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Abstract— In this paper the problem of dynamic self-
reconfiguration of a class of modular robotic systems referred
to as metamorphicsystems is examined. A metamorphic robotic
system is a collection of mechatronic modules, each of which
has the ability to connect, disconnect, and climb over adjacent
modules. We examine the near-optimal reconfiguration of a
metamorphic robot from an arbitrary initial configuration to
a desired final configuration. Concepts of distance between
metamorphic robot configurations are defined, and shown
to satisfy the formal properties of a metric. These metrics,
called configuration metrics, are then applied to the automatic
self-reconfiguration of metamorphic systems in the case when
one module is allowed to move at a time. There is no simple
method for computing the optimal sequence of moves required
to reconfigure. As a result, heuristics which can give a near
optimal solution must be used. We use the technique of Simulated
Annealing to drive the reconfiguration process with configuration
metrics as cost functions. The relative performance of simulated
annealing with different cost functions is compared and the
usefulness of the metrics developed in this paper is demonstrated.

Index Terms—Metrics, optimal assignment, self-reconfigurable
robots, simulated annealing.

I. INTRODUCTION

Ametamorphicrobotic system [7] is a collection of in-
dependently controlled mechatronic modules, each of

which has the ability to connect, disconnect, and climb over
adjacent modules. Each module allows power and information
to flow through itself and to its neighbors. A change in
the metamorphic robot morphology (i.e., a change in the
relative location of modules within the collection) results
from the locomotion of each module over its neighbors. Thus
a metamorphic system has the ability to dynamically self-
reconfigure.

Metamorphic systems can be viewed as a large swarm (or
colony) of connected robots which collectively act as a single
entity. What distinguishes metamorphic systems from other
reconfigurable robots is that they possess all of the following
properties:

1) All modules have the same physical structure, and each
must have complete computational and communication
functionality. This allows uniform treatment of modules
in the planning problem.
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2) Symmetries in the mechanical structure of the modules
must be such that they fill planar and spatial regions
with minimal gaps. In this way, a lattice of modules is
formed for any task.

3) The modules must each be kinematically sufficient with
respect to the task of locomotion, i.e., they must have
enough degrees of freedom to be able to “walk” over
adjacent modules so that they can reconfigure without
outside help.

4) Modules must adhere to adjacent modules, e.g., there
must be electromechanical or electromagnetic connec-
tors between modules which can carry load. This causes
the collection of modules to act as a single physical
object.

One of the module designs which satisfies all the above
properties in the planar case consists of six links of equal
length forming a six bar linkage, as shown in Fig. 1(a).
Because of the hexagonal shape, the modules completely fill
the plane without any gaps. As can be seen in Fig. 1(b),
each module possesses three degrees of freedom which are
controlled by placing actuators at alternate joints. This en-
ables each module to move around another while remaining
connected at all times during this motion. The modules are
provided with electromechanical connectors actuated by D.C.
motors. Each module carries male and female connectors on
alternate links. Because of the symmetry of the module, male
connectors always meet female connectors and vice versa [7].
In this particular implementation each male connector (T-
shaped protrusion) is spring loaded to allow for alignment
errors and to provide passive compliance during the reconfig-
uration sequence. For a hardware demonstration of the above
design, see [27] and [28].

Potential applications of metamorphic systems composed
of a large number of modules include: 1) obstacle avoid-
ance in highly constrained and unstructured environments; 2)
“growing” structures composed of modules to form bridges,
buttresses, and other civil structures in times of emergency;
3) envelopment of objects, such as recovering satellites from
space; and 4) Performing inspections in constrained environ-
ments such as nuclear reactors. Some of these applications are
shown in Fig. 2.

The idea of a metamorphic robotic system differs from
related concepts presented in the literature. Three types of
modular reconfigurable robotic systems have been proposed
in the literature: 1) robots in which modules are reconfig-
ured using external intervention [2], [9], [19], [31], [32]; 2)
cellular robotic systems in which a heterogeneous collection
of independent specialized modules are coordinated [3], [4],
[12]–[14], [16]; and 3) swarm intelligence in which there are
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(a)
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Fig. 1. (a) An example design of planar module. (b) Hardware demonstration
of motion involving two planar hexagonal modules.

generally no physical connections between modules [18], [17],
[1]. Most recently, two other types of modular reconfigurable
robotic systems have been considered. Yim [33], [34] consid-
ered modular robots composed of a few basic elements which
can be composed into complex systems, and used for various
modes of locomotion. Murataet al. [25] considered a “fractal”
system composed of modules with zero kinematic mobility, but
which can “walk” over each other in discrete quanta due to
changes in the polarity of magnetic fields. Chen and Burdick
[6] provide a valuable tool for defining equivalence classes
of modular robot configurations with the same shape and
morphological function.

The concept of a metamorphic system differs from concepts
in the works mentioned above because modules are homoge-
neous in form and function, physical contact between modules
must always occur, self-reconfiguration is possible, and the
resulting structures have the ability to act as manipulators
because each module has full kinematic mobility. Nonetheless,
the methods developed in this paper are applicable to other
types of self-reconfigurable systems. For instance, the “fractal”
modules introduced in [25], [26] exhibit all but the mobility

Fig. 2. Examples of metamorphic robot applications.

requirement, and thus many of the methods in this paper apply.
This paper addresses issues in the motion planning of

metamorphic systems with a fixed base, i.e., “manipulators,”
as opposed to “mobile robots.” No distinction is made be-
tween “motion planning” and “self-reconfiguration” of these
systems — these words are synonymous in the context of
metamorphic systems. In Section II, we review kinematic and
motion planning issues pertaining to metamorphic robots and
describe the complexity of the motion planning problem for
metamorphic robots. In Section III, we define concepts of
distance between configurations and discuss three types of
configuration metrics. In particular, the “optimal assignment
metric” is discussed and a method for evaluating it is illustrated
with examples. In Section IV, we provide a formal proof that
the concept of distance between configurations using optimal
assignment is a metric on the set of all possible configurations.
Section V describes some modified metrics useful for motion
planning. Section VI discusses the application of the method of
simulated annealing to the minimization of the cost function
based on the metrics described in the earlier sections. This
involves driving the distance between the current and the
final configuration to zero. Section VII describes the results
obtained from the implementation of a simulated annealing
algorithm for three different configurations.

II. PROBLEM FORMULATION AND

MATHEMATICAL BACKGROUND

In this section, we formulate the general problem of de-
scribing metamorphic robot configurations, and characterize
constraints on module motion. In Section II-A, we focus on
the description of a given configuration. Section II-B examines
constraints on module motion and Section II-C discusses the
complexity of the motion planning problem for metamorphic
robots.
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A. Review of Lattice Kinematics

Consider ( -dimensional Euclidean space) where
2 or 3. A lattice is a discrete subset of defined by a set
of linearly independent unit vectors as follows:

A vast body of literature deals with the symmetry groups
associated with lattices (which are simply discrete subgroups
of — the Special Euclidean Group1), and the decom-
position of space into regular lattices, e.g., [15].

One way to view space is as a collection of connected
close-packed polyhedra, the centers and/or vertices of which
form a regular lattice. In our problem, elements of the lattice
(individual polyhedral cells) are either filled with robotic
modules or obstacles or remain empty. is then viewed
as a collection of regular polyhedra which are either empty or
filled. By denoting the origin as the vector centered
at the fixed base module, and defining unit vectors along any

independent directions which contain at least two lattice
points (module centers), every point in the lattice is given a
unique set of coordinates with the unit vectors defining
coordinate axes. While this coordinate system will generally
be skewed, it will be a Cartesian system if the lattice has
square or cubic spacing.

In order to define distance between configurations, we will
first need a concept of distance between modules. The regular
Euclidean metric is an acceptable choice but the one that more
accurately reflects the least number of moves required by a
module to move between two points is defined as follows. First
construct alattice connectivity graph, i.e., a graph with vertices
at lattice points, and edges that are straight lines connecting
all neighboring vertices. The distance measured alongshortest
pathsconnecting two lattice points in this graph is what we
will refer to as the distance between two lattice points/modules.
For example, if a metamorphic robot is composed of square or
cubic modules, distance between modules would be given by
the Manhattan/Taxicab metric in (see [7] for explanation
and other examples). We call this measure of distance alattice
metric, and denote it , where and are lattice points.
By definition, the lattice metric yields the minimal distance
between lattice points, while defining a path connecting all
intermediate lattice points. This distance is a unique number,
but the number of equidistant paths may be very large.

B. General Formulation of the Motion
Planning/Reconfiguration Problem

In this section we formalize the motion planning problem
for metamorphic robotic systems. Fig. 1 demonstrates the
reconfiguration process with two planar hexagonal modules.
The kinematic constraints governing the motion of one module
over the surface of a collection of other modules are

• Modules can only move into spaces which are accessible
and not already occupied.

1
SE(N) is defined as the group of rigid motions, i.e., rotations and

translations, inN -dimensional Euclidean space.

Fig. 3. A complete reconfiguration sequence involving two parallel config-
urations.

• Every module must remain connected to at least one
other module, and at least one of the modules must stay
connected to the fixed base.

• At each timestep only one module may move, and this
module may only move by one lattice space. It achieves
this motion by deforming and mating faces to faces (or
in the planar case edges to edges, as shown in Fig. 1).2

Under these constraints, the motion planning/self-
reconfiguration problem becomes determination of the
sequence of module motions from any given initial
configuration to any given final configuration in a reasonable
(preferably minimal) number of moves.

Fig. 3 shows a complete reconfiguration sequence from one
serial structure to another.

Observe that we consider only one module moving at any
time. Two other motion strategies which can be employed are
as follows. 1) Motion involving two or more modules moving
together or separately at each time step without violating
the connectivity constraints. This also includesbranchesof
modules moving due to the motion of the module at the
base of the branch. 2)Fixed topologymotion in which the
connection between the modules remains the same, and a
change in configuration occurs by changing the joint angles
of the modules. By focusing on single module motion, the
restricted reconfiguration problem becomes tractable and helps
to illustrate the metric concepts discussed in this paper (which
are completely general since they do not assume any particular
mode of reconfiguration). Furthermore, while single module
motions are not always optimal, they are advantageous for
obstacle avoidance and for motion in constrained spaces, and
are therefore interesting in their own right.

2This condition restricts the scope of the current work. Solution of this
restricted problem is a starting point for treating the more general problem of
multiple simultaneous module motions.
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C. Complexity of the Motion Planning Problem

As described in Section II-B, the motion planning problem
of metamorphic robots is defined as the reconfiguration of a
collection of modules from an initial configuration to a final
configuration based on certain constraints. This however leads
to a computationally complex step of determining an optimal
set of moves, i.e., the minimum number of moves required to
completely reconfigure.

To the best of our knowledge, there is no simple method
for solving the above problem. The reason is simply that for
any number of modules, the number of possible connected
configurations is exponential in. For a discussion of the
complexity of this problem, see [8].

As a result, we have to look for heuristics which can
give a near optimal solution. Any such heuristic requires a
distance measure between configurations so that the shortest
path between configurations is picked. The metrics discussed
in the next section are some of the possible distance measures.

III. D EFINING DISTANCE BETWEEN CONFIGURATIONS

In this section, we define measures of distance between
configurationsof any given metamorphic system as opposed
to distance betweenmodulesas discussed in Section II-A.
Each configuration of modules is defined by the collection
of connected lattice spaces which it fills. That is, we do not
distinguish between different modules and any permutation of
labels has no effect on the configuration since all modules are
identical. Therefore, two configurations with the same shape
and relative position in space are said to be the same. Metrics
that define distance between configurations in this way are
denoted for “configuration metric.”

Recall that a proper distance (or metric) function between
points and in any given set (which for the problem at
hand is the set of all connected configurations composed of

metamorphic robot modules) is defined by the following
properties [23], [5], [10]:

and

(1)

which we refer to as positive definiteness, symmetry and the
triangle inequality, respectively. The original set, together with
a metric function defined on that set is called ametric space.

In the context of metamorphic robots and denote two
configurations such that represents a module in one
configuration and represents a module in another
configuration for .

A trivial example of a configuration metric is thediscrete
metric

(2)

which has a 0 value if the two configurations are identical
and a value equal to 1 otherwise. Another illustration of a

configuration metric is given in Fig. 3 which describes an
optimal reconfiguration sequence. In this case the distance
between any two configurations is the minimum number
of moves required to reconfigure from one configuration to
another. This metric is described in more detail in Section III-
B.

We now discuss some of the configuration metrics which
are used later for driving the reconfiguration process.

A. The Overlap Metric

One way of defining distance between two configurations
is to consider the number of nonoverlapping modules in the
two configurations. This represents the minimum number of
modules which have to move for reconfiguration, but not the
number of moves the modules make. This concept of distance
is in fact a metric, denoted , which we call the
Overlap Metric. This metric requires computations, and
is much more informative than .

Theorem 3.1:The function

(3)

which defines the number of nonoverlapping modules between
any two configurations of modules is a metric.

Proof: In order to show that this is a metric we will
use a few definitions from set theory:

We now show that is a
metric by showing that each of the properties in (1) hold.

1) Positive definiteness follows because , and
two configurations are said to be the same ( ,
or ) if and only if all modules overlap.

2) The symmetry condition in (1) follows from the fact
that .

3) Proof that the triangle inequality holds is as follows:
Suppose we are given three configurations: A, B, and C
(or equivalently the set of module locations that define
the configuration). From set theory, we know that

(even though ) because and have the
same number of elements. We want to show that

or equivalently,

We start by showing that

(4)

Let be an arbitrary element of . implies
and . Furthermore, either or it is not.

These possibilities are written as

Case 1: and means ;
Case 2: and means .
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In either case which proves (4).
Therefore,

While this is a valid metric on the set of all configurations
of modules with the same number of modules, this metric
fails to reflect the actual fewest number of moves needed
to reconfigure from one configuration to another. In fact,
no assumptions were made about the connectivity of the
configurations or the type of overlap between configurations
in the above proof.

B. The Minimal Number of Moves Metric

This subsection examines another metric on the set of all
connected configurations of modules.

Theorem 3.2:The function

is a metric, where is the fewest moves needed to
reconfigure while observing locomotion constraints.

Proof:

1) Positive Definiteness: , with equality only
when there are zero moves required to reconfigure from
one configuration to another, i.e., .

2) Symmetry: because the mini-
mal number of moves from one connected configuration
to another can be performed in reverse order.

3) Triangle Inequality: Since is defined to be the
fewest moves required to reconfigure fromto , any
reconfiguration must require at least this many moves.
Thus, a change to any intermediate configuration
and then from to must by definition observe

.

Unfortunately, this metric has no representation other than
explicitly solving a computationally explosive problem and
recording the sum of moves which is minimal. If in fact we
could do this in a reasonable amount of computational time,
there would be no need for the remaining formulations of this
section, and the optimal reconfiguration problem could simply
be formulated as a shortest path problem on a graph where
each edge is a move and each vertex is a configuration. But
this is not possible due to the computational complexity of
this approach.

C. The Optimal Assignment Metric

In this subsection we define and illustrate one particular
configuration metric called theoptimal assignmentmetric,
which is denoted as . The distance between two
configurations and is given by an optimal assignment of
each element in to an element in , , such
that the sum of the distances (as defined by the lattice metric)
for the assignment is minimized. Equivalently, this can be
represented as a graph theory problem in which configurations

and correspond to the two partite sets of abipartite graph.
The task then is to find a perfect matching in a weighted
bipartite graph[11, 29] such that the sum of the
weights of the matching is minimized. The weights correspond
to the distance between two modules.

Section IV shows that the sum of distances between opti-
mally assigned modules is in fact a metric on the set of all
configurations of modules. Here we describe the optimal as-
signment problem and review an algorithm for solving it which
is . This cost is still far less than the exponential order
of computations required to compute , but improves on

by incorporating information about the distance between
modules in the measure of distance between configurations.

1) Defining Optimal Assignment:Let be a variable
which is 1 if module in the present configuration maps
to module in the new configuration and 0 otherwise.

is the lattice distance between module
and . An arbitrary assignment will have an associated cost
function

(5)

with the constraints

for all

and

for all (6)

The constraints ensure that the mapping is a bijection. We
define

(7)

where is the set of all possible matchings. We will prove
in Section IV that this definition satisfies the formal metric
properties.

2) Evaluating Optimal Assignment:Several algorithms are
available for solving this optimal assignment problem. The
method described below is the Hungarian algorithm for opti-
mal assignment [22].

Construct an matrix , with elements
- the lattice distance between modules and .

We wish to find an assignment in which minimizes
(5).

Observe that if we subtract a constantfrom the row
of , giving rise to a new matrix with elements , then

(8)

using (6). Thus, an assignment that minimizes (5) also
minimizes (8) and vice versa. The same result is obtained if a
constant is subtracted from theth column. This gives us a
method of finding the optimal assignment.

Let be the minimum element in theth row of and
be the minimum element of theth column. Subtract
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(a) (b) (c)

Fig. 4. (a) Present configuration. (b) New configuration. (c) Module labeling.

from each element of theth row for all . Subtract from
each element of theth column for all obtaining a matrix .
Let us call this thereduced matrix. This procedure produces
at least one 0 in each row and column.

The problem can then be solved by finding anindependent
set3 of 0’s in the reduced matrix. Note, that by finding
an independent set of 0’s we are essentially obtaining an
assignment which has the minimal value or cost associated
with it (i.e., 0 cost for the reduced matrix). Since the minimiza-
tion problem remains the same, as shown in (8), the optimal
assignment is simply given by taking equal to 1 for the

corresponding to the independent set of 0’s. The maximum
number of independent 0’s can be found by using a corollary
of the König–Egerv́ary theorem4 [21].

Alternatively this is equivalent to finding an optimal match-
ing in the bipartite graph where and
represent the initial and final configurations and there’s an
edge between and iff . If the
number of independent 0’s is equal to then the solution
is simply the assignment corresponding to the above 0’s.
Otherwise, we successively modify the reduced matrix to form
a newmodified matrix where there are independent 0’s.

One method to do this is to find out the minimum number
of lines (one line refers to one complete row or column) which
cover all the 0’s in . Let be the smallest uncovered element.
Modify the reduced matrix by subtractingfrom all the un-
covered elements and addingto each twice covered element
by the lines (i.e., each element which lies at the intersection
of two lines). This is the modified matrix . It is easy to
show that the new modified matrix has been obtained from
the preceding one by adding or subtracting a constant from
different rows or columns. Thus, the minimization problem
remains the same. The next step is to look forindependent
0’s and if none are present, the process is repeated until an
independent set is found.

The sum of corresponding to the matrix indexesand
of independent 0’s constitutes the distance between two

configurations using the optimal assignment metric. The
complexity of this optimal assignment algorithm is
where is the number of modules. For a proof of this see
[29]. Below we provide pseudocode which implements the
above discussion.

3An independent set of 0’s in a matrix is a set of 0’s, no two of which are
in the same row or same column.

4König–Egerv́ary theorem: IfD is a matrix of 0’s and 1’s, a maximum
independent set of 0’s has the same number of elements as a minimum set
of lines covering all the 0’s ofD. Corollary: The number of independent 0’s
in the reduced or modified matrixis equal to the minimum number of lines
which cover all 0’s.

Hungarian Algorithm for Computing the
Optimal Assignment Metric

Assign
While {(Final Configuration not reached)

and (moves made moves allowed)}
After every move, let
Find the energy of the Current
Configuration using the given cost
function
Find out all possible moves of all modules.
For each possible move

Find the change in energy , if that
move is taken

If there are moves for which is
negative

Pick any one of those moves
Else If is positive for all moves

Assign a probability

to each move
Pick a move based on the assigned
probabilities.

In the following subsection, we illustrate this technique with
an example.

D. An Example

For an illustration of the optimal assignment algorithm,
consider the following example shown in Fig. 4.

The matrix formed by the distances between various
modules is shown in (9).

(9)

Performing column operations (subtracting, the minimum
element of each column, from each column, respectively), we
get the matrix in (10). Similarly performing the row operations,
we get the reduced matrix in (11).

(10)

(11)

The next step is to modify the reduced matrix by subtracting
the smallest element not covered by the lines (1 in the present
case) from all the uncovered elements and by adding it to
each twice covered element (i.e., lying at the intersection of
two covering lines), Doing this we get the modified matrix
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as shown in (12). This matrix contains several combinations
of four independent 0’s any of which solves the problem and
gives the value of .

(12)

Choosing the boxed solution above, the value of
is given as

The minimal value is achieved by matching modules with the
subscripts in the above expression. The reader is encouraged to
verify this by trying to assign modules from each configuration
in Fig. 3, and summing the lattice distances between all of
them.

IV. M ETRIC PROPERTIES OFOPTIMAL ASSIGNMENT

In Section IV-A, we prove that is a metric. In
Section IV-B, we use this fact to show that the optimal
matching approach only needs to consider pairings ofnonover-
lapping modules, thus reducing the size of the matrices
generated using the techniques of Section III.

A. The Optimal Assignment Metric

In this subsection we show that is a metric. We begin
with some background material. Let denote
the modules of and denote the modules
of , where and represent two configurations. An
assignment from A to B is abijective function from the
members of A to the members of B. It can be represented
by a function on the indexes of A to the indexes

of B. Functions of this kind are permutations:

For modules there exist exactly different permutations,
i.e., different ways to rearrange the numbers in the set

. We list here two properties of permutations
which are needed later on. For more details refer to [30].

• is a group with operation, which is the composition
of two permutations:

• Because is a group, each permutation has a
unique inverse element , such that

where is the unique identity element.

A permutation applied to two configurations yields
the assignment :

We are interested in the sum of the distances of the matched
module pairs, which are given by the columns of :

where is any metric between two modules, but in particular
the lattice metric, i.e., unless otherwise specified

.
For later consideration it is important to note that this sum

remains the same if we rearrange the module pairs in the
following way:

(13)

where is an arbitrary permutation. This is true, since
is applied directly to the index, which means that it only

changes the order of appearance of the terms in the sum.
From all possible permutations we take the one that gives

us the minimal value (optimal assignment), i.e., we use the
definition for as given in Section III-A.

Theorem 4.1: is a metric on the set of all possible
configurations, i.e., it is 1) positive definite, 2) symmetric, and
3) the triangle inequality holds.

Proof: For explanations of the steps in 2) and 3) please
refer to the numbered remarks after the transformations.

1) Positive definiteness:

2) Symmetry:

i) We use (13) with .
ii) The distance function is a metric and therefore

symmetric.
iii) Minimizing over all is the same as minimizing

over all .
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3) Considering the terms on the right-hand side of the
inequality:

1) We use the following equality:

2) We use (13) for the sum at the right.

B. Reduction of the Computational Cost

In the previous subsection we saw that

is a metric on the set of all configurations,

defining the distance between any two configurations A and B.
In this subsection we prove that we can restrict our search to
permutations which match only the nonoverlapping modules
of two configurations to each other thereby reducing the size
of the matrices considered in the Hungarian algorithm in the
previous section. This reduces the computational effort consid-
erably in most cases. Note, however, that optimal assignments
exist which do not assign overlapping modules to each other.
Fig. 5 shows the configurations corresponding to the example
of Section III-D. Fig. 5(a)–(c) are three possible optimal as-
signments. While (a) assigns the overlapping modules to each
other, (b) and (c) do not but are still valid optimal assignments.

In the proof which follows, the notation is used to
indicate that module is matched to module by
assignment , whereas means that they are not.

Theorem 4.2:An optimal assignment between two config-
urations A and B can always be obtained by considering only
the nonoverlapping modules and assigning the overlapping
modules to each other.

Proof: Consider an optimal assignment, in which not
all overlapping modules are matched to their counterparts.
Without loss of generality, let be a module in the
overlap of and , which is not matched to its counterpart

, i.e.,

but

Fig. 5. Three possible optimal assignments for the given initial and final
configurations.

Let be the module to which is matched, and
be the module to which is matched,

and

Consider a modified assignment, where is assigned to
, and is assigned to . Comparing the

expression with the minimal
value we note that

where

is smaller or equal to , since

Hence we have

But since is already an optimal assignment,
can not be smaller than and therefore both terms
must be equal,

and is also an optimal assignment.
We can apply this procedure to the resulting modified

assignment(s), until no such can be found. The result
will be a minimal permutation where all modules in the overlap
are matched to their counterparts.

Hence it is possible to restrict our search for a minimal
assignment to permutations of nonoverlapping modules right
from the beginning. In cases where there is substantial overlap,
this can save a lot of of computational effort.
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V. MODIFIED METRIC FUNCTIONS

In the previous sections we defined some basic metric
functions which are useful for modular robot motion planning.
In this section we consider how existing metrics can be
combined to form new metrics. This is motivated by the fact
that a function which combines the properties of the metrics
discussed earlier when used with a proper weighting can yield
better results than the original metrics.

We first prove some basic theorems.
Theorem 5.1:If and be two metrics, then

is also a metric, where and are fixed positive
real numbers

Proof: Since and are metrics, we have:

1) Positive Definiteness:
,

;
2) Symmetry:

3) Triangle Inequality:

Theorem 5.2:If satisfies all the properties of a
metric except , then the function

is a metric where is the discrete
metric defined in (2).

Proof: Symmetry holds because both and
are symmetric. The triangle inequality is unchanged for

. Likewise, if . In fact, the only
thing that is changed is that now .

We are now ready to define two new metrics using the
properties discussed above. These new metrics are useful
because in some scenarios they improve performance in the
motion planning problem.

A. Modified Overlap and Optimal Assignment Metric

Using the overlap and the optimal assignment metrics
discussed in the previous sections and using the theorems at
the beginning of this section, we define a new metric as

(14)

The above metric is of interest since for some reconfigu-
rations it is desirable to keep the overlapping modules in the
two configurations in place, while for other cases it is desirable
to move the overlapping modules. These preferences can be
achieved by changing the values ofand .

B. Configuration Metric

Using Theorems 5.1 and 5.2, a new lattice metric
is defined from an old one as

(15)

A new configuration metric is then defined as

(16)

Fig. 6. Eight configurations used for evaluating real time taken.

Fig. 7. Plot showing the average time taken to reconfigure for different
number of modules.

The above definition of is motivated by the fact
that quite often we have two configurations next to each other
or parallel to each other (as shown in Fig. 8). A pure optimal
assignment based on the lattice metricsimply assigns the
modules next to each other and hence is not reflective of
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Fig. 8. Reconfiguration involving two serial structures parallel to each other.

the actual moves made by the modules. Whereas, the above
approach tries to assign modules farthest from the base (0
position) in one configuration to the modules closer to the
base in the other configuration.

In order to demonstrate the usefulness of these metrics, they
will be used together with the method of Simulated Annealing,
which drives the distance between two arbitrary configurations
to zero by minimizing the “distance” between them. In fact,
any method of discrete optimization could be used in place of
Simulated Annealing. We use SA here because of its generality
and ubiquity in the literature.

VI. THE METHOD OF SIMULATED ANNEALING

In this section we use the metrics discussed in the previous
sections in a reconfiguration algorithm based on simulated
annealing.

A. Simulated Annealing

Simulated Annealing is an algorithmic approach to solving
optimization problems especially in cases where the global
extremum is hidden among several local extrema [20]. The
basic idea behind this algorithm comes from an analogy with
simulating the annealing of solids [24] and slow cooling of
liquids, i.e., the way metals or crystals cool and anneal to
achieve the minimum energy state.

The basic simulated annealing algorithm considers the ob-
jective function to be minimized as the energy of the system.
Starting from an initial state with energy the system is
perturbed to a neighboring state and the change in energy
computed. If is negative, i.e., the energy is less in the
new state, then the new state is accepted. If is positive,
then the new state is accepted with a probability usually taken
as , where is a control parameter corresponding to
temperature in the analogous case of thermodynamic cooling.
In addition to theenergy functionand thecontrol parameter

, a cooling scheduleis required, i.e., a scheme for changing
as the algorithm proceeds, usually taken as

where is a constant. Initially is set to a high value and
after a certain number of steps () at each value of , its
value is decreased by the factor. Finally astopping criterion
is required to end the algorithm.

B. Energy Functions for Simulated Annealing

In the application of simulated annealing to metamorphic
robot reconfiguration, energy functions which reflect the dif-
ferences between configurations are important. Using measures
of distance that formally satisfy the definition of a metric
guarantee that we have a well defined stopping criterion,
i.e., or (which ever comes
first), where is the configuration in a sequence of
configurations, is the goal configuration, and is
the maximum allowable moves. Furthermore, the triangle
inequality is important because if we can find a configuration

such that and
then the reconfiguration problem

can be divided into two problems, which are likely to converge
much faster.

Before discussing the energy functions we used in trial
runs, consider a few naive choices of energy which werenot
used. Let be the current configuration and be the final
configuration, where and are collections
of lattice points (modules) representing the two configurations.
Any energy function will be a function of and . As a first
naive choice, consider:

This is simply the sum of lattice distances of every module in
one configuration to every module in the other. This function
observes the triangle inequality when evaluated with arbitrary
configurations, i.e., . This
follows from the fact that ;
summing over and dividing by , we get the triangle
inequality for . However, this function does not satisfy
positive definiteness: . Furthermore, it is possible
for without . In other words, it is
possible for minimization of this cost to not lead to the goal,
and not even know when it has reached the goal.

This flaw in can be repaired by defining the fol-
lowing:

where is the discrete configuration metric defined earlier.
But in doing so, the configurations can still be close to each
other (but not equal) without this being reflected in the distance
function . That is, there is not a gradual descent of
to zero as , but is relatively “flat” until .

In this paper we use four types of energy functions based
on metrics instead of intuition, i.e., all are of the form:

for , where are the configuration metrics
discussed in the earlier sections of this paper.

C. Reconfiguration Algorithm based on Simulated Annealing

In our implementation of simulated annealing, the change in
energy associated with changing from any current configura-
tion to all possible neighboring configurations is computed
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at each step in the algorithm. A neighboring configuration
of (denoted ) is a connected configuration which can
be obtained by one move of any of the modules. If a move,
or moves results in a neighboring configuration with reduced
energy, then one of these moves is selected randomly. If none
of the moves result in a decrease in energy, then a normalized
probability is obtained for each move based on the probability
function

where is the number of all possible moves.
A move is then picked based on its probability. The algo-

rithm can be described as shown below.

Reconfiguration Using Simulated Annealing

In principle, this algorithm is easily changed to address the
issue of multiple module motions, whether these are branch
motions or multiple simultaneous single module motions.
However, in practice to solve these problems in an optimal
or near-optimal way, the set of all possible moves would
have to be generated by partitioning the configuration into
all possible collections of modules and each group of modules
moved according to the constraints to check if the energy is
reduced. The problem with this approach is that there are an
exponential number of partitions of a given configuration (
to be exact [30]), and the implementation would therefore be
problematical. Instead of addressing this issue further, and
digressing from the main subject of this paper (which is
the usefulness of the metrics proposed earlier) we leave the
development of heuristics for the multiple module motion case
for future work.

D. Time Complexity

As discussed in Section II-C, the problem of determining
the minimal number of moves for metamorphic robots to
completely reconfigure is computationally complex. A brute
force method for finding an optimal solution is extremely
complicated and time consuming because: 1) The number of
possible configurations for any given number of modulesis
exponential5; 2) There is not even a well-defined method for
enumerating these configurations, let alone searching a graph
with such configurations as vertices. Simulated Annealing
offers a fast way of computing a near optimal solution by
performing a number of offline trials and picking the best
one out of them for actual reconfiguration. As a result the
solution can be obtained very quickly. A plot of the average
time taken on a Pentium-60 computer over a set of 20 trials
for eight similar configurations (shown in Fig. 6) using optimal
assignment metric as the energy function is shown
in Fig. 7.

As can be seen, even with as many as 25 modules the
method works on the order of 10 min for each trial on a
PC. Using direct evaluation of optimal assignment clearly has
limitations since it requires computations in the worst

5Only asymptotic results for the number of possible configurations are
available in the literature.

case. However, this is dramatically better than exhaustive
graph search.

For the case when hundreds or thousands of modules are
involved, further efficiencies can be gained using optimal
assignment because on average an increase in the number
of modules means the number of single module motions in
a given configuration that can reduce energy increase. This
means that optimal assignment need not be evaluated after
each move, but rather after all individual energy decreasing
moves of a given configuration are made. Furthermore, in
the case when is large, the optimal assignment need not
involve all modules. That is, near optimal move sequences
can be obtained by optimally assigning subsets of modules
in two configurations while considering the other parts of
the configurations as fixed. If the subsets of modules in two
configurations that are assigned consist of only a constant
(but large) number of modules, then a constant order of
computation is required to evaluate optimal assignment, and
the time plot in Fig. 8 would grow much more slowly for
very large .

E. Improving Simulated Annealing

A basic simulated annealing algorithm is prone to oscilla-
tions which slow down the convergence of the algorithm. To
prevent such oscillations and to increase the efficiency, moves
leading back to the previous configuration in a sequence of
configurations can be disallowed. Of course, this restriction
could be extended such that no configuration is allowed twice
in a given sequence of moves, but this does not appear to
be as common of an occurrence. If required, this can be
achieved by simply removing all configurations between any
two occurrences of the same configuration. These are loops
in the configuration space of the metamorphic system that do
not contribute toward attaining the goal. Other methods for
improving the performance of a given heuristic can be found
in [8].

VII. RESULTS

We ran twenty trials of the simulated annealing algorithm
for three sets of initial and final configurations (Figs. 8, 10,
and 12) for each of eight different initial values of, namely

5, 10, 20, 50, 100, 500, 1000. Four different energy
functions discussed in Section VI were used for each of the
configurations. Different values of and were tried for the
energy functions and as shown in the the latter part
of this section and the best results used in Figs. 9, 11, and 13.
The annealing scheduleconsisted of 10 moves at each value
of followed by a decrease in the value ofby a factor of
0.8, i.e., . The algorithm stopped if the final
configuration was reached or if 300 moves had taken place.
The results for the three cases are shown in Fig. 9.

Three typical sets of configurations were chosen in order
to ascertain the behavior of the simulated annealing algorithm
with four different energy functions. Fig. 9 shows the result
for configurations corresponding to Fig. 8. The initial and final
configurations in this case are two serial structures parallel to
each other. In addition to the information in the graphs, it
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Fig. 9. Results for the serial configuration.

Fig. 10. Reconfiguration involving breaking a loop structure.

is interesting to note that actual fewest moves in this case is
10, and the best result generated by simulated annealing is
15. In fact, the serial case is the worst case for simulated
annealing. Because of the motion constraints, the modules
cannot simply move into the lattice spaces corresponding to the
final configuration, but instead have to move over each other
to attain the final configuration. Hill climbing is involved in
this case and the three energy functions (

) involving
optimal assignment in some form yield much better results
than the simple overlap function ( ). Observe that
the value of used for and corresponds to the best
results obtained in Fig. 14 for different values.

The results in Fig. 11 correspond to the configurations in
Fig. 10. In this case, the best results obtained by simulated
annealing is 14 moves, which is in fact the minimal number.
In this case the overlapping modules form a loop. The nonover-
lapping modules corresponding to the initial configuration
lie inside the loop while those corresponding to the final
configuration lie outside the loop. Since both energy functions
can be locally minimized by preserving the overlap, a definite
hill climbing is involved. Again, the three energy functions
(

) involving optimal assignment in some form yield
much better results than the simple overlap function (

Fig. 11. Results for the loop configuration.

Fig. 12. Initial and final configurations for reconfiguration involving obstacle
envelopment.

). Since the existing overlap needs to be broken in order
to reconfigure, the overlap metric performs poorly.

The third case involves reconfiguration in the presence of
obstacles as shown in Fig. 12. The modules cannot move into
the spaces occupied by the obstacles in the lattice space but
have to move around the obstacles to envelop them. Fig. 13
shows the result for obstacle envelopment. The best sequence
of moves that we were able to construct by hand required
110 moves, and the best simulated annealing trial achieved
reconfiguration in 121 moves.

In this case, the metamorphic system is not able to re-
configure at all using the overlap metric as energy
function and the simulation is terminated when 300 moves
are over. The average number of moves made for the energy
functions involving optimal assignment is much larger in this
case because of branching. Since the final configuration is
distributed around the obstacle, different branches of modules
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Fig. 13. Results for reconfiguration involving obstacle envelopment.

sprout from the initial configuration in order to minimize
the energy. However, once a local minimum is reached, the
modules in the branches have to climb steep hills because
of connectivity constraints. As a result, the number of moves
needed to reconfigure becomes large. The results for energy
functions and are relatively better than pure optimal
assignment since these functions try to preserve the overlap to
an extent and hence avoid unnecessary oscillations when local
minima occur.

As can be seen, the energy function corresponding to
the optimal assignment metric and the functions which
incorporate optimal assignment yield better result than the
overlap metric in all cases. When the former is used, the moves
made are usually those which reduce the distance between an
empty lattice point in the final configuration and a module in
the present configuration. In the case of the latter unless there is
a move which increases the overlap, both good and bad moves
are equally likely. Also, by incorporating the features of both
the overlap metric and the optimal assignment metric, as is the
case for energy functions E(4) and E(5), better performance
can be obtained for most reconfiguration processes.

Another observation was that the initial temperature had
no noticeable effect when the optimal assignment metric is
used as the energy function except for the reconfiguration
involving obstacle envelopment in Fig. 12. This is because
if there is a move possible which reduces energy, simulated
annealing will always choose that and in that case the value
of the ratio does not influence the result. For example
in this case is always negative for some move, until
a local minima is reached and such minima are few in the
complete reconfiguration of the robot from the initial to the
final configuration. Hence the above behavior. In the case
when the overlap metric is used as an energy function there
are a large number of local minima and plateaus, i.e., there’s
no move which decreases energy. As a result whenis large
the value of the ratio is approximately the same for all
moves. This results in an approximately equal probability for
all moves. And so a bad move is as likely as a good move. This
affects the average number of moves required to reconfigure.
For the case involving obstacle envelopment, a high initial

(a)

(b)

Fig. 14. Results for reconfiguration involving (a) serial configuration and (b)
loop configuration usingE(4) for different � values.

value of leads to an increased branching effect and thus
increases the average number of moves needed to reconfigure.

We also ran simulations for different values of for the
energy functions and

with for the configurations shown
in Figs. 8 and 10.

For the case of , the results are shown in Fig. 14(a)
and (b) for five different values, 1, 5, 20, 30, 50.
The best results were obtained with a high value of. A large
weight on the overlap metric drove the reconfiguration process
toward maintaining the overlap and thus avoiding oscillations.
The results stabilized for 50 and higher values for the
case of Figs. 8 and 10.

The results for are shown in Fig. 15(a) and (b) for
five different values, 1, 5, 20, 30, 50. As expected, the
performance improved with increasing value of. A larger
value tried to maintain the overlap avoiding oscillations.

Even though simulated annealing is a very powerful tech-
nique, it has the uncertainties associated with a randomized
approach. As a result, it is best suited for performing a number
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(a)

(b)

Fig. 15. Results for reconfiguration involving (a) serial configuration and (b)
loop configuration usingE(5) for different � values.

of off line simulations and then using the best one out of those
to reconfigure the robot instead of real time application.

VIII. C ONCLUSIONS

In this paper we define metrics which measure distance be-
tween configurations of a metamorphic system. We then illus-
trate how these metrics are applied to the motion planning/self-
reconfiguration of metamorphic robotic systems. The method
of simulated annealing was used with these metrics as the
energy function for a variety of initial and final configurations
(both simply connected and configurations containing loops).
It was shown that the perfomance of simulated annealing using
the metrics developed in this paper performs better than with
other cost functions.

Much work still remains in the development of motion
planning/reconfiguration algorithms for metamorphic systems,
and challenging issues remain in terms of mechatronic design
and hardware implementation.
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