M.

The motion ofF, relative toF, and the motion ofF;
relative toF, can both be considered elementsGfand

153

Using this definition of convolution, the Dira&function
defined in the text has the property

Sxf=fx6="1

for any well-behaved(g).
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