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Abstract— The rotation group and special Euclidean group
both contain discrete subgroups. In the case of the rotation
group, these subgroups are the chiral point groups, and in the
case of the special Euclidean group, the discrete subgroups are
the chiral crystallographic space groups. Taking the quotients
of either of these two Lie groups by any of their respective
co-compact discrete subgroups results in coset spaces that are
compact orientable manifolds. In this paper we develop methods
for sampling on these manifolds by partitioning them fur-
ther using double-coset decompositions. Fundamental domains
associated with the aforementioned coset- and double-coset

decompositions can be defined as Voronoi cells in the original
groups. Division of these groups into Voronoi cells facilitates
almost-uniform sampling. We explicitly compute these cells and
illustrate their use in optimization, integration, and Fourier
analysis on these groups. Motivating applications from the fields
of protein crystallography, robotics, and control are reviewed
in the context of this theory.

I. INTRODUCTION

The group of rotations in three-dimensional space, SO(3),
and the groups of rigid-body motions of the plane and space,

SE(2) and SE(3), are ubiquitous in the fields of estimation

and control [2], [3], [4], [11], [12], [15], [18], [19], [33],

[34], robotics [5], [23], and computer vision [20], [28]. These

are Lie groups that contain discrete subgroups. In the case

of SO(3), which is compact, the discrete subgroups are the

chiral point groups, which are finite.1 Of these, we shall

only be concerned with the groups of rotational symmetries

of the Platonic solids since they fill SO(3) more uniformly

than other finite subgroups. In the case of SE(2), the discrete

subgroups of interest are the five chiral wallpaper groups

consisting of lattice translations in the x-y plane and either

no rotation, or rotation around the z axis by 2π/n radians

where n = 2,3,4 or 6.

Here we develop new theory for sampling, integration,

and Fourier analysis on the aforementioned Lie groups and

point to literature on how this theory is applicable to a wide

variety of applications ranging from kinematic state estima-

tion of mobile robots, to robotic manipulator workspaces,

to polymer statistical mechanics, and efficient searches in

crystallographic computing.

This paper is structured as follows. Section II reviews

definitions such as left-, right-, and double-coset spaces in

general, the corresponding concept of fundamental domains
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1A chiral symmetry group refers to one that preserves orientation, or
equivalently, the right-handedness of coordinate systems. A point group is
one for which the action on Euclidean space keeps a point fixed.

in a Lie group, and reviews the concrete details regarding

the groups SE(2) and SO(3). Section III develops an efficient

sampling method in SO(3) and SE(2) based on coset decom-

positions that is directly relevant to molecular replacement

searches in crystallographic computing. Section IV explains

how the grids of almost-uniform points generated using this

methodology are beneficial in optimization tasks over these

groups, and gives concrete examples where such optimiza-

tions occur. Section V explains how the coset decompositions

developed here can lead to more efficient computations of

convolutions on groups and deconvolutions.

II. DEFINITIONS AND TERMINOLOGY

If G denotes SO(3) or SE(2), or any finite-dimensional

Lie group, and Γ,Γ
′
< G denote discrete subgroups, then

right- and left-coset-spaces are defined as [32]

Γ\G
.
= {Γg | g ∈ G} and G/Γ

′ .
= {gΓ

′ | g ∈ G}.

And a double coset space is defined as

Γ\G/Γ
′ .
= {ΓgΓ

′ |g ∈ G}.

Associated with any (double-)coset, it is possible to define

a set of distinguished (double-)coset representatives, exactly

one per (double-)coset. Such a set defines a fundamental

domain in G that has the same dimension as G, but lesser

volume. Under the left action by Γ, the fundamental domain

FΓ\G is translated and the closure of the union of all translates

covers G without measurable gaps2 or overlaps. Similarly,

right action by Γ
′

on the fundamental domain F
G/Γ

′ and the

double-sided-action of Γ×Γ
′

on F
Γ\G/Γ

′ produces translates

the closure of which cover G.

One way to construct fundamental domains is as Voronoi

cells within G. Since G is a Riemannian manifold, a distance

function d : G×G −→ R≥0 exists, and we can define

FΓ\G
.
= {g ∈ G | d(e,g)< d(e,γ ◦ g) ,∀ γ ∈ Γ}

F
G/Γ

′
.
= {g ∈ G |d(e,g)< d(e,γ

′ ◦ g) ,∀γ
′ ∈ Γ

′}

and when Γ∩Γ
′
= {e},

FΓ\G/Γ ′
.
= {g∈G | d(e,g)< d(e,γ ◦g◦γ

′
) ,∀ (γ ,γ

′
)∈Γ×Γ

′}. (1)

2In practice, fundamental domains are often defined to be open sets, and
so the union of translates themselves does not completely cover G, as it
has gaps of measure zero. On the other hand, the union of the closure
of fundamental domains will cover, but with a set of measure zero of
duplicates. The distinction between a fundamental domain, its interior, and
its closure are inconsequential for our purposes.
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Explicitly, distance functions for SO(3) and SE(2) can be

defined as

d
(1)
SO(3)(R1,R2) = ‖R1 −R2‖

where ‖A‖=
√

tr(AAT ) is the Frobenius norm, and

d
(1)
SE(2)

(g1,g2) = ‖g1 − g2‖W (2)

where an arbitrary element of SE(2) is of the form

g =




cosθ −sinθ x

sinθ cosθ y

0 0 1


 ,

W = W T as a 3 × 3 positive definite weighting matrix,

and ‖A‖W =
√

tr(AWAT ). The above distance measures are

‘extrinsic’ in the sense that they rely on how these matrix Lie

groups are embedded in R3×3, but they satisfy the conditions

of non-negativeness, symmetry, and the triangle inequality.

It is also possible to define ‘intrinsic’ measures of distance

using the logarithm function. Since both SO(3) and SE(2)
are matrix-Lie-groups, their exponential maps are the matrix

exponentials. Explicitly for SO(3), elements of the associated

Lie algebra, so(3) are skew-symmetric matrices

X =




0 −x3 x2

x3 0 −x1

−x2 x1 0




and the exponential gives

R(x) = expX = I+
sin‖x‖
‖x‖ X +

1− cos‖x‖
‖x‖2

X2 (3)

where x= [x1,x2,x3]
T =X∨ is the vector corresponding to X .

The opposite operation gives x̂ = X . And for SE(2) elements

of the corresponding Lie algebra, se(2), are of the form

X =




0 −θ v1

θ 0 v2

0 0 0


 ,

and the exponential is

g = exp(X) =




cosθ −sinθ x(θ ,v1,v2)
sinθ cosθ y(θ ,v1,v2)

0 0 1


 ,

where the functions x(θ ,v1,v2) and y(θ ,v1,v2) have been

computed in closed form [6], [7]. The inverse map for each

is the matrix logarithm. This degenerates when ‖x‖ or θ is

π . By restricting the discussion to the case when ‖x‖,θ < π ,

log is uniquely defined on a subset of SO(3) depleted by a

set of measure zero. This depletion will have no effect on

our formulation. For example, it becomes possible to define

d
(2)
SO(3)

(R1,R2) = ‖ log(RT
1 R2)‖

when RT
1 R2 is not a rotation by π , and otherwise

d
(2)
SO(3)

(R1,R2) = π and similarly

d
(2)
SE(2)

(g1,g2) = ‖ log(g−1
1 ◦ g2)‖W ′

where W ′ could be different than W . As in the SO(3) case,

a map from se(2) to R3 can be defined as X∨ = [v1,v2,θ ]
T .

It is interesting to note that regardless of whether the

intrinsic or extrinsic measures are used, the above distance

functions for SO(3) are bi-invariant:

dSO(3)(R1,R2) = dSO(3)(QR1,QR2) = dSO(3)(R1Q,R2Q)

for arbitrary Q ∈ SO(3), whereas no such bi-invariant metric

for SE(2) is possible.

III. APPLICATIONS TO ALMOST-UNIFORM SAMPLING IN

STRUCTURAL BIOLOGY PROBLEMS

Structural biology is concerned with understanding the 3D

arrangement of atoms in large biomolecules such as proteins,

nucleic acids, carbohydrates, and fats, and the multi-molecule

complexes that they form. Various experimental modalities

such as crystallography, nuclear magnetic resonance, fluores-

cence spectroscopy, and and cryo-electron-microscopy pro-

vide different information about 3D biomolecular structures,

and how these structures change shape as they undergo their

function. In each of these experimental modalities it is often

the case that prior knowledge about the composition and

shape of particular fragments of a biomolecule are known

in advance. In fact, as of this writing, the protein data bank

(PDB) contains more than 80,000 protein structures that can

be used as prior models when doing new experiments.

X-ray crystallography has been responsible for the vast

majority of entries in the PDB. In order to interpret the

information contained in an x-ray diffraction pattern when

the shape of fragments of the proteins in crystal are known

in advance, it is critical to find unknown rigid-body motions

that relate the fragments to each other. The computational

problem of finding these rigid-body motions is known as

‘molecular replacement’ and algorithms for solving the prob-

lem have been investigated for half a century [27], [29].

Similar rotational correlation problems are necessary in the

context of cryo-EM [14]. We note that deterministic sampling

of rotations in an almost-uniform way also has application

in robot motion planning [35].

Obviously, when performing a search over rotations, one

desires the samples to be generated as ‘uniformly’ as possi-

ble, since having samples clumped in some areas and sparse

in others will be a waste of computational resources. In [8],

[9], [36], [37] we devised new strategies for sampling based

on coset decompositions. These are particularly natural in

the context of molecular replacement problems because a

crystal has space group symmetry and the functions of rigid-

body motion that need to be minimized have the property

f (γ ◦g) = f (g) for all γ ∈ Γ, a crystallographic space group.

That is, f : G −→ R is invariant on all cosets Γg, and

is therefore a ‘right-coset function’. Hence in sampling

problems in molecular replacement, the only samples that

need to be generated are in the space Γ\G, or equivalently,

FΓ\G.

Here we establish for the first time what these fundamental

regions look like when G = SE(2) and Γ is one of the five

chiral wallpaper groups. SE(2) is mapped to R3 with x-y
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axes representing translations in the x and y directions and z

axis representing the rotation angle θ . The Voronoi cells are

generated using the metric (2). Fig. 1 illustrates the lattice

structure for wallpaper group p1 and the corresponding

Voronoi cells of SE(2). The Voronoi cells centered at the

identity for all the five wallpaper groups p1, p2, p4, p3

and p6 are shown in Fig. 2. The group p1 consists only

of translations, in a parallelogrammatic lattice. Its center

Voronoi cell looks like a hexagonal box with the height from

−π to π . We note that when the lattice is square, the center

Voronoi cell becomes a square box. The group p2 differs

only from p1 in that it contains 180◦ rotations, or rotations

of order 2, so its center Voronoi cell has the same hexagonal

shape in x− y cross section, but the height is from −π/2 to

π/2, reduced by half along the θ -axis. p4 is the group with a

90◦ rotation, in a square lattice, so it has square-shaped center

Voronoi cell, with the height from −π/4 to π/4, further cut

by half from p2. p3 and p6 are the symmetry groups for a

hexagonal lattice, with a 120◦ rotation and a 60◦ rotation,

respectively. So they have regular hexagonal-shaped center

Voronoi cells, with the height from −π/3 to π/3 and from

−π/6 to π/6, respectively.

x
y

θ

(a)

x
y

θ

(b)

Fig. 1. (a) SE(2) illustrated in R3 and the parallelogrammatic lattice for
p1; (b) the Voronoi cells for SE(2) based on p1.

This discussion of the 2D case is instructive. As can be

seen, the cells can be viewed as having the same cross section

for different values of θ . The spatial generalization of this

is that if G =R3 ⋊SO(3) and Γ = Z3 ⋊P where P< SO(3)
is the crystallographic point group and Z3 <R3 is the lattice

translation group, then

FΓ\G
∼= FZ3\R3 × FP\SO(3).

It has been known for more than a century that of the 230

space groups, 65 are chiral ones, and only these occur in

protein crystallography. Of these, 24 can be written as semi-

direct products, as above. These are called symmorphic,

and the other 41 are called nonsymmorphic. In the planar

case discussed above, all five chiral wallpaper groups are

(a) P1

(b) P2

(e) P6

(d) P3

(c) P4

x y

θ

x y

θ

x y

θ

x y

θ

x y

θ

Fig. 2. FΓi\SE(2) for chiral wallpaper groups p1 (a), p2 (b), p4 (c), p3 (d)
and p6 (e).

symmorphic. Though motivated by the symmorphic case, in

general FΓ\G can be decomposed into a product of some-

thing akin to FP\SO(3) with a sample space of translations

(though in the nonsymmorphic case it will not be as simple

as FZ3\R3). For this reason we investigate almost-uniform

sampling on FP\SO(3) by further subdividing it using double-

coset decompositions.

IV. APPLICATIONS TO OPTIMIZATION

In many problems (including the structural biology one),

but also in attitude estimation, medical image registration,

and in maximum likelihood computations in robot local-

ization, one seeks to minimize a function on a Lie group

(typically either SO(n) or SE(n) or their products). Such

minimizations can be performed either using gradient de-

scent, or using a grid-based search strategy [1]. Grid-based

strategies are often favored when the terrain of the function

is rugged with many local minima. Here we establish a

group-theory based method for establishing grids with points

that are spaced well, in contrast to a uniform grid in Euler
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angles. In so doing, computational resources are not wasted

on poorly constructed grid searches.

Given two finite subgroups H, K < G where G = SO(3),
and the condition |H ∩K| = 1, then FH\G/K can be defined

as in (1) and the resulting nonoverlapping tiles generated by

the action of H ×K on FH\G/K satisfy

G =
⋃

h∈H

⋃

k∈K

hFH\G/K k−1.

Some examples of double-coset spaces are given in Fig.

3 with K taken as the icosahedral group for all cases and H

taken as the conjugated tetrahedral group (a), the conjugated

octahedral group (b) and the conjugated icosahedral group

(c), respectively, where the conjugated group H with respect

to the original group H0 is defined as H = gH0 g−1 for g∈G.

In all cases conjugation is taken with respect to an element

of G that is not in H0 or K. In all of these figures, the shaded

region is the fundamental domain for the double-coset space,

the yellow dodecahedron is the fundamental domain for the

single-coset space of SO(3) modulo the icosahedral group

computed in [36], and the plot is in terms of exponential

coordinates, with SO(3) itself being represented as a solid

ball of radius π with antipodal points glued (not shown).

A great advantage to use the double-coset space to sample

SO(3) is that it can result in less metric distortion. A measure

of distortion is how different the metric tensor JT (x)J(x) is

from the identity matrix:

C(x) =
1√
3
‖JT (x)J(x)− I‖.

Explicit expressions for the Jacobians for the SO(3) exponen-

tial map are known (see e.g. [6] and references therein). Here

the vector of Cartesian coordinates, x, corresponds to the ex-

ponential coordinates for SO(3) in (3). Since the exponential

parametrization behaves like Cartesian coordinates near the

identity, i.e., exp x̂ ≈ I+ x̂ when ‖x‖<< 1, the metric tensor

becomes JT (x)J(x)≈ I, and the distortion measure C(x) of

the samples on SO(3) parametrized by Cartesian grids on the

center Voronoi cell is close to zero. Therefore, as |H| · |K|
increases and the size of the center Voronoi cells shrinks,

the smaller the overall distortion will be. C(x) is the same

distortion measure used in [36] to calculate the distortions

in different single and double-coset spaces. In Fig. 4, we

can see the maximum distortion is only 0.0074 using the

double-coset space with H as the icosahedral group and K

as a conjugated icosahedral group, which is only 21% of the

smallest maximum distortion from the single-coset space,

i.e., when one copy of the icosahedral group is used.

When H = K, it is possible to construct FH\G/H , but not in

the way described above. In this scenario, the way to interpret

FH\G/H is as a barycentric subdivision of FH\G such that the

original coset space can be reconstructed (up to a missing

set of measure zero) by the following combination of adjoint

action and union

FH\G =
⋃

h∈H

hFH\G/H h−1

(a) Tetrahedron/ Icosahedron

(b) Octahedron/ Icosahedron

(c) Icosahedron/ Icosahedron

Fig. 3. The center Voronoi cell in a single-coset-space decomposition
(FK\SO(3) = FSO(3)/K = yellow-shaded region) with K as the icosahedral
group, and the center Voronoi cells in double-coset-space decompositions
(red-shaded regions) with K as the icosahedral group for all cases and H

as the conjugated tetrahedral group (a), the conjugated octahedral group (b)
and the conjugated icosahedral group (c), respectively.

For example, if H is the group of rotational symmetry

operations of the icosahedron, and G= SO(3), then |H|= 60

and log(FH\G) can be viewed as a dodecahedral cell (see Fig.

5) centered at the origin of the Lie algebra, G = so(3), and

each FH\G/H can be viewed as an irregular tetrahedron (the

red-shaded region in Fig. 5).

Similarly, if K < H, then a |K|-fold division of FH\G

can be computed to represent FH\G/K and these pieces can

be reconstructed by adjoint action, which has the effect of

rotation in so(3) since (RXRT )∨ = Rx.

This means that when using two copies of the icosahedral

group, we can divide SO(3) into 3600 tetrahedral pieces

of equal size and shape. A reasonably uniform and fine

sampling can be obtained by choosing the point at the

barycenter of each of these tetrahedra (and at their vertices

if desired). If even finer samples are required, then sampling

from an arbitrarily fine Cartesian grid in the Lie algebra can
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Fig. 4. The maximum distortions from different double and single coset
spaces.

Fig. 5. The dodecahedral cell (yellow-shaded region) and the tetrahedral
wedge (red-shaded region). The dodecahedral cell can be decomposed into
60 identical tetrahedral wedges like this, with 5 packed to form a pyramid
with pentagonal base corresponding to a face of the dodecahedron.

be imposed within each tetrahedron.

V. FFTS AND FAST CONVOLUTIONS BASED ON COSET

DECOMPOSITIONS

In a wide variety of problems in engineering and the

physical sciences, convolutions of the form

( f1 ∗ f2)(g) =

∫

G
f1(h) f2(h

−1 ◦ g)dh (4)

arise [6]. Here dh is the natural integration measure for G,

which can be any unimodular Lie group such as SO(3),
SE(2), or SE(3). Efficient algorithms for computing convo-

lutions on rotation and motion groups have been developed

previously using “group FFTs” [6], [13], [16], [21], [22].

In this context, usually Euler angle decompositions are used

for SO(3). Classical FFTs are used for the α and γ Euler

angles, and various fast “Wigner-d-function transforms” in

the β variable. Both Wigner-d-functions and IUR (irreducible

unitary representation) matrices as developed in [30], [31].

Here we introduce two potential alternatives to this

approach: (1) computing convolutions directly using the

double-coset decompositions described earlier, without con-

verting to the Fourier domain; (2) by rapidly computing

Fourier transforms on groups using double-coset decompo-

sitions of the sort derived earlier.

A. Fast Convolutions by Direct Evaluation

Any integral over G can be decomposed as [32]
∫

G
f (g)dg = ∑

(h,k)∈H×K

∫

FH\G/K

f (h ◦ g′ ◦ k)dg′ (5)

where dg′ is the same volume volume element as for G, but

restricted to FH\G/K < G.

In analogy with the FFT, which predicates speed only

under the restriction that f (g) is a band-limited function,

we can assume that f (g) can be approximated to any

desired precision on FH\G/K as a polynomial in exponential

coordinates. Then, if we seek to compute (5) we can compute

each
∫

FH\G/K
f (h ◦ g′ ◦ k)dg′ rapidly via a combination of

the divergence theorem and closed-form quadrature rules.

The effect of this is that instead of evaluating an integral

such as (5) at B sample points in each coordinate direction,

which would normally take O(Bdim(G)) computations, it will

take O(Bdim(G)−1) (and some constant factor that depends

on the quadrature). Since a convolution involves an integral

for each value of the argument, when doing by brute force,

it requires O(B2·dim(G)). However, since the values of a

polynomial function can be reconstructed on the interior of

the cells FH\G/K from values on their faces, this means that

effectively convolutions can be computed in O(B2·dim(G)−2).
For example, for SO(3) and SE(2), this is O(B4) which is

much more manageable than O(B6)
The next section reviews Fast Fourier methods on groups,

which have theoretical estimates of speed that can be faster

than this, but can have numerical stability problems. We then

introduce a new FFT method that builds on the double-coset

decompositions of G with respect to discrete subgroups.

B. Euler-Angle-Based Sampling and FFTs for SO(3)

The need for FFTs on the rotation group has been artic-

ulated in the context of many different applications ranging

from x-ray crystallography [10], [14], [17], [26], [27], [29] to

satellite attitude estimation [18], [33], [34]. Here we review

the most well-known FFTs on the rotation group. In the next

section we introduce our own.

Sampling and fast Fourier transforms for the rotation

group were developed in [13], [21], [22]. Essentially, the dou-

ble coset decomposition of SO(3) as SO(2)\SO(3)/SO(2)
corresponding to ZXZ Euler angles

R(α,β ,γ) = exp(α ê3) exp(β ê1) exp(γ ê3)

yields matrix elements of the IUR matrices that lend them-

selves to fast transforms in each coordinate (Euler angle).

In some instances, speed is sacrificed for stability when

computing d-function transforms, as in [14], [24], [25].

The concept of a Fourier transform of functions with

group-valued argument is well established, and the details

for SO(3), SE(2), and SE(3) have all been worked out [6],

[16]. Here we focus on an alternative formulation for the

SO(3) case. In this context, the group Fourier transform is

computed as

f̂ (l) =
∫

SO(3)
f (R)U∗(R, l)dR
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where U(g, l) is a (2l + 1)× (2l + 1) IUR matrix and ∗
denotes the Hermitian conjugate. IURs satisfy certain con-

ditions such as U(R1R2, l) = U(R1, l)U(R2, l), U∗(R, l) =
U(RT , l) and U(I3, l) = I2l+1. By the famous Peter-Weyl

theorem (which holds for any compact Lie group), the entries

in these matrices form a complete orthonormal basis with

which to reconstruct any f ∈ L2(SO(3)). Any such function

on SO(3) can be reconstructed from its ‘spectrum’ { f̂ (l) | l =
0,1,2, ...} using the Fourier inversion formula

f (R) = ∑
l∈Z

(2l+ 1)trace( f̂ (l)U(R, l)).

One reason why Fourier analysis on groups is a valuable tool

is that it provides a way to compute convolutions efficiently

as
̂( f1 ∗ f2)(l) = f̂2(l) f̂1(l).

Even without a ‘fast’ Fourier transform, this provides a

speed-up over brute-force evaluation of the convolution in-

tegral at all values of its argument.

Using the notational simplification

f (R(α,β ,γ)) = f (α,β ,γ),

it is possible to expand a function on the rotation group into

harmonics, similar to what is done on the circle or sphere:

f (α,β ,γ) = ∑
l=0,1,2...<B

(2l+ 1)
l

∑
m=−l

l

∑
n=−l

f̂ l
mnDl

nm(α,β ,γ)

(6)

where

Umn(R, l) = Dl
mn(α,β ,γ) = e−imα dl

mn(cosβ )e−inγ (7)

where −l ≤ m,n ≤ l. Dl
mn(α,β ,γ) and dl

mn(cosβ ) are re-
ferred to as Wigner-D (or Wigner-d) functions, and they
play a central role in quantum mechanics, where these
functions serve as a complete orthonormal basis for the set of
square-integrable functions on the rotation group, L2(SO(3)).
Essentially (6) is a Fourier series, and the coefficients can
be obtained by the computation

f̂ l
mn =

1

8π2

∫ π

β=0

∫ 2π

γ=0

∫ 2π

α=0
f (α,β ,γ)Dl

nm(α,β ,γ)sinβdαdβdγ

(8)

which is shorthand for f̂mn(l). The whole spectrum3 can be

calculated fast in principle by using the classical FFT over

α and γ and fast transforms over β . By using a quadrature

rule, (8) can be sampled in each coordinate at O(B) values

to exactly compute the integral because of the structure of U

in (7). In this context the three-dimensional group manifold

SO(3) is then sampled at N = O(B3) points.

The O(B(logB)2) required for the fast transform in the

variable β is the limiting calculation, making the whole

procedure is O(N(logN)2) for all values of m,n, l up to

the band-limit. If the expansion in β is done directly (i.e.,

using O(B2) operations instead of using an O(B(logB)2)
fast polynomial transform), then the number of arithmetic

operations to compute the SO(3) Fourier transforms for all

m,m, l up to the band-limit would be O(B4) = O(N4/3) .

3Collection of Fourier transform matrix elements in (8).

Reconstructing a function on SO(3) from its spectrum is a

dual problem and has the same cost.

Since convolution of functions on SO(3) with band-limit

B requires the multiplication of matrices of dimensions (2l+
1)× (2l+ 1) for l = 0, ...,B, the cost of convolution will be

O

(
B

∑
l=0

(2l + 1)γ

)
= O(Bγ+1).

Hence, when Gaussian elimination is used (γ = 3), the order

of computation of the Fourier transforms will be no greater

than the cost of convolution (even when the O(B4) version

is used). In principle, matrix multiplication can be computed

with lower exponent than γ = 3, but in practice these methods

can be unstable.

There are several problems with current algorithms for

FFTs on SO(3). First, sampling Euler angles on a grid

does not result in rotational samples that are equally spaced,

even when β is sampled with a cos−1 distribution, as in

[21]. This requires over sampling of β to ensure sufficient

coverage around β = π/2. Second, the recurrence relations

used for fast Wigner-d function transforms in the β variable

are notoriously unstable for large values of l. The essential

reason for this is that Euler angles have singularities at β = 0

and π . In the next section we show how FFTs based on

coset decompositions allow for potentially fast (yet stable)

approximate FFTs on the rotation group and on SE(2).

C. Double-Coset Decompositions and Fast Approximate

FFTs on SO(3) and SE(2)

Euler angles are by no means the only way to parameterize

SO(3). And one can imagine different FFT algorithms based

on different parameterizations and coset decompositions with

respect to subgroups other than SO(2).
The specific property of IURs that will be used in this

section is that [7]

U(expX , l) = exp(W (X , l)) (9)

where W (X , l) = ∑3
i=1 xiWi(l) with

(W1(l))mn =− i

2
cl
−nδm+1,n −

i

2
cl

nδm−1,n

(W2(l))mn =+
i

2
cl
−nδm+1,n −

i

2
cl

nδm−1,n

(W3(l))mn =−inδm,n

where δm,n is the Kronecker delta, and cl
n =√

(l − n)(l+ n+ 1) for |n| ≤ l. We use the property in

(9) together with the double-coset decomposition. Explicitly,

f̂ (l) = ∑
(P,Q)∈P×Q

∫

FP\SO(3)/Q

f (PRQ)U((PRQ)T , l)dR,

which can be rewritten as

∑
(P,Q)∈P×Q

U(QT , l)

[∫

FP\SO(3)/Q

f (PRQ)U(RT , l)dR

]
U(PT , l).

where P,Q< SO(3) are finite. We can think of f (PRQ) as

the function f (R) being moved under left and right action so

1142



that the point initially at R is now in the vicinity of I. The

fact that on the fundamental domain centered on the identity

U(expX , l) can be expressed as a truncated Taylor series in

X is then very useful because W (X , l) will have polynomial

entries, each of which can be computed by evaluation on

their boundary. And hence the computation of the integral

over FP\SO(3)/Q is efficient.

The number of terms needed in the truncation of

U(expX , l) is related to how fine the subdivision of SO(3)
into cells is; The finer the subdivision, the fewer terms

needed in the Taylor series.

Regarding the Fourier inversion formula, the double-coset

decompositions of the sort used throughout this paper have

the benefit that they can use the tri-diagonal nature of the

Wi matrices (when each PRQ is close to the identity, which

is the case by our choice of fundamental domain for double

cosets). This is in place of the recurrence relations that are

usually used for matrix elements of D(R, l), which can be

unstable.

VI. CONCLUSIONS

We make a connection between Voronoi cells in the

groups SO(3) and SE(2) centered on elements of discrete

subgroups, and coset- and double-coset-spaces. We show

that sampling within these Voronoi cells can be made almost

uniform by exponentiating a Cartesian grid in a region of

the corresponding Lie algebra, which is the pre-image of

these cells under the exponential map. We show how the

resulting cells, and the samples therein, can be used for

searches, optimization, and Fourier analysis on certain Lie

groups of interest in robotics and control.
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Groups: Volume 2, Birkhäuser, Boston, December 2011.

[8] Chirikjian, G.S., “Mathematical Aspects of Molecular Replacement: I.
Algebraic Properties of Motion Spaces,” Acta. Cryst. A (2011). A67,
435 - 446.

[9] Chirikjian, G.S., Yan, Y., “Mathematical Aspects of Molecular
Replacement: II. Geometry of Motion Spaces,” Acta. Cryst. A

A68(2):208-221, 2012.

[10] Crowther, R.A. “The fast rotation function,” In The Molecular Re-

placement Method, M.G. Rossmann, ed. New York: Gordon and
Breach Science Publishers, 173-178, 1972.

[11] Duncan, T.E., “An Estimation problem in compact Lie groups,” Syst.
Control Lett. 10, 257 - 263 (1998).

[12] Jurdjevic, V., Sussmann, H.J., “Control Systems on Lie Groups,”
Journal of Differential Equations, Vol. 12, pp. 313 - 329, 1972.

[13] Kostelec, P.J., Rockmore, D.N., “FFTs on the Rotation Group,” The
Journal of Fourier Analysis and Applications, 14: 145-179, 2008.

[14] Kovacs, J. A., Chacón, P., Cong, Y., Metwally, E., Wriggers, W.,
“Fast rotational matching of rigid bodies by fast Fourier transform
acceleration of five degrees of freedom,” Acta Cryst. D. (2003). D59,
1371-1376

[15] Kwon, J., Choi, M., Park, F.C., Chu, C., “Particle filtering on the
Euclidean group: framework and applications, ” Robotica, Vol. 25,
pp. 725 - 737, 2007.

[16] Kyatkin, A.B., Chirikjian, G.S., “Algorithms for Fast Convolutions on
Motion Groups,” Applied and Computational Harmonic Analysis, Vol.
9, pp. 220 - 241, September 2000.

[17] Lattman, E.E., Love, W.E., “A Rotational Search Procedure for De-
tecting a Known Molecule in a Crystal,” Acta Cryst. B26:1854 - 1857
(1970).

[18] Lee, T., McClamroch, N.H., Leok, M., “Optimal control of a rigid
body using geometrically exact computations on SE(3),” CDC 2006,
pp. 2710 - 2715

[19] Mahony, R., Hamel, T., Pflimlin, J.-M., “Nonlinear Complementary
Filters on the Special Orthogonal Group,” IEEE Transactions On

Automatic Control, 53(5):1203 - 1218, June 2008
[20] Makadia, A., Daniilidis, K., “Rotation estimation from spherical

images,” IEEE Trans. Pattern Anal. Mach. Intell. 28, 1170 - 1175
(2006).

[21] Maslen, D.K., Rockmore, D.N., “Generalized FFTs - a Survey of
some recent results,” DIMACS Series in Discrete Mathematics and

Theoretical Computer Science, Vol. 28, pp. 183 - 237, 1997.
[22] Maslen, D.K., Fast Transforms and Sampling for Compact Groups,

Ph.D. Dissertation, Math. Dept., Harvard University, May 1993.
[23] Murray, R., Li, Z., Sastry, S., A Mathematical Introduction to Robotics,

CRC Press, 1994.
[24] Potts, D., Prestin, J., Vollrath, A., “A fast algorithm for nonequispaced

Fourier transforms on the rotation group,” Numerical Algorithms,
52(3), 355 - 384, 2009.

[25] Risbo, T., “Fourier transform summation of Legendre series and D-
functions,” Journal of Geodesy, 70(7):383 - 396, April 1996.

[26] Rossmann, M.G., Blow, D.M., “The Detection of Sub-Units within the
Crystallographic Asymmetric Unit,” Acta Cryst. 15:24 - 31 (1962).

[27] Rossmann, M.G., “Molecular replacement - historical background,”
Acta Cryst. D 57:1360 - 1366 (2001).

[28] Tron, R., Vidal, R., Terzis, A., “Distributed pose averaging in camera
networks via consensus on SE(3),” 2nd ACM/IEEE ICDSC, Stanford
University, California, USA, Sept 7, 2008, pp 1 - 10.

[29] Vagin, A., Teplyakov, A., “Molecular replacement with MOLREP,”
Acta Cryst. D 66:22 - 25 (2010).

[30] Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K., Quantum

Theory of Angular Momentum, World Scientific, Singapore, 1988.
[31] Vilenkin, N.Ja. Klimyk, A.U., Representation of Lie Groups and

Special Functions, Vols. 1 - 3, Kluwer Academic Publ., Dordrecht,
Holland 1991.

[32] Williams, F.L., Lectures on the Sprectum of L2(Γ\G), Pitman Research
Notes in Mathematics Series, 242, Longman Scientific & Technical,
London, 1991.

[33] Willsky, A.S., “Some estimation problems on Lie groups” in Geomet-
ric Methods in System Theory (D.Q. Mayne and R.W. Brockett, eds.),
Reidel Publishing Company, Dordrecht-Holland, 1973.

[34] Willsky, A.S., Dynamical Systems Defined on Groups: Structural

Properties and Estimation, PhD Dissertation, Dept. of Aeronautics
and Astronautics, MIT, 1973.

[35] Yershova, A., Jain, S., LaValle, S., Mitchell, J.C., “Generating Uniform
Incremental Grids on SO(3) Using the Hopf Fibration,” The Interna-
tional Journal of Robotics Research, 29(7): 801 - 812, 2010.

[36] Yan, Y., Chirikjian, G.S., “Almost-uniform sampling of rotations for
conformational searches in Robotics and Structural Biology,” ICRA

2012, Minneapolis, MN, 14-18 May 2012, pp. 4254 – 4259.
[37] Yan, Y., Chirikjian, G.S., “Molecular Replacement for Multi-Domain

Structures Using Packing Models,” Proceedings of the ASME

IDETC/CIE, paper DETC2011-48583, August 28-31, 2011, Washing-
ton, DC, USA.

1143


