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Abstract— In this paper the problem of dynamic self- 2) Symmetries in the mechanical structure of the modules
reconfiguration of a class of modular robotic systems referred must be such that they fill planar and spatial regions

to as me_tamorphlcs_ystems is examlngd. A metamorphic robot_lc with minimal gaps. In this way, a lattice of modules is
system is a collection of mechatronic modules, each of which
formed for any task.

has the ability to connect, disconnect, and climb over adjacent . . o .
modules. We examine the near-optimal reconfiguration of a ~ 3) The modules must each be kinematically sufficient with

metamorphic robot from an arbitrary initial configuration to respect to the task of locomotion, i.e., they must have

a desiredhfinal tgzonfigur?_\tion. .C0ncepts dOff' diztanced be:lween enough degrees of freedom to be able to “walk” over

metamorphic robot configurations are defined, and shown : - .

to satisf)? the formal progerties of a metric. These metrics, adja_cent modules so that they can reconfigure without
called configuration metrics, are then applied to the automatic outside help.

self-reconfiguration of metamorphic systems in the case when 4) Modules must adhere to adjacent modules, e.g., there
one module is allowed to move at a time. There is no simple must be electromechanical or electromagnetic connec-
method for computing the optimal sequence of moves required tors between modules which can carry load. This causes

to reconfigure. As a result, heuristics which can give a near
optimal solution must be used. We use the technique of Simulated .
Annealing to drive the reconfiguration process with configuration object.

metrics as cost functions. The relative performance of simulated  One of the module designs which satisfies all the above

annealing with different cost functions is compared and the " yherties in the planar case consists of six links of equal
usefulness of the metrics developed in this paper is demonstrated. . . - . .
length forming a six bar linkage, as shown in Fig. 1(a).

Index Terms—Metrics, optimal assignment, self-reconfigurable Because of the hexagonal shape, the modules completely fill

the collection of modules to act as a single physical

robots, simulated annealing. the plane without any gaps. As can be seen in Fig. 1(b),
each module possesses three degrees of freedom which are
|. INTRODUCTION controlled by placing actuators at alternate joints. This en-

ables each module to move around another while remaining
dependently controlled mechatronic modules, each & nnected at all times during this motion. The modules are

which has the ability to connect, disconnect, and climb oV&rovided with electromechanical connectors actuated by D.C.

adjacent modules. Each module allows power and informatiHiPtors' E?Ch module carries male and female connectors on
to flow through itself and to its neighbors. A change iRlternate links. Because of the symmetry of the module, male

the metamorphic robot morphology (i.e., a change in tf@nnectors always meet female connectors and vice versa [7].

relative location of modules within the collection) resultén this partlculqr |m.pleme'ntat|on each male conneptor (T-
from the locomotion of each module over its neighbors. Th§&i@Ped protrusion) is spring loaded to allow for alignment

a metamorphic system has the ability to dynamically seffrrors and to provide passive compliance during the reconfig-
reconfigure. uration sequence. For a hardware demonstration of the above

Metamorphic systems can be viewed as a large swarm @§Sign. see [27] and [28]. _
colony) of connected robots which collectively act as a single Potential applications of metamorphu? systems composed
entity. What distinguishes metamorphic systems from oth@f @ large number of modules include: 1) obstacle avoid-

reconfigurable robots is that they possess all of the followir@j!c® in highly constrained and unstructured environments; 2)
properties: “growing” structures composed of modules to form bridges,

1) All modules have the same physical structure, and ea yuresses, and other_ civil structures in t|m_es of emergency;
envelopment of objects, such as recovering satellites from

must have complete computational and communicati o i X ) :
functionality. This allows uniform treatment of modules>PaC€: and 4) Performing inspections in constralneq environ-
in the planning problem. ments s_uch_as nuclear reactors. Some of these applications are
shown in Fig. 2.
The idea of a metamorphic robotic system differs from
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Fig. 2. Examples of metamorphic robot applications.

requirement, and thus many of the methods in this paper apply.

| This paper addresses issues in the motion planning of
. .5 J metamorphic systems with a fixed base, i.e., “manipulators,”
_! rf"‘ as opposed to “mobile robots.” No distinction is made be-
‘ 1‘ ’ M__F tween “motion planning” and “self-reconfiguration” of these

: e J i, 3 systems — these words are synonymous in the context of

| I’? metamorphic systems. In Section II, we review kinematic and

&= L O motion planning issues pertaining to metamorphic robots and
: TP describe the complexity of the motion planning problem for

(b) metamorphic robots. In Section Ill, we define concepts of

Fig. 1. (a) An example design of planar module. (b) Hardware demonstratigll}Sta.-nCe t.)etween.conflgurau_ons and d|SCU_SS three_ types of
of motion involving two planar hexagonal modules. configuration metrics. In particular, the “optimal assignment

metric” is discussed and a method for evaluating it is illustrated
with examples. In Section IV, we provide a formal proof that
generally no physical connections between modules [18], [1 e concept of distance between configurations using optimal
[1]. Most recently, two other types of modular reconfigurablassignment is a metric on the set of all possible configurations.
robotic systems have been considered. Yim [33], [34] consiBection V describes some modified metrics useful for motion
ered modular robots composed of a few basic elements whfglanning. Section VI discusses the application of the method of
can be composed into complex systems, and used for varisisulated annealing to the minimization of the cost function
modes of locomotion. Muratet al. [25] considered a “fractal” based on the metrics described in the earlier sections. This
system composed of modules with zero kinematic mobility, binvolves driving the distance between the current and the
which can “walk” over each other in discrete quanta due fthal configuration to zero. Section VIl describes the results
changes in the polarity of magnetic fields. Chen and Burdiglbtained from the implementation of a simulated annealing
[6] provide a valuable tool for defining equivalence classedgorithm for three different configurations.
of modular robot configurations with the same shape and
morphological function.
The concept of a metamorphic system differs from concepts Il. PROBLEM FORMULATION AND
in the works mentioned above because modules are homoge- MATHEMATICAL BACKGROUND
neous in form and function, physical contact between modulesin this section, we formulate the general problem of de-
must always occur, self-reconfiguration is possible, and tkeribing metamorphic robot configurations, and characterize
resulting structures have the ability to act as manipulatorsnstraints on module motion. In Section II-A, we focus on
because each module has full kinematic mobility. Nonetheledise description of a given configuration. Section II-B examines
the methods developed in this paper are applicable to otlw®nstraints on module motion and Section II-C discusses the
types of self-reconfigurable systems. For instance, the “fractaldmplexity of the motion planning problem for metamorphic
modules introduced in [25], [26] exhibit all but the mobilityrobots.
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A. Review of Lattice Kinematics

ConsiderRN (V-dimensional Euclidean space) wheYe=
2 or 3. Alattice is a discrete subset &N defined by a set
of N linearly independent unit vectofs; } as follows:

N
LN = (N ki@ ¢ kiyka, . ky € Z)
i=1

A vast body of literature deals with the symmetry groups ee ee
associated with lattices (which are simply discrete subgroups
4>

of SE(V) — the Special Euclidean GroYp and the decom-
position of space into regular lattices, e.g., [15]. ) )
One way to view space is as a collection of connected

)]
close-packed polyhedra, the centers and/or vertices of which e
form a regular lattice. In our problem, elements of the lattice eo e
(individual polyhedral cells) are either filled with robotic o ‘

modules or obstacles or remain empRY is then viewed ‘
as a collection of regular polyhedra which are either empty or
filled. By denoting the origin as the vectére RN centered ® @ Final Configuration

at the fixed base module, and defining unit vectors along agmy. 3. A complete reconfiguration sequence involving two parallel config-
N independent directions which contain at least two lattiggations.

points (module centers), every point in the lattice is given a

unique set of coordinates with the unit vectdrg} defining

coordinate axes. While this coordinate system will generally * Every module must remain connected to at least one
be skewed, it will be a Cartesian system if the lattice has Other module, and at least one of the modules must stay
square or cubic Spacing_ connected to the fixed base.

In order to define distance between configurations, we will * At each timestep only one module may move, and this
first need a concept of distance between modules. The regular module may only move by one lattice space. It achieves
Euclidean metric is an acceptable choice but the one that more this motion by deforming and mating faces to faces (or
accurately reflects the least number of moves required by a in the planar case edges to edges, as shown in Ffg. 1).
module to move between two points is defined as follows. FirstUnder these constraints, the motion planning/self-
construct dattice connectivity graph.e., a graph with vertices reconfiguration problem becomes determination of the
at lattice points, and edges that are straight lines connectsgguence of module motions from any given initial
all neighboring vertices. The distance measured akimgtest configuration to any given final configuration in a reasonable
pathsconnecting two lattice points in this graph is what wépreferably minimal) number of moves.
will refer to as the distance between two lattice points/modules.Fig. 3 shows a complete reconfiguration sequence from one
For example, if a metamorphic robot is composed of squares®rial structure to another.
cubic modules, distance between modules would be given byObserve that we consider only one module moving at any
the Manhattan/Taxicab metric iRN (see [7] for explanation time. Two other motion strategies which can be employed are
and other examples). We call this measure of distarla¢tiae  as follows. 1) Motion involving two or more modules moving
metric and denote it (a,b), wherea andb are lattice points. together or separately at each time step without violating
By definition, the lattice metric yields the minimal distancéhe connectivity constraints. This also includesanchesof
between lattice points, while defining a path connecting aftiodules moving due to the motion of the module at the
intermediate lattice points. This distance is a uniqgue numbégse of the branch. Zyixed topologymotion in which the
but the number of equidistant paths may be very large.  connection between the modules remains the same, and a

change in configuration occurs by changing the joint angles
B. General Formulation of the Motion of the modules. By focusing on single module motion, the
Planning/Reconfiguration Problem restricted reconfiguration problem becomes tractable and helps
. . . . . to illustrate the metric concepts discussed in this paper (which
In this section we formalize the motion planning problem . .
for metamorphic robotic systems. Fig. 1 demonstrates e completely genergl since they do not assume any particular
i . . mode of reconfiguration). Furthermore, while single module
reconfiguration process with two planar hexagonal modules. .
: . . . X motions are not always optimal, they are advantageous for
The kinematic constraints governing the motion of one mOdUI%stacle avoidance and for motion in constrained spaces. and
over the surface of a collection of other modules are ° P ’

) ) are therefore interesting in their own right.
* Modules can only move into spaces which are accessible

and not already occupied.

2This condition restricts the scope of the current work. Solution of this
1 SE(NV) is defined as the group of rigid motions, i.e., rotations andestricted problem is a starting point for treating the more general problem of
translations, inV-dimensional Euclidean space. multiple simultaneous module motions.
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C. Complexity of the Motion Planning Problem configuration metric is given in Fig. 3 which describes an
As described in Section II-B, the motion planning problerﬂptimal reconfiguration sequence. In this case the distance

of metamorphic robots is defined as the reconfiguration of?gtWeen any two configurations is the minimum number
collection of modules from an initial configuration to a finaP’ MOves required to reconfigure from one configuration to

configuration based on certain constraints. This however leg{ther. This metric is described in more detail in Section il-

to a computationally complex step of determining an optimQ' ) . , , .
set of moves, i.e., the minimum number of moves required to W& now discuss some of the configuration metrics which
completely reconfigure. are used later for driving the reconfiguration process.

To the best of our knowledge, there is no simple method
for solving the above problem. The reason is simply that fé The Overlap Metric
any number of modules, the number of possible connected One way of defining distance between two configurations
configurations is exponential in. For a discussion of the js to consider the number of nonoverlapping modules in the
complexity of this problem, see [8]. two configurations. This represents the minimum number of
As a result, we have to look for heuristics which camodules which have to move for reconfiguration, but not the
give a near optimal solution. Any such heuristic requires gumber of moves the modules make. This concept of distance
distance measure between configurations so that the shorigsh fact a metric, denote@g)(A7 B), which we call the

path between configurations is picked. The metrics discussg@erlap Metric. This metric require9(n) computations, and
in the next section are some of the possible distance measui€$n,ch more informative thaﬁg)).

Theorem 3.1:The function
[ll. DEFINING DISTANCE BETWEEN CONFIGURATIONS )
In this section, we define measures of distance between b’ (4, B) =n—|ANB| 3)
configurationsof any given metamorphic system as opposeghich defines the number of nonoverlapping modules between
to distance betweenmodulesas discussed in Section II-A. any two configurations of modules is a metric.

Each configuration of: modules is defined by the collection Proof: In order to show that this is a metric we will

of n connected lattice spaces which it fills. That is, we do ngise a few definitions from set theory| = |B| = n =
distinguish between different modules and any permutation @fnher of elementsin Aand B; AN B = {z : = €
labels has no effect on the configuration since all modules afeand » ¢ B}; AUB = {z : © € Aorz € B}

identical. Therefore, two configurations with the same shagﬁ\B ={z:z € Az ¢ B}. We now show thaﬁ(cl) is a

and relative position in space are said to be the same. Metrigsiric by showing that each of the properties in (1) hold.
that define distance between configurations in this way arel) Positive definiteness follows becausen B| < n, and

denotedé.- for “configuration metric.” , . X -
Recall that a proper distance (or metric) function between two (ci;)nﬂgurauons_are said to_be the sameér( 5| = n,
or 6.’ (A, B) = 0) if and only if all modules overlap.

points A and B in any given set (which for the problem at e
hand is the set of all connected configurations composed 012) The symmetry condition in (1) follows from the fact
that |[An B| = |[BN A

n metamorphic robot modules) is defined by the following

: . 3) Proof that the triangle inequality holds is as follows:
t 23], [5], [10]: . i .
properties [23], [5], [10] Suppose we are given three configurations: A, B, and C
d(A,B)>0andd(A,B)=0«<—= A=DB (or equivalently the set of module locations that define
the configuration). From set theory, we know that
d(A,B) =d(B, A 1
(4,B) = d(B, 4) (1) 60(A.B) =n — |AN B| = |A\B| = |B\A|
d(A,B) +d(B,C) > d(A,C) (even thoughd\ B # B\ A) becaused and B have the

. . - same number of elements. We want to show that
which we refer to as positive definiteness, symmetry and the

triangle inequality, respectively. The original set, together with s (4,0) <684, B) + 63(B, 0)
a metric function defined on that set is calledhatric space _
In the context of metamorphic robots and B denote two or equivalently,

configurations such that; € A represents a module in one

configuration andb; € B represents a module in another [C\A] < [BAA] + [C\B.

configuration fori,j = 1,...,n. We start by showing that
A trivial example of a configuration metric is thaiscrete
metric C\A C (B\A)U (C\B). 4)

Let « be an arbitrary element ¢iC\A). = € (C\A) implies
5gJ)(A7 B) = {1 A#B (2) = € Candz ¢ A. Furthermore, eithex € B or it is not.
0 A=5B These possibilities are written as
which has a 0 value if the two configurations are identical Case 1:z € B andxz ¢ A meansz € B\ 4,
and a value equal to 1 otherwise. Another illustration of a Case 2:z ¢ B andz € C meansz € C\B.
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In either caser € (B\A)U (C\B) which proves (4). Section IV shows that the sum of distances between opti-
Therefore,|C\A| < |(B\A)U (C\B)| < |B/A|+|C/B| B mally assigned modules is in fact a metric on the set of all

While this is a valid metric on the set of all configurationgonfigurations of modules. Here we describe the optimal as-
of modules with the same number of modules, this metrgiggnment problem and review an algorithm for solving it which
fails to reflect the actual fewest number of moves neededO(n?). This cost is still far less than the exponential order
to reconfigure from one configuration to another. In factf computations required to compuﬁé?), but improves on
no assumptions were made about the connectivity of th€) py incorporating information about the distance between
configurations or the type of overlap between configuratiopgoqules in the measure of distance between configurations.

in the above proof. 1) Defining Optimal Assignment.et m;; be a variable
which is 1 if modulea; in the present configuration maps
B. The Minimal Number of Moves Metric to module b; in the new configuration and O otherwise.
This subsection examines another metric on the set of &li = d(a:,b;) is the lattice distance between module
connected configurations af modules. andb;. An arbitrary assignment will have an associated cost
Theorem 3.2:The function function
62 (4. B) = Mui(A, B) JAB) = 3 dimi; (5)
1<i<n
is a metric, wherelM,,;, is the fewest moves needed to tsisn
reconfigure while observing locomotion constraints. with the constraints
Proof: n
1) Positive Definiteness'> (A, B) > 0, with equality only Zmia’ =1 forall j=1,..n
when there are zero moves required to reconfigure from =1
one configuration to another, i.e4, = B. and
2) Symmetryég)(A,B) = 6(02)(B,A) because the mini- n
mal number of moves from one connected configuration Zmi]’ =1 forall i=1,..,n. (6)
to another can be performed in reverse order. j=1

3) Triangle Inequality _Sinceé(A, C)_is defined to be the The constraints ensure that the mapping is a bijection. We
fewest moves required to reconfigure frofmto C, any

reconfiguration must require at least this many move%(.aflne

Thus, a change to any intermediate configuratiBn 6(03)(A,B) = min f(A4, B) @)
and then fromB to C must by definition observe h

6(02)(A,B) + 5&2)(3,0) > 6(02)(A, o). B wherell, is the set of all possible matchings. We will prove

Unfortunately, this metric has no representation other thih Sect_ion IV that this definition satisfies the formal metric
explicitly solving a computationally explosive problem androperties. _ _ _
recording the sum of moves which is minimal. If in fact we 2) Evaluating Optimal AssignmentSeveral algorithms are
could do this in a reasonable amount of computational timdvailable for solving this optimal assignment problem. The
there would be no need for the remaining formulations of thi§€thod described below is the Hungarian algorithm for opti-
section, and the optimal reconfiguration problem could simpfj@! assignment [22]. . _
be formulated as a shortest path problem on a graph wher&0nstruct ann x n matrix D, with elementsd;; =
each edge is a move and each vertex is a configuration. Baf@:; b;)- the lattice distance between modules and b;.
this is not possible due to the computational complexity %@5/;9 wish to find an assignment;; in D which minimizes

this approach. _
Observe that if we subtract a constagtfrom the g** row

C. The Optimal Assignment Metr 3) of D, giving rise to a new matriD’ with elementsd;j, then
In this subsection we define and illustrate one particular Z d;jmij = Z dijmi; — ky Z Mg

configuration metric called theptimal assignmenmetric, 1<i<n 1<j<n 1<i<n

which is denoted a&>). The distance’” (A4, B) between two Lsisn tessn

configurations4 and B is given by an optimal assignment of

each element; in A to an elemend; in B, f : A — B, such = Z diymi; — ky (8)

that the sum of the distances (as defined by the lattice metric) 1<i<n

for the assignment is minimized. Equivalently, this can be Lsisn

represented as a graph theory problem in which configuratiamging (6). Thus, an assignment;; that minimizes (5) also

A andB correspond to the two partite sets dfipartite graph  minimizes (8) and vice versa. The same result is obtained if a
The task then is to find a perfect matching in a weightetbnstant,, is subtracted from thgth column. This gives us a
bipartite graph[11, 29] G = (A, B), such that the sum of the method of finding the optimal assignment.

weights of the matching is minimized. The weights correspondLet k, be the minimum element in thgth row of D and

to the distance between two modules. I, be the minimum element of thgth column. Subtrack,
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Hungarian Algorithm for Computing the
‘ @‘ee e@eo Optimal Assignment Metric
e e Assign T = Tinitial
°° °° While {(Final Configuration not reached)

and (moves made < moves allowed)}
@ ®) © After every k' move, let T =8xT
Fig. 4. (a) Present configuration. (b) New configuration. (c) Module labeling.Find the energy E of the Current
Configuration using the given cost
from each element of theth row for all g. Subtract/, from  function
each element of thgth column for allp obtaining a matrixD. ~ Find out all possible moves of all modules

Let us call this thereduced matrix This procedure produces For each possible move

at least one 0 in each row and column. Find the change in energy AE;, if that
The problem can then be solved by findingiadependent move is taken

set of n O’s in the reduced matrix. Note, that by finding If there are moves for which AE is

an independent set of 0's we are essentially obtaining afegative
assignment which has the minimal value or cost associated  Pick any one of those moves
with it (i.e., 0 cost for the reduced matrix). Since the minimiza-Else If ~ AFE is positive for all moves
tion problem remains the same, as shown in (8), the optimal ~ Assign a_APLQ/l)Tabi|ity
assignment is simply given by taking;; equal to 1 for the pi = m
1,9 corresppnding to the independent set of 0’s._The maximum to ealh thove
number lgfllndepen’dent 0’s can be found by using a corollary Pick a move based on the assigned
of the Koqlg—Eggr\gry theprerf‘n [21]._ . . probabilities.
Alternatively this is equivalent to finding an optimal match-
ing in the bipartite graph G = (A_, B) where A and B In the following subsection, we illustrate this technique with
represent the initial and final configurations and there's ap, example.
edge betweem; € A andb; € B iff d’ij e D = 0. If the
_number of mdependent 0's is equal tpthen the solution D. An Example
is simply the assignment;; corresponding to the above 0’s. ) ] ] ) .
Otherwise, we successively modify the reduced matrix to form FOr an illustration of the optimal assignment algorithm,
a newmodified matrixD) where there are independent 0’'s. consider the following example shown in Fig. 4. _
One method to do this is to find out the minimum number The matrix D formed by the distances between various
of lines (one line refers to one complete row or column) whicfiodules is shown in (9).
cover all the 0’s ifD. Letp be the smallest uncovered element. 17 9o 3 4
Modify the reduced matrix by subtractingfrom all the un-

1/0 1 1 2
covered elements and addipdo each twice covered element 201 1 2 3
by the lines (i.e., each element which lies at the intersection D= 312 2 3 4 )
of two lines). This is the modified matrif>. It is easy to 4\3 2 4 5

show that the new modified matrix has been obtained from

the preceding one by adding or subtracting a constant fromPerforming column operations (subtractijgthe minimum
different rows or columns. Thus, the minimization problerglement of each column, from each column, respectively), we
remains the same. The next step is to looksfdndependent getthe matrixin (10). Similarly performing the row operations,
0's and if none are present, the process is repeated until\4@ get the reduced matrix in (11).

independent set is found. 0 0 0 O
The sum ofd;; corresponding to the matrix indexesand , 10 1 1
j of n independent 0’s constitutes the distance between two D = 2 1 2 2 (10)
configurations using the optimal assignment me&é‘@. The 31 3 3
complexity of this optimal assignment algorithm (n?)
wheren is the number of modules. For a proof of this see 00 0 0
[29]. Below we provide pseudocode which implements the _ 1 0 1 1
above discussion. D= 1 0 1 1 (11)
2 0 2 2

3An independent set of 0’s in a matrix is a set of 0’s, no two of which are . . . .
in the same row or same column. The next step is to modify the reduced matrix by subtracting

4Konig-Egerary theorem: IfD is a matrix of 0’'s and 1's, a maximum the smallest element not covered by the lines (1 in the present
independent set of 0's has the same number of elements as a minimum(ﬁ%e) from all the uncovered elements and by adding it to
of lines covering all the 0’s ob. Corollary: The number of independent 0’s . . . . -
in the reduced or modified matriis equal to the minimum number of lines each twice covered element (l'e" Iymg at the mtersecqon of
which cover all 0's. two covering lines), Doing this we get the modified mafix
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as shown in (12). This matrix contains several combinationsA permutations applied to two configurationd, B yields
of four independent 0’'s any of which solves the problem artle assignment,p :

gives the value oﬁg’)(A,B). a a a
Fap = e an )
<bw<1> brzy - bw(n))

0 1 0 0

We are interested in the sum of the distances of the matched
module pairs, which are given by the columnsiofg:

n

0 0 0 0 i=1
whered is any metric between two modules, but in particular
1 0 1 1. the lattice metric, i.e., unless otherwise specifi#d,b) =
(5L(CL, b)

For later consideration it is important to note that this sum
remains the same if we rearrange the module pairs in the
following way:

Choosing the boxed solution above, the valuéé&(A, B)
is given as

5(0?)(1473) =diy +dow +dazy +dyor =0+3+3+2=8.

n

Z d(ai, b)) = Z d(ag(iy, br(e(i)) (13)
i=1

=1

The minimal value is achieved by matching modules with the
subscripts in the above expression. The reader is encouraged to _ _ _ o _
verify this by trying to assign modules from each configuratioyherey € Il,, is an arbitrary permutation. This is true, since

in Fig. 3, and summing the lattice distances between all gfiS applied directly to the index, which means that it only
them. changes the order of appearance of the terms in the sum.

From all possible permutations we take the one that gives
us the minimal value (optimal assignment), i.e., we use the

. (3) ) ) definition for 6g’) as given in Section IlI-A.
In Section IV-A, we prove thabe”(.,.) is a metric. In Theorem 4.1:6% is a metric on the set of all possible
Section IV-B, we use this fact to show that the optimal T P

. . o _ configurations, i.e., it is 1) positive definite, 2) symmetric, and
matching approach only needs to consider pairingsooiover 39 the triangle inequality holds.

lapping mod_ules, thus re_ducmg the siz€ of the matrice Proof: For explanations of the steps in 2) and 3) please
generated using the techniques of Section Ill. .
refer to the numbered remarks after the transformations.

1) Positive definiteness

IV. METRIC PROPERTIES OFOPTIMAL ASSIGNMENT

A. The Optimal Assignment Metric

In this subsection we show thég’) is a metric. We begin

with some background material. Lét;, az, -, a,} denote 6(5’)(A, B) = min Zd(ai,bw(i)) >0

the modules ofA and {b1,bs,---,b,} denote the modules el izl\_;?)_/

of B, where A and B represent two configurations. An @) .
assignment from A to B is aijective function from the 6’ (A, B)=0 = d(aibriy) =0Vi= A=B.

members of A to the members of B. It can be representedz)
by a function on the indexefl, 2,---,n} of A to the indexes
{1,2,---,n} of B. Functions of this kind are permutations:

Symmetry:

n

7r—< 1 2 - n ) el i
(1) w(2) - w(n) ) O

) ) ) = min d(az—1(3, bi)
For n modules there exist exactly! different permutations, wElL, —
i.e., n! different ways to rearrange the numbers in the set @ n
{1,2,...,n}. We list here two properties of permutations = minn d(b;, ar-1(i))
which are needed later on. For more details refer to [30]. T i

 II,, is a group W|_th operaﬂon, which is the composition ®) in d(bi. a0)
of two permutations: pell, £ @
(7?1 OWQ)(i)Iﬂl(WQ(i))EHn V7T1,7T2€Hn. :6<§’>(B7A)

* Becausell, is a group, each permutatienc II, has a ) we use (13) withy = 71,
unique inverse element~" € II,,, such that i) The distance functioni(,-) is a metric and therefore
symmetric.
iii) Minimizing over all = € Il is the same as minimizing
where [ is the unique identity element. over all 7= € IL

gor t=I=xton
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3) Considering the terms on the right-hand side of the e

inequality: ‘ eo o e&a
3 3
56)(A,B) + 05 (B,0) 2] Q
e o 00 ()
= min d(ai,byy) +  min Zd(bi,cwr(i))

@€ll, i=1 vEll, i=1 Initial Configuration Final Configuration Overlap

n n

(1) . .
= min min <; d(ai, byiy) +;d(bi,c¢(i))> @ 1->1 2->3 3->4 42
@ n n W>1 =>4 2->3 3->1 4 -2
= min min d(a;, buy) + dA(b(iys Colo(i

p€ll, pelly, <; ( v S“(Z)) ; ( wli): W(V(Z)))> @1 ->3 2->4 3->1 4>

n

— }Telgl Helgl Z (d(a“b@(z)) +d(b¢(z)76w(¢(z)))) 3 possible optimal assignments

P W LS ~~ Fig. 5. Three possible optimal assignments for the given initial and final

Zd(asey(p(:))) configurations.
n

> min d(ai; Cpop(i)) L

eell, = Let b, € B be the module to which, is matched, and, € A

n be the module to whicld; is matched,

= min d(a;, i

7cll, = ( v W(Z)) ap ~ bg, and as ~ by.
=6®(4,0). Consider a modified assignment, wherea; is assigned to

b1, ay ~ by, andas is assigned td., as ~ by. Comparing the
expressionf,/ (A, B) = > d(a;, b () With the minimal
min f(p) + win g(y) = min min (f(e) +9(9)).  value fr- (A, B) = 3/, d(ai, br(;)) we note that

¥ n v n

p€ll, yell,
fﬂ"(A7B) = fﬂ'*(AvB) +T2 - Tl

1) We use the following equality:

2) We use (13) for the sum at the right. |
where

B. Reduction of the Computational Cost
11 = d(a1,b2) + d(az,b1) T = d(a1,b1) + d(az, ba).

In the previous subsection we saw thé(g’)(A,B) =

n . :
min Y d(a:, b)) is a metric on the set of all configurations,T2 is smaller or equal td}, since

mell, =1 . , . T, = d(ay,b)+d(az, b)) = d(as, b
defining the distance between any two configurations A and B. 2 &/_12 (a2,b2) = dla2,b2)

In this subsection we prove that we can restrict our search to
permutations which match only the nonoverlapping modules
of two configurations to each other thereby reducing the size
of the matrices considered in the Hungarian algorithm in the 0
previous section. This reduces the computational effort consid- = d(ag,b1) +d(ay, b2)

erably in most cases. Note, however, that optimal assignments 7.

exist which do not assign overlapping modules to each other.

Fig. 5 shows the configurations corresponding to the examplence we have

of Section IlI-D. Fig. 5(a)—(c) are three possible optimal as-

signments. While (a) assigns the overlapping modules to each [ (A, B) < fo (A, B).

other, (b) and (c) do not but are still valid optimal assignments. g+ sincer* is already an optimal assignmentt, (A, B)

_In the proof which follows, the notation ~ b is used 10 can ot be smaller thayi,- (A, B) and therefore both terms
indicate that module: € A is matched to modulé € B by st be equal

assignmentr*, whereas: «+ b means that they are not.
Theorem 4.2:An optimal assignment between two config- [ (A, B) = fz (A, B)
urations A and B can always be obtained by considering onlﬁi/

0
d(ag,by) + d(by,be)
d(ag,by) + d(by, a1) +d(ay, b2)
——

INIA

the nonoverlapping modules and assigning the overlappiig° * is also an op.timal assignment. . -
modules to ea?c% gther gning bp e can apply this procedure to the resulting modified

Proof: Consider an optimal assignmetit, in which not assignment(s), until no suak,,b; can be found. The result

all overlapping modules are matched to their counterparYgi" be a minimal permutation where all modules in the overlap

Without loss of generality, leti; € A be a module in the are matched to their counterparts. u

overlap of A and B, which is not matched to its counterpart H_ence it is possible to restrict our searqh for a m'”'”_‘a'
b € B, ie. assignment to permutations of nonoverlapping modules right

from the beginning. In cases where there is substantial overlap,
ap = by, but aj o4 b this can save a lot of of computational effort.
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V. MODIFIED METRIC FUNCTIONS

In the previous sections we defined some basic metricfi] Final Configuration

539

:] Initiol Configuration

functions which are useful for modular robot motion planning.
In this section we consider how existing metrics can be
combined to form new metrics. This is motivated by the fact
that a function which combines the properties of the metrics
discussed earlier when used with a proper weighting can vyiel
better results than the original metrics.

We first prove some basic theorems. (o>
Theorem 5.1:1f 6; and 6> be two metrics, thens; =
aby + P62 is also a metric, wherer and 5 are fixed positive

real numbers
Proof: Sinceé; and > are metrics, we have:

1) Positive Definiteness 63(A,B) = «é1(A,B) +
B6:(A,B) > 0,A # B, 83(A,A) = ab (A, A) +
B62(A, A) = O;

2) Symmetry 63(A, B) = «b1(A,B) + B36:(A,B) =
aél(B,A) + /362(3,.4) = 63(B,A);

3) Triangle Inequality 65( A, B)+63(B,C) = ab1(A, B)+
ab1(B,C) + B6:(A,B) + 86:(B,C) > ab1(A,C) +
B62(A, C) = 63(A, C). UG

Theorem 5.2:1f f(.,-) satisfies all the properties of a

metric exceptf(A, A) # 0, then the functiong(A, B) =
f(A,B)égJ)(A,B) is a metric whereSgJ)(-, -} is the discrete
metric defined in (2).

Proof: Symmetry holds because boftt-,-) and dy(-,-)
are symmetric. The triangle inequality is unchanged Aog
B # C. Likewise, g(A,B) > 0 if A # B. In fact, the only
thing that is changed is that noy( A, A) = 0. |

We are now ready to define two new metrics using the

properties discussed above. These new metrics are useful
because in some scenarios they improve performance in the
motion planning problem.

A. Modified Overlap and Optimal Assignment Meﬁéé)

Using the overlap and the optimal assignment metric
discussed in the previous sections and using the theorems i
the beginning of this section, we define a new ma‘ﬁﬁﬂ as

59(A,B) = a6 (A, B) + B6&)(A,B).  (14)  *mTmeinag s

The above metric is of interest since for some reconfigu el |
rations it is desirable to keep the overlapping modules in th #1004
two configurations in place, while for other cases it is desirabl
to move the overlapping modules. These preferences can

Fig. 6. Eight configurations used for evaluating real time taken.

achieved by changing the values @fand 3. 0w

B. Configuration Metrioé(cs)
Using Theorems 5.1 and 5.2, a new lattice mefica, b)

Fimbhm ol 4o lm

is defined from an old one as

(5[((@, b) = Oé(SL(CL, b) + ﬁdo(a, b)[(SL(CL, 0) + 6L(b7 0)] (15)
A new configuration metricﬁ(cs) is then defined as
OV A B) = min S 6 (@b
8¢ (A, B) = 7Erelhn 2. O (@i, br(iy)- (16)

Fig. 7. Plot showing the average time taken to reconfigure for different
number of modules.

The above definition oﬁg)(A, B) is motivated by the fact
that quite often we have two configurations next to each other
or parallel to each other (as shown in Fig. 8). A pure optimal
assignment based on the lattice metricsimply assigns the
modules next to each other and hence is not reflective of
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B. Energy Functions for Simulated Annealing

In the application of simulated annealing to metamorphic
robot reconfiguration, energy functions which reflect the dif-
ferences between configurations are important. Using measures
of distance that formally satisfy the definition of a metric
guarantee that we have a well defined stopping criterion,

- Initial i.e., 6c(Ag,Ax) = 0 or k = M4, (Which ever comes

Configuration first), where Ay is the k** configuration in a sequence of
Final configurations, 4, is the goal configuration, an@/,,.... is
Configuration the maximum allowable moves. Furthermore, the triangle

- Bose inequality is important because if we can find a configuration

_ S _ , A; such thatéc(A., Ay) = 6.(Ao, Ai) + 6.(Ai, A,y) and
Fig. 8. Reconfiguration involving two serial structures parallel to each Otheg'c(Ao,Ai) ~ 6c(Ai, Ay) then the reconfiguration problem
can be divided into two problems, which are likely to converge
much faster.
the actual moves made by the modules. Whereas, the abovgefore discussing the energy functions we used in trial
approach tries to assign modules farthest from the baser({s consider a few naive choices of energy which wee
position) in one configuration to the modules closer to thgsed. LetC be the current configuration anél be the final
base in the other configuration. configuration, where?' = {¢;} and F' = {f;} are collections
In order to demonstrate the usefulness of these metrics, thgYattice points (modules) representing the two configurations.

which drives the distance between two arbitrary configuratiofgive choice, consider:

to zero by minimizing the “distance” between them. In fact, I
any method of discrete optimization could be used in place of E(C,F) = Z Z‘SL(C‘ ).
Simulated Annealing. We use SA here because of its generality ’ Pl o

and ubiquity in the literature.
This is simply the sum of lattice distances of every module in

one configuration to every module in the other. This function
VI. THE METHOD OF SIMULATED ANNEALING observes the triangle inequality when evaluated with arbitrary

1 1 H ! / / H
In this section we use the metrics discussed in the previoconflguratlons, le.B'(4,C) < E'(A, B) + B'(B,C). This

sections in a reconfiguration algorithm based on simulatgcl)jows from the fact thaby (a;, b;) +0r(b;, c) 2 brlai, cr);
annealing. summing overi, j, k and dividing byn, we get the triangle

inequality for £'. However, this function does not satisfy
positive definitenes#’( A, A) # 0. Furthermore, it is possible
A. Simulated Annealing for E/(C, F) = E'(F, F) without C = F. In other words, it is

Simulated Annealing is an algorithmic approach to solvingessible for minimization of this cost to not lead to the goal,
optimization problems especially in cases where the glotald not even know when it has reached the goal.
extremum is hidden among several local extrema [20]. TheThis flaw in E’(-,-) can be repaired by defining the fol-
basic idea behind this algorithm comes from an analogy witAWing:

s_imglatirjg the annealing of solids [24] and slow cooling of E"(C,F) = 5%(0, F)E'(C, F)
liquids, i.e., the way metals or crystals cool and anneal to
achieve the minimum energy state. where$2 is the discrete configuration metric defined earlier.

The basic simulated annealing algorithm considers the @Bt in doing so, the configurations can still be close to each
jective function to be minimized as the energy of the systemther (but not equal) without this being reflected in the distance
Starting from an initial state with energ the system is function E”(,-). That is, there is not a gradual descenfbf
perturbed to a neighboring state and the change in en&igy to zero asC — F, but E" is relatively “flat” until C = F.
computed. IfAE' is negative, i.e., the energy is less in the In this paper we use four types of energy functions based
new state, then the new state is accepted\ B is positive, on metrics instead of intuition, i.e., all are of the form:
then the new state is accepted with a probability usually taken ) @)
ase™2F/T whereT is a control parameter corresponding to E(i) =65 (C,F)
temperature in the analogous case of thermodynamic cooli
In addition to theenergy functionand thecontrol parameter
T, acooling schedulés required, i.e., a scheme for changin
T as the algorithm proceeds, usually takerfas, = 3 x 7;
where 3 is a constant. InitiallyI’ is set to a high value a
after a certain number of steps.| at each value off’, its In our implementation of simulated annealing, the change in
value is decreased by the facterFinally astopping criterion energy associated with changing from any current configura-
is required to end the algorithm. tion to all possible neighboring configurations is computed

ng. f . ' .
fgr 1=1,3,4,5, Whereé(c)(-.-) are the configuration metrics
8iscussed in the earlier sections of this paper.

nd C- Reconfiguration Algorithm based on Simulated Annealing
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at each step in the algorithm. A neighboring configuratiocase. However, this is dramatically better than exhaustive
of C' (denotedCy) is a connected configuration which cargraph search.

be obtained by one move of any of the modules. If a move, For the case when hundreds or thousands of modules are
or moves results in a neighboring configuration with reducedvolved, further efficiencies can be gained using optimal
energy, then one of these moves is selected randomly. If nassignment because on average an increase in the number
of the moves result in a decrease in energy, then a normalizgddmodules means the number of single module motions in
probability is obtained for each move based on the probability given configuration that can reduce energy increase. This

function means that optimal assignment need not be evaluated after
e~ AE:/T each move, but rather after all individual energy decreasing
Pi= i o moves of a given configuration are made. Furthermore, in
il emAE/T the case whem is large, the optimal assignment need not
wherek,, is the number of all possible moves. involve all modules. That is, near optimal move sequences
A move is then picked based on its probability. The alggan be obtained by optimally assigning subsets of modules
rithm can be described as shown below. in two configurations while considering the other parts of
the configurations as fixed. If the subsets of modules in two
Reconfiguration Using Simulated Annealing configurations that are assigned consist of only a constant

but large) number of modules, then a constant order of
. ; i mputation is required to evaluate optimal assignment, and
issue of multiple module motions, whether these are bran b d P g

. : . : . time plot in Fig. 8 would grow much more slowly for
motions or multiple simultaneous single module motlon§, ry largen,
However, in practice to solve these problems in an optimaﬁa '
or near-optimal way, the set of all possible moves wou
have to be generated by partitioning the configuration in
all possible collections of modules and each group of modulesA basic simulated annealing algorithm is prone to oscilla-
moved according to the constraints to check if the energytions which slow down the convergence of the algorithm. To
reduced. The problem with this approach is that there are prevent such oscillations and to increase the efficiency, moves
exponential number of partitions of a given configuratighn ( leading back to the previous configuration in a sequence of
to be exact [30]), and the implementation would therefore lg@nfigurations can be disallowed. Of course, this restriction
problematical. Instead of addressing this issue further, apauld be extended such that no configuration is allowed twice
digressing from the main subject of this paper (which i& a given sequence of moves, but this does not appear to
the usefulness of the metrics proposed earlier) we leave & as common of an occurrence. If required, this can be
development of heuristics for the multiple module motion cagghieved by simply removing all configurations between any

In principle, this algorithm is easily changed to address t

|
[%. Improving Simulated Annealing

for future work. two occurrences of the same configuration. These are loops
in the configuration space of the metamorphic system that do

D. Time Complexity not contribute toward attaining the goal. Other methods for
improving the performance of a given heuristic can be found

As discussed in Section II-C, the problem of determininﬁ] [8]
the minimal number of moves for metamorphic robots to ’
completely reconfigure is computationally complex. A brute
force method for finding an optimal solution is extremely VIl. RESULTS

complicated and time consuming because: 1) The number ofye ran twenty trials of the simulated annealing algorithm
possible configurations for any given number of modulés for three sets of initial and final configurations (Figs. 8, 10,
exponentia; 2) There is not even a well-defined method foand 12) for each of eight different initial values Bf namely
enumerating these configurations, let alone searching a gragph- 5 10, 20, 50, 100, 500, 1000. Four different energy
with such configurations as vertices. Simulated Annealifgnctions discussed in Section VI were used for each of the
offers a fast way of computing a near optimal solution byonfigurations. Different values ef and 3 were tried for the
performing a number of offline trials and picking the besinergy functionsZ(4) and E(5) as shown in the the latter part
one out of them for actual reconfiguration. As a result thef this section and the best results used in Figs. 9, 11, and 13.
solution can be obtained very quickly. A plot of the averagehe annealing scheduleonsisted of 10 moves at each value
time taken on a Pentium-60 computer over a set of 20 triad$ 7" followed by a decrease in the value Bfby a factor of

for eight similar configurations (shown in Fig. 6) using optima g, i.e., Tiy1 = 0.8+ T;. The algorithm stopped if the final
assignment metrié>) (C, F') as the energy function is shownconfiguration was reached or if 300 moves had taken place.
in Fig. 7. The results for the three cases are shown in Fig. 9.

As can be seen, even with as many as 25 modules theThree typical sets of configurations were chosen in order
method works on the order of 10 min for each trial on & ascertain the behavior of the simulated annealing algorithm
PC. Using direct evaluation of optimal assignment clearly hagth four different energy functions. Fig. 9 shows the result
limitations since it require®)(n?) computations in the worst for configurations corresponding to Fig. 8. The initial and final

50nly asymptotic results for the number of possible configurations a@nﬁguraﬁons in this case are two serial structures paraIIeI to
available in the literature. each other. In addition to the information in the graphs, it
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Fig. 9. Results for the serial configuration. Fig. 11. Results for the loop configuration.

- Initial

Configuration
Final
Configuration

— .

Fig. 10. Reconfiguration involving breaking a loop structure.

is interesting to note that actual fewest moves in this case i -’:_'f
10, and the best result generated by simulated annealing
15. In fact, the serial case is the worst case for simulate:
annealing. Because of the motion constraints, the module B2 dda
cannot simply move into the lattice spaces corresponding to the iy , , , . o .
. . . . Fig. 12. Initial and final configurations for reconfiguration involving obstacle
final configuration, but instead have to move over each othgyeiopment.
to attain the final configuration. Hill climbing is involved in
this case and the three energy functioB%3Y) = 5<§’>; E4) =
6(5*),04 =50,8=1;E(5) = 6(C°),a = 50,4 = 1) involving 6(01)). Since the existing overlap needs to be broken in order
optimal assignment in some form yield much better results reconfigure, the overlap metric performs poorly.
than the simple overlap functior(1) = 6(01)). Observe that  The third case involves reconfiguration in the presence of
the value ofx used forE/(4) and £(5) corresponds to the bestobstacles as shown in Fig. 12. The modules cannot move into
results obtained in Fig. 14 for different values. the spaces occupied by the obstacles in the lattice space but
The results in Fig. 11 correspond to the configurations lmave to move around the obstacles to envelop them. Fig. 13
Fig. 10. In this case, the best results obtained by simulatgldows the result for obstacle envelopment. The best sequence
annealing is 14 moves, which is in fact the minimal numbeof moves that we were able to construct by hand required
In this case the overlapping modules form a loop. The nonovdrt0 moves, and the best simulated annealing trial achieved
lapping modules corresponding to the initial configuratioreconfiguration in 121 moves.
lie inside the loop while those corresponding to the final In this case, the metamorphic system is not able to re-
configuration lie outside the loop. Since both energy functiomenfigure at all using the overlap metriﬁg) as energy
can be locally minimized by preserving the overlap, a definifenction and the simulation is terminated when 300 moves
hill climbing is involved. Again, the three energy functionsare over. The average number of moves made for the energy
(E@3) = 6g’);E(4) = 6(5*), a=>50,0=1E05)= 6(C°), a = functions involving optimal assignment is much larger in this
50, 4 = 1) involving optimal assignment in some form yieldcase because of branching. Since the final configuration is
much better results than the simple overlap functigifl) = distributed around the obstacle, different branches of modules
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Fig. 13. Results for reconfiguration involving obstacle envelopment.
@
sprout from the initial configuration in order to minimize e — it —f—dier il —— e —— ah S
the energy. However, once a local minimum is reached, tf ) -
modules in the branches have to climb steep hills becau -
of connectivity constraints. As a result, the number of move i
needed to reconfigure becomes large. The results for enel 25 m g
functionsE(4) and E/(5) are relatively better than pure optimal 50 /,:’_:;____*_;::.;ri-::___.," 4
assignment since these functions try to preserve the overlap im Fos ER
an extent and hence avoid unnecessary oscillations when lo : L
minima occur. M, R e
As can be seen, the energy function corresponding °
the optimal assignment metriﬁg’) and the functions which o
incorporate optimal assignment yield better result than tr
.. . i v '
overlap metric in all cases. When the former is used, the mov 5 o P " e AT TR LA

made are usually those which reduce the distance between i
empty lattice point in the final configuration and a module ir.
the present configuration. In the case of the latter unless there is (b)
a move which increases the overlap, both good and bad mo%@s14. Results for reconfiguration involving (a) serial configuration and (b)
are equally likely. Also, by incorporating the features of botl§oP configuration usingZ(4) for different o values.
the overlap metric and the optimal assignment metric, as is the
case for energy functions E(4) and E(5), better performance
can be obtained for most reconfiguration processes. value of 7" leads to an increased branching effect and thus

Another observation was that the initial temperature haacreases the average number of moves needed to reconfigure.
no noticeable effect when the optimal assignment metric isWe also ran simulations for different values offor the

: . : i _ s (3)

used as the energy function except for the reconfiguratiefiergy functions(4) = aés’(C,F) + 86" (C, F) and
involving obstacle envelopment in Fig. 12. This is becaudg(5) = 6(C°)(C, F) with 8 = 1 for the configurations shown
if there is a move possible which reduces energy, simulatedFigs. 8 and 10.
annealing will always choose that and in that case the valueFor the case off'(4), the results are shown in Fig. 14(a)
of the ratioAF /T does not influence the result. For exampland (b) for five differenta values,ae = 1, 5, 20, 30, 50.
in this caseAF; is always negative for some move until The best results were obtained with a high value:oA large
a local minima is reached and such minima are few in thveeight on the overlap metric drove the reconfiguration process
complete reconfiguration of the robot from the initial to théoward maintaining the overlap and thus avoiding oscillations.
final configuration. Hence the above behavior. In the ca3&e results stabilized foee = 50 and higher values for the
when the overlap metric is used as an energy function thex@se of Figs. 8 and 10.
are a large number of local minima and plateaus, i.e., there’sThe results forE(5) are shown in Fig. 15(a) and (b) for
no move which decreases energy. As a result whes large five differenta values,a = 1, 5, 20, 30, 50. As expected, the
the value of the ratidA £/7 is approximately the same for all performance improved with increasing valuecfA larger o
moves. This results in an approximately equal probability fealue tried to maintain the overlap avoiding oscillations.
all moves. And so a bad move is as likely as a good move. ThisEven though simulated annealing is a very powerful tech-
affects the average number of moves required to reconfigungque, it has the uncertainties associated with a randomized
For the case involving obstacle envelopment, a high initiabproach. As a result, it is best suited for performing a number
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Fig. 15. Results for reconfiguration involving (a) serial configuration and (b)

loop configuration using®(5) for different o values. [20]

of off line simulations and then using the best one out of thode!
to reconfigure the robot instead of real time application.  [22]
VIILI. 123
In this paper we define metrics which measure distance gel
tween configurations of a metamorphic system. We then illugs]
trate how these metrics are applied to the motion planning/self-
reconfiguration of metamorphic robotic systems. The metheg;
of simulated annealing was used with these metrics as the
energy function for a variety of initial and final configurationézﬂ
(both simply connected and configurations containing loops).
It was shown that the perfomance of simulated annealing usii2g]
the metrics developed in this paper performs better than with
other cost functions. [29]
Much work still remains in the development of motion
planning/reconfiguration algorithms for metamorphic systems,
and challenging issues remain in terms of mechatronic desigm]
and hardware implementation.

C ONCLUSIONS

[32]

REFERENCES [33]

[1] H. Asama, K. Ozaki, H. ltakura, A. Matsumoto, Y. Ishida, and |. Endo,
“Collision avoidance among multiple mobile robots based on rules arjd4]
communication,” inlROS'9], pp. 1215-1220.

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 4, AUGUST 1997

B. Benhabib, G. Zak, and M. G. Lipton, “A generalized kinematic
modeling method for modular robots). Robot. Syst.vol. 6, no. 5,
1989, pp. 545-571.

G. Beni, “Concept of cellular robotic systems,”liBEE Int. Symp. Intell.
Contr,, Arlington, VA, Aug. 24-26, 1988.

G. Beni and J. Wang, “Theoretical problems for the realization of
distributed robotic systems,” ih991 IEEE Conf. Robot. Automapp.
1914-1920.

V. Bryant, Metric Spaces: Iteration and Application New York: Cam-
bridge Univ. Press, 1985.

I.-M. Chen and J. W. Burdick, “Enumerating non-isomorphic assembly
configurations of a modular robotic system,” Rroc. IEEE/RSJ Int.
Conf. Intell. Robots Syst.Yokohama, Japan, July 1993, pp 1985-
1992.

G. S. Chirikjian, “Kinematics of a metamorphic robotic system,Pirc.
1994 |IEEE Int. Conf. Robot. AutomaBan Diego, CA, May 1994, pp.
449-455.

G. S. Chirikjian, A. Pamecha, and |. Ebert-Uphoff, “Evaluating effi-
ciency of self reconfiguration in a class of modular robots, Robot.
Syst.,June 1996.

R. Cohen, M. G. Lipton, M. Q. Dai, B. Benhabib, “Conceptual design
of a modular robot,"J. Mech. Designpp. 117-125, Mar. 1992.

E. T. CopsonMetric Spaces Cambridge, England: Cambridge Univ.
Press, 1968.

J. R. Evans and E. Miniek&ptimization Algorithms for Networks and
Graphs New York: Marcel Dekker, 1992.

T. Fukuda and S. Nakagawa, “Dynamically reconfigurable robotic
systems,”Proc. 1988 IEEE Conf. Robot. Automgpp. 1581-1586.

T. Fukuda and Y. Kawauchi, “Cellular robotic system (CEBOT) as one
of the realization of self-organizing intelligent universal manipulator,”
in Proc. 1990 IEEE Conf. Robot. Automapp. 662—-667.

T. Fukuda, Y. Kawauchi, and F. Hara, “Dynamic distributed knowledge
system in self-organizing robotic systems; CEBOT,1891 IEEE Conf.
Robot. Automat.1991, pp. 1908-1913.

H. Gericke,Lattice Theory New York: Frederick Ungar, 1966

S. Hackwood and J. Wang, “The engineering of cellular robotic sys-
tems,” IEEE Int. Symp. Intell. Contr. Arlington, VA, Aug. 24-26,
1988.

S. Hackwood and G. Beni, “Self-organizing sensors by deterministic
annealing,” inIROS'91, Osaka, Japan, pp. 1177-1183.

___, “Self-organization of sensors for swarm intelligencd,992
IEEE Conf. Robot. Automatpp. 819-829.

L. Kelmar and P. K. Khosla, “Automatic generation of kinematics for a
reconfigurable modular manipulator system,’Hroc. 1988 IEEE Conf.
Robot. Automat.pp. 663-668.

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated
annealing,”Sci, vol. 220, no. 4598, pp. 671-679, May 13, 1983.

D. Koénig, “Graphen und matrizen,Mat. Fiz. Lapok, vol. 38, pp.
116-119, 1931.

H. W. Kuhn, “The Hungarian methods for the assignment problem,”
Naval Res. Logist. Quartvol. 2, pp. 83-97, 1955.

J. E. Marsden,Elementary Classical Analysis New York: W. H.
Freeman, 1974.

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Tellér,
Chem. Phys.vol. 21, pp 1087-1092, 1953.

S. Murata, H. Kurokawa, S. Kokaji, “Self-assembling machine Prac.
1994 |IEEE Int. Conf. Robot. AutomaSan Diego, CA, May 1994, pp.
441-448.

, “Self-organizing machine,” itvideo Proc., 1995 IEEE Int. Conf.
Robot. Automat.Nagoya, Japan, May 1995.

A. Pamecha and G. S. Chirikjian, “A metamorphic robotic system:
simulation and connector mechanism demonstrationVigeo Proc.,
1995 IEEE Int. Conf. Robot. AutomaNagoya, Japan, May 1995.

A. Pamecha, Y. Kohaya, and G. S. Chirikjian, “Design of error tolerant
coupling mechanisms for metamorphic robots, Tinird IASTED Conf.
Robot. Manufact.Cancun, Mexico, June 1995, pp. 7-13.

C. H. Papadimitriou and K. SteiglitZZombinatorial Optimization, Al-
gorithms and Complexity Englewood Cliffs, NJ: Prentice-Hall, 1982.

0] F. Roberts,Applied Combinatorics Englewood Cliffs, NJ: Prentice-

Hall, 1984.

M. Sciaky, “Modular robots implementation,” ifandbook of Industrial
Robotics,S. Nof, Ed. New York: Wiley, 1985, pp. 759-774.

K. H. Wurst, “The conception and construction of a modular robot
system,” inProc. 16th Int. Symp. Indust. Robo1986, pp. 37—44.

Yim, M., “A Reconfigurable Modular Robot with Many Modes of
Locomotion,” in Proc. 1993 JSME Int. Conf. Advanced Mechatron.
Tokyo, Japan, Aug. 1993, pp. 283-288.

M. Yim, “New locomotion gaits,” inProc. 1994 |EEE Int. Conf. Robot.
Automat, San Diego, CA, May 1994.



PAMECHA et al. MODULAR ROBOT MOTION PLANNING 545

Amit Pamecha (S'95) received the Bachelors de- Gregory S. Chirikjian (M'93) received the B.S.E.
gree in mechanical engineering from the Indiar degree in engineering mechanics and the M.S.E.
Institute of Technology, New Delhi, India, in 1993 degree in mechanical engineering in 1988 while
and the Masters degree from the Johns Hopkin also fulfilling requirements for the B.A. degree in

University, Baltimore, MD, in 1995. - oa mathematics, all from Johns Hopkins University,
He is currently working at Systems Research an ; Baltimore, MD.
Applications Corporation, Fairfax, VA. - Between 1988 and 1992 he was a graduate student
Mr. Pamecha is a member of the IEEE Robotict 3 at the California Institute of Technology, Pasadena,
and Automation Society and the IEEE Compute where he did his Ph.D. work under the supervision
Society. I of Prof. J. Burdick. Since 1992, he has been with the
Department of Mechanical Engineering, Johns Hop-
kins University, where he is now an Associate Professor. His research interests
include the kinematic analysis, motion planning, design, and implementation
of “hyper-redundant,” “metamorphic,” and “binary” manipulators.

Imme Ebert-Uphoff received the degree Diplom
der Techno-Mathematik in 1993 from the University
of Karlsruhe, Germany, and the Ph.D. degree in
1997 from the Department of Mechanical Engi-
neering, Johns Hopkins University, Baltimore, MD.
Her thesis research focused on the development of
discretely actuated, hyper-redundant manipulators
with an emphasis on workspace generation and
inverse kinematics.

She is currently a post-Doctoral researcher at
Laval University, Canada. Other research interests
include the study of parallel platform mechanisms and the development of
simulation tools for that purpose.




