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Intraoperative dosimetric quality assurance in prostate brachytherapy critically depends on discern-
ing the three-dimensional (3D) locations of implanted seeds. The ability to reconstruct the im-
planted seeds intraoperatively will allow us to make immediate provisions for dosimetric deviations
from the optimal implant plan. A method for seed reconstruction from segmented C-arm fluoros-
copy images is proposed. The 3D coordinates of the implanted seeds can be calculated upon
resolving the correspondence of seeds in multiple x-ray images. We formalize seed-matching as a
combinatorial optimization problem, which has salient features: (a) extensively studied solutions by
the computer science community; (b) proof for the nonexistence of any polynomial time exact
algorithm; and (c) a practical pseudo-polynomial algorithm that mostly runs in O(N?) time using
any number of images. We prove that two images are insufficient to correctly match the seeds,
while a third image renders the matching problem to be of nonpolynomial complexity. We utilize
the special structure of the problem and propose a pseudopolynomial time algorithm. Using three
presegmented images, matching and reconstruction of brachytherapy seeds using the Hungarian
algorithm achieved complete matching in simulation experiments; and 98.5% in phantom experi-
ments. 3D reconstruction error for correctly matched seeds has a mean of 0.63 mm, and 0.9 mm for
incorrectly matched seeds. The maximum seed reconstruction error in each implant was typically
around 1.32 mm. Both on synthetic data and in phantom experiments, matching rate and recon-
struction error achieved using presegmented images was found to be sufficient for prostate brachy-
therapy. The algorithm is extendable to deal with arbitrary number of images without any loss in
speed or accuracy. The algorithm is sufficiently generic to provide a practical solution to any
correspondence problem, across different imaging modalities and features. © 2005 American As-
sociation of Physicists in Medicine. [DOI: 10.1118/1.2104087]

Key words: C-arm, fluoroscopy, seed matching, reconstruction, prostate brachytherapy, radiation
planning

I. MOTIVATION AND BACKGROUND

With an approximate annual incidence of 220,000 new cases
and 33,000 deaths prostate cancer continues to be the most
common cancer in men in the United States.' For several
decades, the definitive treatment for low risk prostate cancer
was radical prostatectomy or external beam radiation
therapy,2 but low dose rate permanent seed brachytherapy
(shortly brachytherapy thereafter in this document) today can
achieve virtually equivalent outcomes.™ The success of
brachytherapy (i.e., maximizing its curative force while
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minimizing its co-morbidity) chiefly depends on our ability
to tailor the therapeutic dose to the patient’s individual
anatomy. In contemporary practice, however, implant plan-
ning is based on idealistic preplanned seed patterns that, as
15 years of clinical practice has clearly demonstrated, are not
achievable in the actual human body. According to a com-
prehensive review by the American Brachytherapy Society,5
the preplanned technique used for permanent prostate
brachytherapy has limitations that may be overcome by in-
traoperative planning. At the same time, continues the re-
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port, the major current limitation of intraoperative planning
is the inability to localize the seeds in relation to the pros-
tate. There are excellent algorithmic and computational tools
available today to optimize a brachytherapy treatment plan
intraoperatively, thereby allowing for an improved dose cov-
erage. These methods, however, critically require that the
exact three-dimensional (3D) locations of the implanted
seeds are precisely known with respect to the patient’s
anatomy.

Transrectal ultrasound (TRUS) imaging: Prostate
brachytherapy is almost exclusively performed under TRUS
guidance. While TRUS provides adequate imaging of the
soft tissue anatomy, it does not allow for robust localization
of the implanted brachytherapy seeds. Various researchers
have tried to segment the seeds from TRUS images by link-
ing seeds with spacers,6 using x rays to initialize
segmentation,7 using vibro-accoustography8 or transurethral
ultrasound’ as a new imaging modality, or segmenting them
directly.10 But even when meticulously hand-segmented, up
to 25% of the seeds may remain hidden in ultrasound.'" This
necessitates the use of some other imaging method in intra-
operative seed localization.

Fluoroscopy: The published history of C-arm fluoros-
copy in brachytherapy originates12 when it was first used as a
solo guidance modality. Shortly after TRUS emerged as a
primary image guidance modality, fluoroscopy became a sec-
ondary tool for gross visual observation. Mobile C-arms are
ubiquitous in contemporary prostate brachytherapy, with ap-
proximately 60%" of the practitioners using it for qualitative
implant analysis in the operating room. It is considered as the
gold standard for intraoperative visualization of brachy-
therapy seeds. While several groups have published proto-
cols and clinical outcomes favorably supporting C-arm fluo-
roscopy for intraoperative dosimetric analysis,lo’mf22 this
technique is yet to become a standard of care across hospi-
tals.

The ability to reconstruct and register the implanted seeds
(that are visible in fluoroscope) to soft tissue anatomy (that is
visible in TRUS) intraoperatively, would allow us to make
immediate provisions for dosimetric deviations from the op-
timal implant plan. At the same time, quantitative use of
fluoroscopy for dosimetric analysis has been hampered by a
plethora of unresolved technical problems. The five major
obstacles we face toward intraoperative dosimetry are: (a)
C-arm distortion correction and calibration; (b) C-arm pose
tracking; (c) seed segmentation; (d) seed matching and re-
construction; and (e) registration of C-arm to TRUS images.

Significant efforts have been made toward computational
fluoroscopy guidance in general surgery,23’24 developing
various tools for distortion correction and calibration. How-
ever, C-arms available in most hospitals do not have encoded
rotational joints, so one never knows where the fluoro shots
are coming from relative to one another. We have addressed
this issue by designing a fluoroscope tracking (hence-forth
FTRAC) fiducial, which is a radiographic fiducial system
creating a unique projection image from each direction.”
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Various methods partially dealing with C-arm calibration in
brachytherapy have also been propc)se',d,26_28 while some oth-
ers have suggested that it is redundant.”

C-arm to TRUS registration: Attempts have been made
to relate fluoroscopic images to soft tissue anatomy.mlm(L34
Nevertheless, further research is merited since they are sus-
ceptible to various kinds of errors. We address this issue by
the use of the FTRAC fiducial. It is not only capable of
tracking the C-arm, but also of registering the C-arm to
TRUS by a predetermined placement.

Seed matching and reconstruction: We assume that the
seeds are 3D points and that their image locations are known,
i.e., we do not address automatic segmentation for which
methods are available.'”>* Three-dimensional coordinates
of the implanted seeds can now be calculated from multiple
x-ray images upon resolving the correspondence of seeds,
which remains the focus of this paper. Formalization of the
seed-matching problem results in a high complexity search
space of the order 10"°° and 103, from two and three fluo-
roscopic images, respectively. Hence previously proposed
seed-matching approaches have predominantly been heuris-
tic explorations of the search space, with no theoretical as-
surance on the accuracy of the answer.

The early attempts”f41 toward seed matching used three
coplanar images (coplanar images are those where the im-
plant and the three x-ray sources are approximately in the
same plane). The images were divided into variable width
bands, formed by comparing coordinates along the rotation
axis. Furthermore, in order to make the bands, it was as-
sumed that the seeds are near the iso-center of the C-arm or
at least have similar magnifications in all the images. These
methods are prone to calibration errors and become ineffec-
tive as the number of seeds increases. These ideas were fur-
ther extended by accommodating for patient motion,** and
yet all the seeds could not be reliably reconstructed. Further
geometrical constraints were imposed by assuming that some
of the seeds are in a straight line** or on quadratic curves,*
which due to seed migration seems to be an assumption not
supported by compelling evidence.

The first step toward mathematical formalization came
with the construction of a cost matrix,45 where exhaustive
matching gave the lowest cost solution. Though it eliminated
extraneous assumptions, it required impractical computa-
tional resources. A greedy randomized algorithm,46 tested
with various cost-metrics, was suggested to reduce the run-
time. This method gives a different output for each run and is
typically iterated a few hundred times, choosing the sequen-
tially lowest cost. Though this method might provide an an-
swer close to the correct match, its randomization does make
any claim on the number of iterations required or proximity
of the final answer. Fast-CARS" is another variant, which
significantly improved the computational complexity, where
“for each cost matrix an exhaustive match can be performed
to obtain the best possible matches.” It reduced the run-time
from O((N!)?) to O((A!)?), where A is the average number of
seeds in the band. Though it made the search faster, it still
ran in exponential time. For example, if A=10 then the num-
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ber of computations would still be high at O(10'%).

Independently, a set of heuristic rules'® were suggested
for seed matching that attempted to reduce misclassifica-
tions. Simulated annealing36 was proposed as an alternate
technique to reach the global minimum. Another technique28
was proposed that optimizes on seed positions and camera
parameters, by generating simulated images and iterating
them until they match the observed images. These optimiza-
tion methods are prone to fall into local minima and may not
be able to recover from them. A statistical simulation of seed
reconstruction uncertainty was conducted,48 but did not ad-
dress the problem of seed matching. For completeness, we
also mention that CT and MRI based techniques49’50 are also
proposed, but cannot be used intraoperatively and have poor
resolution in the axial direction.

The matching problem is also prevalent in the computer
vision community, where two-dimensional points are tracked
and reconstructed to compute motion. Researchers have tried
using noniterative greedy algorithms,51 also incorporating
spurious and hidden points.sz’53 Occlusion itself has also
been a known problem.54 These algorithms were optimized
for a dense set of moving points, while specialized algo-
rithms are used for sparse matchings,55 36 which can also be
used in pattern 1rec0gniti0n57 across images. These algo-
rithms are usually catered to achieve real-time performance,
as compared to a complete matching, and hence do not ap-
pear to be appropriate in a medical application.

The primary contribution of this work is a new theoretical
framework for seed matching. The framework tackles issues
of optimality and presents a practical algorithm that can be
used. Moreover, the framework ensures a polynomial run-
time of O(N?) on the algorithm, an improvement over previ-
ous methods. While it has been motivated by prostate
brachytherapy, it is a general purpose correspondence algo-
rithm that appears to be usable in many synergistic problems.
Besides the aforementioned problem, we are exploring
matching and reconstruction of brachytherapy seeds using
the Hungarian algorithm (MARSHAL) for the matching be-
tween 3D clouds of objects, fiducial-based registration in
CT/MRI imaging, and calibration of tracked ultrasound. In
these applications, MARSHAL appears to be a potent tool
that can replace traditional iterative closest point and other
gradient descent optimizations whose exit criteria are gov-
erned by custom-tuned thresholds. Section II describes the
theoretical foundation and the proposed algorithm. Section
IIT discusses the experiments and results. In Sec. IV, we dis-
cuss the shortcomings of the algorithm and the future work.
Finally, we conclude in Sec. V.

Il. MATERIALS AND METHODS

We convert seed-matching to network-flow-based combi-
natorial optimization. Our formulation has many salient fea-
tures: (a) a global optimization using all seeds, as compared
to a local seed clustering based approach; (b) exact solutions
studied extensively by the computer science community; (c)
addressing theoretically the achievable bounds by any algo-
rithm; (d) guaranteed existence of a polynomial time solution
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FiG. 1. The seed matching problem can be converted to a network flow
graph. The best possible matching reduces to finding out the maximum flow
with minimum cost.

for achieving the global minima for seed-matching from two
images; (e) proof of the nonexistence of a polynomial time
solution in case of more than two images; (f) a practical
pseudo-polynomial algorithm using three images and mostly
having an O(N®) claim on the space-time complexity; (g) an
algorithm that does not become slower as the number of
images is increased. A polynomial-time algorithm is one that
runs in a number of computations, polynomial in the size of
the input. Further details are available in the literature.>® We
do not assume any prior information (e.g., inserted seed po-
sitions), the value of which is questionable due to intraopera-
tive seed migration and tissue deformation.

A. A generic network-flow-based formulation

A network flow formulation is created, where any flow in
the network would represent a matching and the desired so-
lution is the flow with minimum cost. Let N seeds be inserted
and C-arm images /;,1, be acquired. Let s;; be the position of
the ith seed in jth image. We construct a directed network as
shown in Fig. 1.

Sets A and B, each with N nodes, represent the two im-
ages I; and I,. While there are no edges within the set, di-
rected edges (links) run from all vertices in set A to all ver-
tices in set B. There are N links at source S, each link
connecting to a node in A. Similarly each node in B is con-
nected to sink T. The flow originates at S and ends at T, with
each link allowing a flow of value 1 or 0, where 1 means that
the edge is selected and O means that it is not. The problem
is to efficiently compute a flow in the network that can
achieve a total flow of value N.

It can be proved that any solution to the seed-matching
problem is a solution to the flow problem and vice-versa. To
have a net flow of N, each link connecting either the source
or the sink has to support a flow 1. Now by the conservation
of flow at each node, every node in set A will have to dis-
patch a unit flow to some node in set B. Moreover, each node
in set B can accept only a unit flow, because any extra flow
cannot be passed on to T and any deficiency would mean that
T does not have a total flow of N units. The set of all links
with nonzero flow provide a feasible matching. It can be
verified that any matching of the seeds also provides a fea-
sible flow. This proves that the flow problem is equivalent to
the seed matching problem.



3478 Jain et al.: MARSHAL

Simple combinations compute N! feasible solutions to the
seed-matching problem, giving rise to N! feasible flows. To
achieve the optimal solution, the link connecting seed s;; to
seed s, is assigned a cost C;;. The cost C;; represents the
likelihood of seed s;; matching seed s;,, with the cost being 0
if they match perfectly and o (infinity) if they do not match
at all. A popular example for the cost-metric is seed recon-
struction accuracy. Further details are provided in Sec. II E.
Any feasible flow has a net cost associated with it, the value
of which is X, 2% C;fi;, where fj; is the flow in link ij and
C;j is the cost of sending a unit flow along that link. Thus the
seed-matching problem is reduced to finding the flow with
minimum cost, and can be written down as

N N
min 2 E Cijfij»

i=1 j=1

where  f;; € {0,1}; (1)

N N
2fij=1Vi and Efu=1v]
Jj=1 J=1

The min-cost flow can be computed using cycle-
canceling, successive shortest path, primal-dual, out-of-kilter
or relaxation algorithms. These are all similar in their work-
ing and hence reducible to each other. Though they are
straightforward to use, they run in pseudopolynomial time.
The first weakly polynomial time algorithm was derived us-
ing an idea called scaling.59 Capacity scaling, cost scaling,
and double scaling algorithms that were developed on this
idea are all weakly polynomial time algorithms. Repeated/
enhanced capacity scaling and minimum mean-cost cycle al-
gorithms achieve a strongly polynomial run-time. Alter-
nately, linear-programming based techniques like simplex,
interior point method or network simplex can also be used.
Today, fast algorithms are available both freely60 and
cornmelrcially.61 A comprehensive review of the above is
available in the literature.®?

We implemented the cycle canceling algorithm, which is
the most straightforward of all the above. A feasible preflow
is input as the current network flow. Then we generate the
residual network, which is based on the difference between
the network capacity and the current network flow, and
search for negative cost cycles in the residual network. If
there exists a negative cost cycle in the residual network, we
decrease the cost by adding a flow along the negative cycle.
Then we generate a new residual network based on this new
flow in the network. We repeat this procedure until there is
no negative cost cycle in the residual network. To find a
negative cycle, we use the Bellman-Ford algorithm,58 which
runs in O(Edges* Vertices) time. Thus the run-time for the
cycle-canceling algorithm is  O(cost of the initial flow)
X O(Edges* Vertices), which for integer costs will be
pseudopolynomial. One way to boost performance is to use
the negative cycle with minimum weight instead of any
negative cycle, but that computation itself is NP hard. So
researchers have suggested choosing the minimum mean-

Medical Physics, Vol. 32, No. 11, November 2005

3478

Set A SetB

(Imagel) (Image2)

FiG. 2. Two image seed matching, modeled earlier as a min-cost max-flow
problem, also reduces to the assignment problem. The best possible solution
reduces to evaluating the minimum cost bipartite matching, which can be
achieved in O(N?) time using the Hungarian algorithm.

cost cycle or canceling several node-disjoint cycles at once,
both of which have strongly polynomial run-times.

Hence the seed-matching algorithm will have a polyno-
mial run-time. Though strongly polynomial time algorithms
are available, in practice the basic cycle-canceling algorithm
itself was sufficiently fast. This is due to the favorable prob-
lem structure arising from a bipartite network and epipolar
constraints of x-ray imaging. The worst case theoretical run-
time above is for generic networks. It should be noted that a
significantly faster O(N®) solution is possible if (a) all the
nodes are available, (b) the number of nodes in both sets are
equal, and (c) only unit flows are allowed. This is achieved
by converting the generic network flow problem into a
weighted bipartite matching problem, explained in the next
section. Though we have implemented the cycle canceling
algorithm, we have also tested and implemented a faster so-
Iution. However, this faster solution is not sufficiently ge-
neric to address the hidden seeds and other problems (Sec.
Iv).

B. Seed matching from two images

When all seed locations in the two images are known, the
minimum-cost maximum-flow formulation reduces further to
the specific problem of minimum-weight matching in bipar-
tite graphs, also known as the assignment problem (illus-
trated in Fig. 2) and can be solved very quickly. The problem
is to find a minimum weight subset of edges such that all the
vertices are covered exactly once. A real-world problem
could be the assignments of jobs to workers in a factory.
Each worker (set A) can do some jobs (set B) at a certain
cost. We seek an assignment of jobs, such that all jobs are
completed, each worker gets exactly one job, and the total
cost is minimized. The assignment problem is also formal-
ized by Eq. (1).

The assignment problem is solved in O(N?) run-time by
using the Hungarian algorithm.éz_64 Since the algorithm has
been known for over four decades in the literature, we do not
provide the full working of the algorithm, but instead just an
outline. The N X N cost matrix C is constructed. The final aim
is to choose exactly one element from each row (and col-
umn) such that the sum of the elements has the lowest attain-
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FIG. 3. (a) Three coplanar images also have seed constellation singularities.
Multiple seed constellations will produce the same x-ray images. (b) Seed
constellation singularity arising when three noncoplanar images are used.
Two sets of reconstructions are viable for the same x-ray images. In fact this
cube can be replicated to construct singularities that arise when more than
three images are used.

able value. Thus, an equivalent matrix having at least one
zero in each row (and column) is obtained by subsequent
subtractions using the smallest element in each row (and col-
umn). This matrix is used to find a selection of zeros such
that each row and column has exactly one zero. If this exists,
then it provides the min-cost matching. If this does not exist,
a line covering procedure is used to make an adjustment to
the matrix and generate zeros in useful locations. This is
iterated a maximum of O(N) times (proof available in the
literature) until a solution results. The locations of all zeros
provide the minimum weight matching. Thus the Hungarian
algorithm provides the matching with the lowest possible
cost.

C. Theoretical foundations for uniqueness
in matching

It is well known that due to singularities in projective
imaging, reconstructing seeds from two images is inherently
inaccurate. A third image is required to remove this singular-
ity. Further investigations reveal singular constellations even
with three images. Previously proposed algorithms use three
coplanar images, i.e., where the three x-ray sources and the
implant are all in the same plane. Figure 3(a) illustrates the
arising singular constellations for this choice of images. Due
to the small size of the prostate, the x rays entering it are
nearly parallel, the average variation being around 2°. The
symmetry establishes that there are multiple constellations
producing the same x-ray images, with the number of alter-
nate constellations increasing with the number of seeds. Er-
rors are further amplified with inaccuracies in segmentation,
C-arm calibration and tracking. Though we used symmetric
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FiG. 4. The three-image seed-matching problem reduces to the min-cost
tripartite matching problem. Any see in a given set is connected to every
seed in the other two sets. The problem is NP-hard and no polynomial time
solution is possible to compute the min-cost matching.

images, singularities can be shown in any three nonsymmet-
ric coplanar images using the generic construction provided
in the below.

Singularities though reduced, are not completely removed
with noncoplanar images, as illustrated in Fig. 3. Since the x
rays entering the prostate are nearly parallel, the three imag-
ing directions define a parallelepiped, a 3D parallelogram.
Four seeds sitting at the vertices of the parallelepiped can
create a singularity. The likelihood of this happening in-
creases for large implants, especially since the seeds are in-
serted in parallel straight lines. Thus a fourth image is advis-
able for large implants. Some singular constellations cannot
be resolved by four images either. This constellation can be
achieved by putting together two parallelepipes along the
fourth imaging direction, which will result in two singular
constellations with eight seeds each. This process can con-
struct singularities with any number of images, if taken arbi-
trarily. Theoretically seven images can resolve all singulari-
ties for purely convex objects. Similar results can also be
derived when other properties of the object are known.” In
brachytherapy however, three to four noncoplanar images
should practically be sufficient.

The above implies that a robust algorithmic framework
for seed matching using three or more images is essential. A
modification of our proposed framework reduces three-
image matching to the tripartite matching problem,64 as illus-
trated in Fig. 4 and Eq. (2) (Cj is the NXNXN cost-
matrix). Tripartite matching is similar to bipartite matching,
except that it matches three sets instead of two. In addition, it
assures a matching that is optimal, i.e., has a minimum cost.
Multiple-image based seed matching similarly reduces to the
multipartite matching problem. Though the bipartite problem
is solvable in O(N?), the tripartite and multipartite problems
are NP-complete. Moreover, finding the minimum weight tri-
partite matching is NP-hard. NP-complete are a class of dif-
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ficult problems thought to be of nonpolynomial complexity.
NP-hard problems are believed to be harder than NP-
complete, where unlike NP-complete, even the validity of a

given solution is not verifiable in polynomial time,”
N N N
min E E E Cijkfijk,
i=1 j=1 k=1
N N
where fi € {0.1}: 2 2 fiu=1V k; 2)

i=1 j=1

N N N N
D2 fiuw=1Vi and XX fiu=1Vj

j=1 k=1 k=1 i=1

Using another reduction, three-image seed matching re-
duces to the min-weight clique problem58 (a clique is a sub-
graph with edges between all the vertices). If the images are
taken from arbitrary directions, then the orientation of epipo-
lar lines is unconstrained. Since the implant has N densely
packed seeds roughly shaped as an ellipsoid, any epipolar
line connecting the projection of a seed to its x-ray source is
expected to come in the vicinity of O(N'?) seeds in the 3D
implant. Note that this estimate is an expected bound and
could vary significantly across individual seeds. When two
images are used, all seeds in the vicinity of the plane con-
necting the seed and the two x-ray source locations would
become feasible. Thus, with unconstrained image orienta-
tions, each seed in an image statistically has an expected
O(N??) feasible correspondences in the other image. This
implies that two-image matching has an expected O(N'?)
feasible doublets. Similarly, it can be established that three-
image matching has an expected O(N*?) feasible triplets.

This reduction has also been observed experimentally
where two images resulted in about 2000 feasible doublets
for a 100 seed phantom, while a third image reduced it to
about 400 triplets. As the number of images is increased, the
number of feasible tuplets will converge close to O(N), im-
plying a decrease in the number of alternate implants. This
number can potentially reduce to exactly N, when many
well-chosen images are used. It should be observed that even
having only (1+¢€) X N feasible tuplets results in an exponen-
tial search space of O(2¥X(e—1)Y) for large € and
O([2/(e=1)]"W) for small €. A formal proof for the non-
existence of a polynomial-time algorithm can be shown by
constructing a graph with all feasible tuplets as vertices, and
compatibility between triplets as edges. The solution will be
equivalent to finding a min-weight clique of size N. Finding
a feasible clique in a general graph is itself NP-complete,
while finding the clique with minimum cost™® is NP-hard.

D. A practical algorithm for three-image
seed matching

Though still an open problem in complexity theory, it is
widely believed that no polynomial time algorithm can solve
NP-complete or NP-hard problems.58 The field of approxi-
mation algorithms could design quick algorithms that have

Medical Physics, Vol. 32, No. 11, November 2005

3480

theoretical bounds on the error for both run-time and the
final solution. Unfortunately, these algorithms typically work
on generalized graphs, and may not necessarily incorporate
the inherent structure of our problem. Hence we design our
own algorithm that incorporates the physics of projective
imaging. We propose a practical solution for matching and
reconstruction of brachytherapy seeds using the Hungarian
algorithm, abbreviated henceforth in the paper as
MARSHAL.

The intuition behind MARSHAL can be summarized into:
(a) the original tripartite matching can be projected into in-
spired bipartite matchings; (b) s;; matches s, only if they
have a counter-part in the third image; (c) though a low C;;
did not force C;j to be low for some k, a low C;j; does force
Cij» Cy» and Cy; to be low. It is very common in the two-
image case for the epipolar line of s; to pass through s;,,
even when s;; and s;, are severely mismatched. Thus in a
matching between images 1 and 2, Cij should be low if and
only if there exists a k such that Cj is low. If C;;; if high for
all k, then C;; should be given a high value. This assignment
of C;; is different from the purely two-image case, where C;;
could be low even for a strong mismatch. Thus C;; needs to
incorporate information from the third image to remove in-
herent two-image singularities. Since the solution of bipartite
matching should as close as possible to that of the tripartite
matching, the L_,, projection (minimum/best value) is used.

Clj=mln{cl]k/k= 1, e ,N} (3)

MARSHAL projects the original tripartite problem into
three distinct bipartite problems by the appropriate projection
of the costs. This is similar to projecting the minimum value
along the rows/columns of the three-dimensional cost matrix
C;jx to obtain three two-dimensional cost matrices. The theo-
retical framework of bipartite matchings allows the compu-
tation of the best possible matching for each bipartite prob-
lem in O(N®) run-time. The solutions of the bipartite
matchings are then integrated to obtain a solution to the
original tripartite problem. Hence MARSHAL acts as a
bridge between a purely theoretical framework and an inher-
ent structure in the problem.

The flowchart for MARSHAL is shown in Fig. 5. Using
Eq. (3), the respective cost matrices for the three image pairs
are obtained. These are used to achieve three independent
bipartite matchings M {i,j,—), My(—.j,k), and M{i,—.k).
Loops are created next, i.e., if {il,j1,-),(—,j1,kl),
(i2,—,k1),(i2,j2,-) il ,—,km) are matchings, then
(1.J1-k1si2, )25k, ... ky,iq) is a loop of size m, each loop
ending on the seed it started from. For example, if for the
first seed the matchings are M (1,1,-), My-,1,1),
M5(1,—,1), then (1,1,1,1) is a loop of size 1 representing
seedl. The majority of the loops will have a size of 1, which
can be declared matched. This claim is also experimentally
validated in Sec. III C.

Sometimes matchings get flipped, resulting in loops of
size greater than 1. For example, if 5,3 had instead matched
s, in the above-noted example. i.e., if the matchings
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FIG. 5. A flowchart explaining the working of MARSHAL. It runs in O(N?)
time for good data sets.

were M (1,1,-), My-,1,1), M;2,-,1), M;2,2,-),
My(—,2,2), Ms(1,-,2), then (1,1,1,2,2,2,1) would be a loop
of size 2 representing seedl and 2. Since each loop by defi-
nition is a self-contained subset of seeds with no relation to
other loops, they only need to be matched among themselves
to obtain the correct final answer. These are typically small
loops, the optimal match for which can easily be obtained by
a brute-force search with O(m! X m!) run-time.
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Theoretically, for error-prone data the size of the loops
could grow large, though practically we never saw it happen.
Nevertheless, brute force search is done only for loops of
size m << J, which is a predetermined threshold based on the
largest m that achieves a very fast (<1 s) run-time. Loops of
size greater than & are recursively broken down using
MARSHAL, which would run three bipartite matchings
within this subset and return the correct match. In effect, all
large loops will be broken down into smaller and smaller
loops, until everything is matched. Thus MARSHAL
achieves the correct seed matching and still practically runs
in O(N?), a significant improvement when compared to pre-
vious methods.

It should be noted that there can be another way to com-
pute loops in the above algorithm. If (i, j,—) match after the
first bipartite matching, then their counterpart k in Images
could also be chosen. We do not do this, since the first bi-
partite matching does not ensure that all k’s are chosen, to
solve which the full tripartite problem would have to be
solved. Moreover, (i;,j;,—) and {i,,j,,—) can map on the
same k, or some k can be left untouched after the first bipar-
tite matching. Thus the first bipartite matching attempts to
compute as accurate as possible a correspondence in the first
two images, while the next two matchings will later solve for
any inconsistencies.

Note that the computation in Eq. (3) takes O(N?) time. We
modify it to run in O(N?) time. To compute C;j, s;; and s, are
used to reconstruct the 3D point Si’j, which is then projected
on Images. Let k be the closest point in Images to this pro-
jection. Now S, is computed and its projection error (PE)
calculated, which is assigned to C;;. Though this C;; does not
strongly satisfy Eq. (3), it weakly satisfies it. Any consistent
(i,jy will choose the correct k, while an inconsistent (i, j)
does not have any correct counter-part k, and will anyway be
eliminated in the bipartite matching. Thus our C;; exactly
satisfies Eq. (3) in relevant cases, and will become irrelevant
otherwise.

E. Cost-metric

A comparison proves that some metrics are more effective
than others.*® The metric should incorporate all the available
information, making the global minimum sharper and the
algorithm robust. Hence C;;; should ideally represent the in-
consistency among seeds s;;, sj, and s;3, with 0 indicating
least inconsistent. The basis for most popular choices of C;j
are reconstruction accuracy (RA) and projection error (PE).
We do not formally compare the various metrics that we
have tried, but instead provide the intuition behind the pre-
ferred one.

RA, used by most researchers, is computed by first calcu-
lating the equation of the three lines that join each projection
to its respective x-ray source. Due to various errors these
lines never intersect, creating a need for a symbolic intersec-
tion. As explained in Sec. II F, a closed form solution for RA
that minimizes the L, norm of the distance vector is used in
this publication. Though they do not have an easy closed
form solution, L,, L3, L., or other norms can also
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be minimized (||v||Li=§r§v}'{). The L., norm would the most
robust, since the higher the order of the norm, the more sen-
sitive it is to the smallest of inconsistencies. Thus, it mea-
sures the accuracy with which the 3D point can be recon-
structed. PE, an alternate metric, can be computed by
extending RA. The 3D reconstructed point can be projected
back into each image, and the mean distance between the
projected location and the observed location of the seed con-
stitute PE. The symbolic intersection of the 3D point can be
computed by minimizing any choice of norm (L;-L,), and
could possibly affect a change in the performance. We have
minimized the L, norm to compute the 3D intersection, and
used its PE as the metric.

In our experience, PE fares significantly superior as a
cost-metric than RA. Though PE for each seed is its RA
magnified, different seeds will have different magnifications
(depending on depth). If two seeds have similar RA but dif-
fering PE, the seed with lower PE should ideally be chosen
by the optimization. On the other hand, an algorithm mini-
mizing RA as a metric will not necessarily choose a corre-
spondence that minimizes the deviation of reconstruction
from observation. Thus PE is a stronger reflection of the
observed data and leads to better convergence. In general,
any cost-metric that directly measures the deviation from the
observation performs superior to a metric that does not. A
significant improvement in matching was observed by
switching from RA to PE. A combination of the above-
mentioned ideas is to choose the intersection so as to mini-
mize the L., norm of PE. Thus the most sensitive norm (L,,)
is minimized on the observations (seed locations on image),
to compute the 3D intersection. Unfortunately, it requires a
nonlinear optimization due to a lack of a closed form solu-
tion. Though we have not yet used it, this metric is expected
to give the best performance.

F. Seed reconstruction

To compute C, we need to compute the 3D intersection of
the corresponding straight lines in space. Due to various er-
rors these straight lines never intersect, forcing us to com-
pute a symbolic 3D intersection point. The symbolic inter-
section is typically defined as the global minimum of an
error function. Here we propose a simple and quick method
that minimizes the L, norm of Euclidian distance from the
intersection point to the lines.

Let the total number of 3D straight lines be m, with line i
defined as having unit direction /; (a;,b;,c;) and a point p; on
it, as shown in Fig. 6. Let P (x,y,z) be the representative
intersection of these m lines. Let d; be the Euclidian distance
of P from line i. Thus by definition, P achieves the minimum
L, norm for the vector (d,,d,, ....d,). In other words, we
need to find a P such that it minimizes a function F. Now, it
can be easily computed that

Medical Physics, Vol. 32, No. 11, November 2005

3482

4]
Iy

FiG. 6. Three matching points, in general, do not intersect due to various
errors in segmentation, C-arm pose, and calibration. A symbolic intersection
is calculated by finding the point with minimum sum of square distances
from the lines.

F=m X RA?

=2 [(P-p) X I
i=1
m b12+012 —a,-b,- —a;c;
=2 (P=p)'| —apb; ai+ci —be |(P=p)
=1 —ac; _bici al<2+bl-2
=2 (P_pi)TAi(P_pi)’ 4)

i=1
where T represents the transpose. Now P minimizes F.
Hence we can write, dF/dx=dF/dy=0F/dz=0, which leads
us to

P=| XA
i=1

-1

x| X Api|. (5)
i=1

This is the final seed coordinate. We can see that it can be
computed very quickly by a few summations followed by a
3 X 3 matrix inversion. It should be noted that P is chosen so
as to minimize RA.

G. Seed matching from four or more images

In some rare cases of extremely large/dense implants, an
additional fourth image may be desired. One approach is to
match all possible image pairs and perform a combinatorial
search on the loops that are formed. Though this is accurate,
the run-time complexity is dependent on the number of im-
ages, making the algorithm slow. It was earlier observed that
the number of feasible m-tuplets rapidly comes closer to N.
This property can be used to extend MARSHAL. The algo-
rithm chooses three images at random as primary and the rest
(m—-3) as secondary. Using the primary images, it runs ex-
actly as described in Fig. 5, except that each bipartite prob-
lem is a projection of the m-partite problem. In other words
C;j incorporates information from all the m images, as shown
as follows:
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Fi6. 7. Two seeds nearly overlap in the right image. Though both matchings
A and B reconstruct the seeds in the correct location, only one of them is
theoretically correct. We define the other as mismatched, so as to make the
seed matching error analysis extremely rigorous.

iy e {1,2, ... .N}}.
(6)

Extended-MARSHAL will still run in O(N?) time. In
comparison to three-image matching, using four images will
in fact have a faster run-time due to a decrease in loop-size
and due to a better conditioned bipartite matching. An im-
provement in accuracy is also registered owing to the inher-
ent structure in the additional information.

Cijz min{ciliz...im/il =iji,=jand iz, ...

H. Guidelines for performance evaluation

Since MARSHAL is essentially a correspondence algo-
rithm, the % of correctly matched seeds (mean, STD) is the
optimal metric to evaluate its performance. However, it
should be noted that due to the overlap-problem, the % of
declared mismatches would always be an upper-bound. As
illustrated in Fig. 7, both matchings A and B give the correct
3D seed coordinates in a practical sense, though only match-
ing A is correct in a theoretical sense. Owing to our rigid
error analysis criterion, we declare B to be an incorrect
matching, in spite of it being correctly matched in a practical
viewpoint. This will be evident from the low reconstruction
errors for mismatched seeds, which should be comparable to
that of correctly matched seeds.

Error analysis is sometimes also done using PE or RA. As
theoretically described in Sec. II C, a mismatch might still
result in a low PE/RA. This makes performance evaluation
based on PE/RA inaccurate. If available, reconstruction error
(RE), the 3D distance between the true and the reconstructed
seed location, is an excellent tool for measuring perfor-
mance. To measure any systematic bias in implant recon-
struction or any change in shape, we use the relative recon-
struction error (relative RE). It is the 3D error when the
reconstructed implant is compared to a shifted (translated,
rotated) version of the ground truth implant.

Typically RE is averaged for all the seeds, leading to po-
tential information misrepresentation. For example, a 100-
seed implant can have 90 seeds correctly matched with
0.25 mm RE, and 10 severely mismatched seeds with 5 mm
RE. Though the average RE in this case is only about
0.7 mm, the 10 mismatched seeds could be hazardous. Thus
a small average RE alone does not necessarily imply a good
matching. A separation of matched and mismatched seeds is
necessary. Note that the distinction between matched and
mismatched seeds should never be established by using PE/
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RA, but only by an accurate ground truth. RE/PE/RA in ad-
dition to the above, also reflect the accuracy of C-arm track-
ing and seed segmentation. In this light, MARSHAL is
primarily evaluated using % matching and RE for mis-
matched seeds.

Beside establishing tools for performance evaluation, it is
also important to find factors that could adversely affect a
seed matching algorithm. This is crucial, since no polyno-
mial algorithm can assure optimality for more than two im-
ages. The primary factors are the implant seed density and
the size of the prostate. The higher the density or bigger the
prostate, the greater the possibility of mismatches. Besides,
most available C-arms are of moderate quality, with little
reliability of the system supplied parameters. This includes
encoder readings (pose) and parameters like image warp, fo-
cal length, and image origin. Another factor that could affect
performance is the angle of separation between the images.
Thus sensitivity to these factors should be considered when
evaluating any new algorithm.

lll. RESULTS AND DISCUSSION
A. Two-image versus three-image matching

By converting the two-image matching problem to a bi-
partite matching problem, we have assured that the
minimum-cost match from all the possible N! matches can be
computed in O(N?) run-time. This proves that there cannot
exist a better match, implying that no other algorithm can
produce a match with a lower cost. It should be noted that
the best possible match is not representative of the correct
match, which is due to the fact that two images are intrinsi-
cally insufficient and do not contain the requisite informa-
tion. Furthermore, the minimum-cost match is dependent on
the choice of cost-metric, i.e., a superior choice for the cost-
metric will result in a superior match. Hence we have proved
that given two images and a choice for the cost-metric,
MARSHAL computes the best possible match (global op-
tima) in polynomial time. Furthermore, we have shown that
information from two images is inherently ill-posed and that
the best match does not correspond to the correct match.

This is also validated using quantitative experiments. Syn-
thetic C-arm images of clinically realistic brachytherapy im-
plant scenarios were created, and the reconstructed and ac-
tual seed locations were compared. Implants with the number
of seeds varying from 60 to 150 in a 50 cc prostate were
tested. Based on our experience, the focal length was chosen
to be 1000 mm, the pixel size was chosen to be 0.25 mm and
the center of the image was chosen to coincide with the
imaging origin. The region of use was at about a distance of
2/3rd the focal length from the x-ray source. The C-arm
images were all contained inside a 15° cone around the AP
axis. To reflect the nature of the best possible results, no
noise was added in these simulations. Table I shows the per-
formance on this synthetic data.

It can be noticed that two images are clearly insufficient,
correctly matching only 85.2% of the seeds even in the ab-
sence of any noise. The inherent singularity in the two-image
case is indicated by the low PE and high RE for the mis-
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TaBLE I. MARSHAL performance using synthetic data. Two images are clearly insufficient, which is clear from the low projection error yet high reconstruc-
tion error for the mismatched seeds. All seeds are matched when three images are used.

Number of seeds

Two images Three images
60 80 100 120 150 60 80 100 120 150
Matching Match 91.3 90.1 80.9 82.8 80.8 100 100 100 100 100
rate (%)
Reconstruction 0.18 0.15 0.18 0.20 0.21 0.07 0.07 0.07 0.07 0.07
error (mm)
Reconstruction Mismatch 22.1 21.4 22.1 23.6 21.9
error (mm)
Projection 0.03 0.04 0.04 0.04 0.04
error (mm)

matched seeds. Thus, when only two images are used, there
exist alternate implants that produce the same x-ray images
(low PE of 0.04 mm), but reconstruct the mismatched seeds
at the wrong 3D location (high RE of 22.2 mm). Another
way to look at the results is that the desired matching of the
seeds has a cost associated with itself. This cost is close to 0
(in practice it is always a little more than 0 due to pixeliza-
tion errors). Due to inherent singularities, a significant num-
ber of alternate implant constellations also have a cost very
close to 0. Theoretically, all these are viable implants. Nev-
ertheless, even a pixel size of 0.25 mm results in many of
these alternate implants having a cost lower than the desired
implant, which is then chosen by the algorithm. Thus, any
algorithm which is minimizing the error from observed data
will choose an incorrect matching. This is not the fault of the
matching but rather a deficiency of the input. The suggested
approach, therefore, would be to increase the number of im-
ages. Similar conclusions for two-image matching can also
be drawn from phantom experiments, complete results of
which are available in Sec. III C.

In comparison, using a third image matched all seeds cor-
rectly on noise-free data. Thus while two images are insuffi-
cient, three are practically adequate. As mentioned in Sec.
III C, three-image matching reduces to the tripartite match-
ing problem. Multiple-image based seed matching similarly
reduces to the multipartite matching problem. Though the
bipartite problem was solvable in O(N?), the min-cost tripar-
tite and multipartite problems are NP-hard, meaning no poly-
nomial algorithm will be able to prove that its solution is the
best achievable. Thus this proves that there cannot exist any
polynomial time algorithm which can solve the matching
problem using three or more images. It should be noted that
algorithms providing practically acceptable solutions (with-
out any claim on absolute optimality) can still exist.

B. Simulations

Studies were conducted on synthetic images to analyze
the effects of various governing parameters. MATLAB soft-
ware was created to model x-ray imaging. Given C-arm pa-
rameters and implant details, it generated synthetic images
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and exact locations of seeds in the images. Random error
was modeled using a uniform probability density function,
i.e., a | mm error means that a maximum error of magnitude
1 mm was added, having a uniform probability distribution.
The C-arm geometry was the same as in the previous section.
Individual parameters were changed to understand the sensi-
tivity of MARSHAL. It should be noted that only three im-
ages were used to evaluate the correspondences in all the
simulation experiments. Using four or more images is ex-
pected to improve performance, though not evaluated in
simulation experiments.

Since MARSHAL is essentially a correspondence algo-
rithm, to evaluate performance on simulated data, we com-
puted only the % of correctly matched seeds (mean, STD).
RE for matched seeds is not plotted, as it is a function of the
particular methods used for C-arm tracking and segmenta-
tion, which are not the focus of this paper.

Segmentation: Seed segmenting from the x-ray images is
one of the most important sources of error. To study the
sensitivity of MARSHAL to segmentation, segmentation er-
ror ranging from O to 2 mm in steps of 0.25 mm was added
to each seed coordinate in the synthetic data sets. The com-
puted correspondence was compared to the correct known
correspondence, and the % of correctly matched seeds was
evaluated. The seed density was varied from
1.5 to 1.9 seeds/cc in steps of 0.1, while the prostate volume
was varied from 45 to 55 cc in steps of 5 cc. The averaged
results (mean and STD) from a total of 54 000 iterations are
plotted in Fig. 8(a).

The results indicate that even with segmentation errors as
high as 1 mm, the mean and STD for % matching is better
than 97% and 2%, respectively. With 1-2 pixel segmenta-
tion error, the average matching rate is practically 100% in
all data sets. Segmentation error needs to increase beyond
1.5 mm for the mean matching rate to fall below the 95%
mark. Moreover, it should be noted that the declared mis-
matches are predominantly due to the overlap problem,
which becomes clear from the low RE for mismatched seeds.
It has an average of 0.52 mm for all the data sets. The maxi-
mum is attained for data sets with 2 mm segmentation error
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FiG. 8. Error in the performance of
MARSHAL: (a) segmentation error;
(b) cone angle variation; (c) seed den-
sity variation; (d) prostate volume
variation; (e) C-arm pose translation
error; (f) C-arm pose rotation error; (g)
C-arm calibration error; and (h) C-arm
distortion error.

at 1.51 mm, which is natural due to the presence of noise in mainder of the simulations, we fixed a segmentation error of

segmentation, as compared to an error in matching. 0.5 mm (1-2 pixels) to be added to all the datasets.
MARSHAL requires seed segmentation errors to be under Seed density and prostate volume: Depending on the
3-4 pixels (~1 mm) for optimal performance. For the re- radio-activity of the chosen seed, the seed density is com-
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puted. From some preliminary calculations, seed density
typically ranges from 1.5 to 2 seeds/cc.® An increase in
seed density could make the matching process more difficult,
since the seed projections in the x-ray image gets more and
more congested. Thus it is extremely necessary to evaluate
the sensitivity of any algorithm to seed density. In a similar
manner, a larger prostate would need a greater amount of
dose, resulting in a greater number of seeds. An increase in
the number of seeds can potentially be of concern as the
number of feasible matches would increase. Matching algo-
rithms are expected to be less sensitive to prostate volume in
comparison to seed density. Nevertheless, they should be
evaluated in view of volume changes.

The seed density was changed from 1 to 2.8 seeds/cc in
steps of 0.1 and the prostate volume was changed from
35 to 80 cc in steps of 5. As mentioned before, segmentation
error was kept constant at 0.5 mm. A total of 23 750 data sets
were evaluated. Averaged results for matching rate, as a
function of seed density and prostate volume are plotted in
Figs. 8(c) and 8(d), respectively. It can be noticed that both
the mean and STD are stable throughout with a variation of
less than 1%. The mean matching rate is 99% or above, with
a few seeds in some cases being counted as mismatched due
to the overlap problem. Thus MARSHAL can be declared
robust to variations in seed density and prostate volume.

Separation angle: The three or more x-ray images of the
implant are typically taken with a rotation motion of the
C-arm. Some earlier work had made certain assumptions on
the path of the C-arm, while some other work used orthogo-
nal images to do the reconstruction. It is desirable to not
have any constraints on how the images are taken. Moreover,
in a clinical setting the C-arm would have only a limited
mobility inside a 25° cone around the AP axis. Thus, it is
necessary to validate an algorithm to the angular separation
between the images. We tested the algorithm on various data
sets with images taken on a cone around the AP axis. The
implant was kept close to the center of the cone, which was
in proximity of the iso-center. The cone angle was varied
from 5° to 85° in steps of 5°. Six images were taken on each
cone and all 20 three-image combinations used. Seed density
was varied from 1.8 to 2 seeds/cc, prostate volume from
45 to 55 cc, and segmentation error was constant at 0.5 mm.

Averaged results from a total of 77 400 data sets are plot-
ted in Fig. 8(b). Mean matching rate is fairly constant re-
maining always over 99%. There does not seem to be any
variation in % matching due to a variation in the angular
separation of the images. Thus it can be concluded that
MARSHAL is robust to image-separation, and any three im-
ages in the available workspace should suffice. It should be
noted however that, though MARSHAL can match the seeds
correctly it does not have a bearing on RE, which for each
seed will be a function of cone angle, C-arm tracking and
seed segmentation. Thus a larger image separation is desired
since it improves RE.

C-arm pose tracking: The accuracy of C-arm tracking
has a definite effect on the ability to correctly match the
seeds. We separately evaluate the performance of MAR-
SHAL to errors in C-arm translation and rotation. Statisti-
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cally uncorrelated pose errors were added to all three images.
Errors in translation varied from O to 5 mm in steps of
0.5 mm, while in rotation varied from 0° to 5° in steps of
0.5°. It was observed in our fluoroscope tracking (FTRAC)
fiducial that translation errors in depth are always signifi-
cantly greater than those parallel to the plane25 (by a factor
of at least 5). This statistical bias in translation was incorpo-
rated in the generation of the datasets. There was no signifi-
cant bias observed in the rotation errors.

Averaged results for translation and rotation from a total
44 000 data sets are shown in Figs. 8(e¢) and 8(f), respec-
tively. It can be noted that translation errors up to 3 mm can
still correctly match over 99% of the seeds. This quickly
drops to 95% when the error reaches 5 mm. When compared
to translation, MARSHAL is more sensitive to errors in ro-
tation. Errors up to 1.5° in rotation correctly match over 99%
on the seeds, with the performance dropping quickly when
the error is greater than 3°. It can be concluded that
MARSHAL is accurate and robust when the C-arm is tracked
to an accuracy of 3 mm in translation and 2° in rotation. This
is significantly larger than accuracies offered by the FTRAC
(0.56 mm in translation and 0.33° in rotation)®” or other
fiducials.**

C-arm calibration: Quantitative fluoroscopic reconstruc-
tion requires accurate calibration of the C-arm imaging
model parameters. Since the parameters vary from pose to
pose, this is typically done for every pose from which the
image is taken. The five intrinsic camera parameters are the
pixel sizes (two parameters) and the 3D location of the x-ray
source with respect to the image (three parameters). Since
pixel sizes are fixed throughout the life of the C-arm, we
evaluate MARSHAL only with respect to the focal spot. In-
dependent and uncorrelated calibration errors of up to
20 mm were added to all three images, and the averaged %
matching from 102 500 data sets are plotted in Fig. 8. It can
be seen that the matching rate stays practically at about
100%. Thus MARSHAL is robust to C-arm calibration.
These results triggered us to question the relevance of C-arm
calibration in brachytherapy, leading to both theoretical and
experimental bounds on the error.”’

C-arm image distortion: Most C-arms exhibit a signifi-
cant amount of nonlinear distortion in the images. Moreover,
the amounts of distortion vary with pose, time, and location.
Distortion being a global and nonlinear transform, consis-
tently shifts the seed coordinates in the image, adding an
error to any algorithm that relies on epipolar constraints.
Thus distortion correction needs to be accommodated for in
every image, which is a cumbersome process. If any match-
ing algorithm is stable in the presence of distortion, then a
one-time distortion correction procedure might also suffice.
MARSHAL solves the matching problem globally, as com-
pared to decreasing the complexity to smaller epipolar con-
straint based subsets, and is well suited to work on distorted
data sets.

MARSHAL was tested for sensitivity to distortion. A ran-
domly generated fifth degree radial distortion function was
used to distort each image, and the matching computed on
this data set. The implants were not confined to be in the
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(2)

(b)

FIG. 9. (a) An image of the seed phantom attached to the FTRAC fiducial. The seed phantom can replicate any implant configuration, using the twelve 5 mm
slabs each with over a hundred holes. (b) A typical x-ray image of the combination.

center of the image. Averaged % matching from 27 500 data
sets are plotted against the mean image-distortion in Fig. 8.
Even with 15 mm distortion errors, % matching is above
95%. Average image distortion of up to 5 mm matches over
99% of the seeds correctly. Thus MARSHAL seems to be
fairly robust to moderate distortion errors. Again, it fares
well since it solves the matching problem as a global com-
binatorial optimization. Similar results are also available
from phantom experiments in Sec. III D.

C. Phantom experiments

After the simulations, experiments were conducted on a
precisely fabricated seed phantom, constructed using acetol.
The FTRAC fiducial®® was used to track the C-arm (accuracy
of 0.56 mm translation and 0.33° rotation), and was attached
to the seed phantom as shown in Fig. 9. The seed phantom is
comprised of twelve 5-mm-thick slabs, each having at least a
hundred holes with 5 mm spacing. Any implant configura-
tion with accurately known seed positions (in the FTRAC
frame) can be created. Unfortunately there was about 0.5°—1°
rotational error in the assembly of the attachment, leading to
an error of about 0.5 mm in the ground truth estimates. Thus
we expected additional error even before doing the experi-
ments. The phantom is otherwise highly accurate. The seed
density was kept constant at about 1.56 seed/cc. The number
of seeds (and hence prostate size) was increased from 40 to
100 in steps of 15. For a given constellation, six images
within a 20° cone around the AP axis were taken using an
uncalibrated Philips Integris V3000 fluoroscope. The ob-
tained images were dewarped using the pin-cushion test. Ac-
curate ground truth for matching was computed by utilizing
the known 3D seed locations.

Matching was achieved using MARSHAL, followed by
performance analysis. MARSHAL was evaluated for cases
when two, two and a half, three, four, or more images are
used. Robustness is further evaluated by using distorted im-
ages. For each implant, six images from various poses were
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taken, and a number of combinations are created by choosing
a different set of images to reconstruct the seeds. The results
are averaged when displayed in Tables II and III.

Two images: The results for MARSHAL with two im-
ages, evaluated on 75 combinations (15 for each data set),
are summarized on the left side of Table II. Two-image
matching gives poor results, matching only about 2/3 of the
seeds. The matched seeds reconstruct with an average RE of
1.17 mm, while the mismatched seeds reconstruct with an
average error of 27.2 mm, the maximum being 241.8 mm.
Though these results are completely unacceptable, MAR-
SHAL provides the best possible solution that can exist with
two images. Due to the various calibration and numerical
errors, alternate constellations have significantly lesser error
than the correct one. This is evident from the table where we
can see that the average PE for mismatched seeds is only
0.22 mm (0.15 mm RA), but the seeds are deviated by a
large value of 27.2 mm in 3D. Thus with two images,
MARSHAL produces the best possible (least cost) matching
that can exist.

Two and a half images: To understand better how infor-
mation from a third image facilitates seed matching, partial
information from a third image was added. Instead of all
three, it runs only one bipartite matching, while still using
Eq. (3) to compute C;;. Since the third image is not com-
pletely used and this exercise is only toward our understand-
ing, we say that only two and a half images are used. The
results from 300 combinations (5 X °C, X 4—the choice for
the third image has four options) are shown on the right side
of Table II. This little information from the third image is
sufficient to correctly match 98.3% of the seeds. The mean
RE for matched seeds is 0.88 mm, while that of mismatched
seeds is 7.68 mm, the maximum for all combinations being
68.2 mm.

Thus when a third image is used, the number of good
triplets decreases from O(N>?) to O(N*?), providing a huge
improvement in performance. Though the matching rate is
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TABLE II. MARSHAL performance on phantom data. Two-image seed matching is completely erroneous (left), with over a quarter of the seeds being
mismatched with high reconstruction error, yet low projection error and reconstruction accuracy. Adding just little information from a third image boosts
performance (right). Most seeds match, though the reconstruction error is high for the few mismatched seeds. A total of 75 and 300 combinations were used,

respectively.
Number of seeds
Two images Two and a half images
40 55 70 85 100 40 55 70 85 100
Matching Match 76.5 75.8 68.3 61.9 53.1 98.3 99.8 98.3 98.0 97.2
rate (%)
Reconstruction 0.96 0.92 1.21 1.17 1.59 0.83 0.73 0.88 0.89 1.09
error (mm)
Projection 0.19 0.12 0.15 0.15 0.19 0.20 0.16 0.17 0.18 0.24
error (mm)
Reconstruction Mismatch 23.9 27.8 28.2 23.0 33.0 2.35 13.2 4.32 8.38 10.2
error (mm)
Projection 0.22 0.19 0.18 0.22 0.27 0.22 0.29 0.16 0.26 0.26
error (mm)
Reconstruction 0.15 0.13 0.13 0.15 0.19 0.13 0.09 0.12 0.16 0.15

accuracy (mm)

good, RE for mismatched seeds is still rather high (note that
PE for mismatched seeds is low). The reason is that in spite
of being very close, the projection of the solution of the
tripartite problem is not exactly the same as the solution of
the bipartite problem. The proximity in the solution is evi-
dent from the low PE of 0.24 mm for the few mismatched
seeds (<3%). Thus by including some combinatorial con-
sistency checks, we should be able to match all the seeds.
This intuition is realized fully in MARSHAL.

Three images: Averaged results from a total of 100 com-
binations (5 X 6C3) are shown on the left side of Table III.
98.5% of the seeds matched perfectly. The 3D RE for
matched seeds has a mean of 0.63 mm and STD 0.24 mm.
The % of mismatched seeds is a strong upper-bound due to

the overlap problem (Sec. IT H). This is evident from the RE
for mismatched seeds, which has a mean value of 0.91 mm,
only a little higher than correctly matched seeds. The average
worst case error was 1.32 mm, the error being lower for
smaller implants. As mentioned earlier, the ground truth of
the seed locations has a small rotation error. To counter this,
we computed relative RE, which removes any constant trans-
lation and rotation offset between the ground truth and re-
constructed seeds, and measures any variation in the shape
of the reconstructed implant. It can be seen that relative RE
is significantly lower, standing at a mean value of 0.32 mm.
Thus there is a constant shift of about 0.3 mm (due to the
error in ground truth) for the whole implant, and an addi-
tional error of 0.32 mm for each seed. The absolute worst

TABLE III. Performance on phantom data. Using three images gives excellent results (left), with most of the seeds being matched. Mismatched seeds
reconstruct with a low error. Using four images gives similar results (right). A total of 100 and 300 combinations were used, respectively.

Number of seeds

Three images

Four images

40 55 70 85 100 40 55 70 85 100
Matching Match 97.6 100 98.0 98.5 98.5 99.2 100 98.7 98.9 99.0
rate (%)
Reconstruction 0.60 0.48 0.63 0.70 0.76 0.59 0.48 0.63 0.69 0.75
error (mean)
Reconstruction 0.21 0.23 0.25 0.24 0.25 0.21 0.23 0.25 0.24 0.25
error (STD)
Reconstruction Mismatch 0.73 0.76 0.84 1.30 0.67 0.65 0.64 1.14
error (mean)
Reconstruction 1.18 1.03 1.10 1.96 0.91 0.86 0.77 1.58
error (worst)
Reconstruction All 0.28 0.29 0.35 0.30 0.39 0.28 0.29 0.35 0.29 0.38

error (relative)
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case error was 3.29 mm, which seems to have a likelihood of
about 1 in 75, as indicated from our data.

Four or more images: To seek further improvement, 300
combinations (5 X 6C3 X 3) using four images were run, the
results of which are summarized on the right side of Table
III. It can be seen that, on average, 99.2% of the seeds match
perfectly. RE for matched seeds still has a mean of 0.63 mm
and STD 0.24 mm. While RE of mismatched seeds has de-
creased to 0.78 mm and the average worst case error to
1.03 mm, the relative RE is still 0.32 mm. Thus we can see
that adding a fourth image does not significantly improve the
mismatched error, predominantly because three-image
matching leaves very little scope for it. It should be noted
that due to this redundancy, a fourth image is a great source
for validation during the procedure.

Similar to using a fourth image, using a fifth or sixth
image has only a little improvement in performance. Average
results from 300 combinations indicate that using five im-
ages perfectly matches 99.2% of the seeds with the average
worst case error dropping to 0.9 mm. Six images images
match 99.4% with the average worst case error being
0.85 mm. Thus three images appears to achieve the correct
balance between number of images used and accuracy ob-
tained, though it should be noted that using more extra im-
ages would decrease RE and might also aid in the hidden
seed problem.

It should be noted that %-matching implies a normaliza-
tion by the number of seeds. Using four images, the 100-seed
implant seems to perform similar to the 40-seed implant,
matching around 99% of the total seeds. On the contrary, the
100-seed implant mismatches about 1 seed/implant while the
40-seed implant mismatches only 0.3 seeds/implant. In a
similar manner, though the 55-seed implant matches 100% of
the seeds, it does not imply that all 55-seed implants would
always correctly match. Depending on a host of uncontain-
able factors like errors in tracking, segmentation, noise, etc.,
an erroneous variation of about 1 seed/implant should typi-
cally be expected while studying any pattern.

D. Distorted images

MARSHAL addresses the problem globally as a combi-
natorial optimization problem, as compared to locally by us-
ing only epipolar constraints. Thus it is well-suited to evalu-
ate the correspondences even in the presence of nonlinear
effects like image distortion. Well-separated image positions
(with distortion) were shown to match 98.5% of the seeds
even on a 100-seed implant.67 To further validate the robust-
ness, we tested it for 700 combinations of distorted C-arm
images. These combinations were chosen, so as to not re-
strict the images in any way, apart from being inside a 25°
cone around the AP axis. Thus the images can be very close
to each other and not well separated. Using four such images
perfectly matching 93.2% of the seeds on an average, per-
forming superior to three images that matched only 86.3%.
Five and six images perfectly matched 95.4% and 96.2% of
the seeds, respectively. The performance can be further im-
proved by keeping the seed projections closer to the center of
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the image. It can be observed from Fig. 9 that the seed phan-
tom is not in the center of the image, and thus suffers from a
considerable amount of distortion.

Thus, if the prostate size is small (<50 cc), then
MARSHAL with three distorted images can match over 97%
of the seeds match perfectly. This means that it flips about
2-3 seeds on average, correctly matching the rest. Alterna-
tively, if the prostate is a little larger, then using more images
that are well-spaced can still match about 98% of the seeds.
Average RE for the whole implant stood high at 2.65 mm,
while relative RE was low at 0.54 mm. The relative RE for
the mismatched seeds was about 1.4 mm, while the absolute
RE was 3.9 mm. Thus most seeds matched correctly, though
the reconstructed implant is shifted in space by about 2 mm
due to image distortion. The mismatched seeds have an ad-
ditional error of 1 mm after the shift. Similar patterns were
also observed on synthetic data in Sec. III B. Though we
have not encountered any similar analysis in the literature,
we conjuncture that since those algorithms rely on epipolar
lines that are distorted nonlinearly, they should be affected
much more severely than MARSHAL.

It should be noted that though theoretically the recon-
structed implant should be skewed, practically it is of the
same shape. This is evident from the marginal increase in
relative RE by only 0.23 mm. Thus the implant reconstructed
from distorted images can be practically shifted by about
2 mm to overlap with the correct location. The reason for the
absence of skew is that even though distortion is always
nonlinear, the area that the implant occupies in the image is
small. This results in an approximately linear shift of the
seed coordinates in the image. Furthermore, 3D reconstruc-
tion from multiple images also reduces this error. As a con-
sequence, the reconstructed implant is practically shifted in
space in proportion to the amount of distortion.

Thus image distortion can potentially be either corrected
using a constant function, or completely avoided if the
amount is low. It should be noted that for this to work the
implant should not be large and some mechanism needs to
correct for the consistent shift in the x-ray to TRUS registra-
tion step. Moreover, additional images can provide signifi-
cant improvement and reliability.

E. Run-time

MARSHAL has a run-time complexity of O(N?) for any
number of images, which makes it extremely fast even on
large size implants. The unoptimized MATLAB code (Pen-
tium4 3.2 GHz, Windows 2000, 1 Gbyte RAM) on a 100-
seed implant with a seed density of 1.8 seeds/cc ran in 1.6 s.
This run-time is typical of most tested implants, indicating
that an optimized C+ + implementation could in practice run
in near real-time. Thus run-time for MARSHAL seems to be
sufficient for intraoperative dose, especially when compared
to the time required for automatic segmentation, which typi-
cally requires a few seconds. Though it was never observed
in any of the thousands of test data sets, we point out that
there can exist (theoretically) many long loops, which can
potentially slow down MARSHAL.
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IV. SHORTCOMINGS AND FUTURE WORK

The underlying assumption of this paper has been that all
the seeds are segmented and their image coordinates known.
Though excellent segmentation algorithms have been
proposed,15’35’36 they are capable of only segmenting seeds
that are fully visible. Thus the coordinates of any hidden
seeds (due to an overlap) will not be available, resulting in
varying number of segmented seeds in each image. This is an
issue of utmost importance and clinical practicality. While
some researchers have reported the number of hidden seeds
to be between 7% and 45% of the total seeds,35 others have
noticed only about 2%-3%% in their clinical data. Neverthe-
less, no solution can be clinically viable until it explicitly
tackles this problem.

In some of the suggested solutions, fast-CARS was
extended® to tackle this, but the algorithm reconstructed a
greater number of seeds than were actually inserted. Another
variant of fast-CARS was proposed68 by ordering the seeds
using the epipolar constraints. Unfortunately, the algorithm
“based on epipolar geometry requires co-planar imaging to
perform reconstruction” and “cannot reconstruct undetected
seeds if they exist in the same search restriction band.” Sig-
nificant works as they are, the problem merits further re-
search. An intensity-based method using tomosynthesis69 has
also been proposed. Unfortunately in their current implemen-
tation, they require a rather large number of images to
achieve accurate reconstruction. Another method based on
Hough trajectories70 has been proposed to solve this prob-
lem, but again requires a large number of images. Neverthe-
less, these methods could lead to promising results in the
future.

Though MARSHAL does not yet tackle hidden and spu-
rious seeds, we believe that the proposed mathematical
framework for seed matching is comprehensive. It can be
extended to solve these problems in a more formal frame-
work of combinatorial optimization in contrast to the previ-
ously mentioned heuristic methodologies. This formal ap-
proach is expected to provide a better control on the behavior
of the algorithm, potentially offering a decrease in depen-
dence on rules that might change behavior from one data set
to another and an increase in robustness. Moreover, the com-
plete problem can be tackled as a whole (global optimiza-
tion) as compared to looking at one seed or a group of seeds
with heuristic rules (local optimization). Though it might be
argued that the full problem should be broken down into
independent subset of seeds with each subset solved sepa-
rately, this might not be feasible in the generic case. If the
tripartite problem could be broken down into a set of smaller
min-cost tripartite problems, then it would no longer be NP-
hard. Thus any solution should try to address the problem as
a whole.

The basics of our approach will be to redefine the problem
into a formal framework. Since we have proved in this pub-
lication that the global optimum is not attainable by any
polynomial algorithm, we will project the full problem into
multiple lower dimensional problems involving all the seeds.
Each of these subproblems would be casted into the network
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flow framework and the global optima for each lower dimen-
sional problems would be achieved in polynomial time. The
solutions to the subproblems would later be integrated to-
gether to create the final solution. The predominant differ-
ence from the current framework will be that instead of
forced unitary flows, variable flows will be handled. Thus all
the seeds will be handled in unison and solved globally. In
addition, theoretically assured bounds on the performance of
the algorithm are currently being worked out. A combination
of the above-mentioned promises to lead to an implementa-
tion that could potentially be used clinically.

V. CONCLUSION

In contrast to previously proposed methods, we have for-
malized the seed-matching problem. We have proposed an
algorithm, abbreviated as MARSHAL. It typically runs with
O(N?) time complexity with any number of images. Using
three images, it matched perfectly over 98.5% of the seeds at
a density of 1.56 seeds/cc. MARSHAL in combination with
the FTRAC fiducial can reconstruct the seeds with a mean
error of 0.63 mm and a STD of 0.24 mm. The mismatched
seeds had a mean error of 0.9 mm, while the most mis-
matched seed in each implant had an average error of
1.32 mm. The worst error across all data sets was 3.29 mm
and has a low likelihood of 1 in 75 implant cases. Moreover,
relative reconstruction error was 0.32 mm, which reflects the
deviation in shape of the reconstructed implant when com-
pared to the true implant.

The algorithm performs well for distorted images too,
matching over 97% of the seeds for small implants. The
simulation experiments indicate that MARSHAL is not sen-
sitive to (a) image separation, (b) seed density, (¢) number of
seeds, and (d) C-arm calibration. It is also acceptably robust
to (a) segmentation, (b) C-arm pose, and (c) distortion. It can
reconstruct an implant when three of more images are used,
with a robustness, precision, and speed that promises to be
sufficient to support intraoperative dosimetry in prostate
brachytherapy. Though we validate it only for brachytherapy,
MARSHAL is sufficiently generic to be used for establishing
correspondences across many synergistic applications.
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