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Voronoi Cells in Lie Groups and Coset Decompositions:
Implications for Optimization, Integration, and Fourier Analysis

Yan Yan

Abstract— The rotation group and special Euclidean group
both contain discrete subgroups. In the case of the rotation
group, these subgroups are the chiral point groups, and in the
case of the special Euclidean group, the discrete subgroups are
the chiral crystallographic space groups. Taking the quotients
of either of these two Lie groups by any of their respective
co-compact discrete subgroups results in coset spaces that are
compact orientable manifolds. In this paper we develop methods
for sampling on these manifolds by partitioning them fur-
ther using double-coset decompositions. Fundamental domains
associated with the aforementioned coset- and double-coset
decompositions can be defined as Voronoi cells in the original
groups. Division of these groups into Voronoi cells facilitates
almost-uniform sampling. We explicitly compute these cells and
illustrate their use in optimization, integration, and Fourier
analysis on these groups. Motivating applications from the fields
of protein crystallography, robotics, and control are reviewed
in the context of this theory.

I. INTRODUCTION

The group of rotations in three-dimensional space, SO(3),
and the groups of rigid-body motions of the plane and space,
SE(2) and SE(3), are ubiquitous in the fields of estimation
and control [2], [3], [4], [11], [12], [15], [18], [19], [33],
[34], robotics [5], [23], and computer vision [20], [28]. These
are Lie groups that contain discrete subgroups. In the case
of SO(3), which is compact, the discrete subgroups are the
chiral point groups, which are finite.! Of these, we shall
only be concerned with the groups of rotational symmetries
of the Platonic solids since they fill SO(3) more uniformly
than other finite subgroups. In the case of SE(2), the discrete
subgroups of interest are the five chiral wallpaper groups
consisting of lattice translations in the x-y plane and either
no rotation, or rotation around the z axis by 27 /n radians
where n =2,3,4 or 6.

Here we develop new theory for sampling, integration,
and Fourier analysis on the aforementioned Lie groups and
point to literature on how this theory is applicable to a wide
variety of applications ranging from kinematic state estima-
tion of mobile robots, to robotic manipulator workspaces,
to polymer statistical mechanics, and efficient searches in
crystallographic computing.

This paper is structured as follows. Section II reviews
definitions such as left-, right-, and double-coset spaces in
general, the corresponding concept of fundamental domains
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in a Lie group, and reviews the concrete details regarding
the groups SE(2) and SO(3). Section IIT develops an efficient
sampling method in SO(3) and SE(2) based on coset decom-
positions that is directly relevant to molecular replacement
searches in crystallographic computing. Section IV explains
how the grids of almost-uniform points generated using this
methodology are beneficial in optimization tasks over these
groups, and gives concrete examples where such optimiza-
tions occur. Section V explains how the coset decompositions
developed here can lead to more efficient computations of
convolutions on groups and deconvolutions.

II. DEFINITIONS AND TERMINOLOGY

If G denotes SO(3) or SE(2), or any finite-dimensional
Lie group, and I'' " < G denote discrete subgroups, then
right- and left-coset-spaces are defined as [32]

NG={Ig|geG} and G/T" ={gI'|geG}.
And a double coset space is defined as
I\G/T' = {I'gl" |g € G}.

Associated with any (double-)coset, it is possible to define
a set of distinguished (double-)coset representatives, exactly
one per (double-)coset. Such a set defines a fundamental
domain in G that has the same dimension as G, but lesser
volume. Under the left action by I', the fundamental domain
Fr\c is translated and the closure of the union of all translates
covers G without measurable gaps®> or overlaps. Similarly,
right action by I " on the fundamental domain F T’ and the

double-sided-action of I' x I on FF\G I produces translates
the closure of which cover G.

One way to construct fundamental domains is as Voronoi
cells within G. Since G is a Riemannian manifold, a distance
function d : G x G — R3¢ exists, and we can define

Frg={g€Gld(eg) <d(eyog) Vyel}
Fg o ={g € Gld(e,g) < d(e,y og) ¥y eI’}
and when NI = {e},
Frgyr = {8 € G d(e.g) <d(e,yogoy) ¥ (r,y) eTxT'}. (1)

2In practice, fundamental domains are often defined to be open sets, and
so the union of translates themselves does not completely cover G, as it
has gaps of measure zero. On the other hand, the union of the closure
of fundamental domains will cover, but with a set of measure zero of
duplicates. The distinction between a fundamental domain, its interior, and
its closure are inconsequential for our purposes.
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Explicitly, distance functions for SO(3) and SE(2) can be
defined as

1
dgps)(R1,R2) = [|Ry = Ro|
where ||A|| = \/tr(AAT) is the Frobenius norm, and

dégm(ghgz) =llg1 —glw 2)

where an arbitrary element of SE(2) is of the form

cos® —sinb x
g=| sin@ cos® y |,
0 0 1

W = WT as a 3 x3 positive definite weighting matrix,
and ||A||w = /tr(AWAT). The above distance measures are
‘extrinsic’ in the sense that they rely on how these matrix Lie
groups are embedded in R3*3, but they satisfy the conditions
of non-negativeness, symmetry, and the triangle inequality.

It is also possible to define ‘intrinsic’ measures of distance
using the logarithm function. Since both SO(3) and SE(2)
are matrix-Lie-groups, their exponential maps are the matrix
exponentials. Explicitly for SO(3), elements of the associated
Lie algebra, so(3) are skew-symmetric matrices

0 —X3 X2
X = X3 0 —X1
—X2 X1 0

and the exponential gives

sin||x||X+ 1 —cos|x|| .

R(x) =expX =1+
x| 12

3)
where x = [x,x2,x3]7 = X" is the vector corresponding to X.
The opposite operation gives X = X. And for SE(2) elements
of the corresponding Lie algebra, se(2), are of the form

0 -6 Vi
X = 6 0 vy |,
0 0 0
and the exponential is
cos® —sin® x(0,v,v;)
g=exp(X)=| sin® cosO y(O,vi,v2) |,
0 0 1

where the functions x(0,v;,v;) and y(8,v;,v2) have been
computed in closed form [6], [7]. The inverse map for each
is the matrix logarithm. This degenerates when ||x|| or 8 is
7. By restricting the discussion to the case when ||x||,0 < 7,
log is uniquely defined on a subset of SO(3) depleted by a
set of measure zero. This depletion will have no effect on
our formulation. For example, it becomes possible to define

2)

dp)s) (R1,Ra) = [[log(RT Ry)|

when RITRZ is not a rotation by m, and otherwise

2 . .
dg‘(;@)(Rlsz) =7 and similarly

2 _
déE)(Z) (g1,82) = [|log(g; ! 0g2)]lwr

where W' could be different than W. As in the SO(3) case,
a map from se(2) to R? can be defined as X" = [v1,v2,0]".

It is interesting to note that regardless of whether the
intrinsic or extrinsic measures are used, the above distance
functions for SO(3) are bi-invariant:

dso(3)(R1,R2) = dso(3)(QR1,QR2) = dso(3)(R1Q, R2 Q)

for arbitrary Q € SO(3), whereas no such bi-invariant metric
for SE(2) is possible.

ITII. APPLICATIONS TO ALMOST-UNIFORM SAMPLING IN
STRUCTURAL BIOLOGY PROBLEMS

Structural biology is concerned with understanding the 3D
arrangement of atoms in large biomolecules such as proteins,
nucleic acids, carbohydrates, and fats, and the multi-molecule
complexes that they form. Various experimental modalities
such as crystallography, nuclear magnetic resonance, fluores-
cence spectroscopy, and and cryo-electron-microscopy pro-
vide different information about 3D biomolecular structures,
and how these structures change shape as they undergo their
function. In each of these experimental modalities it is often
the case that prior knowledge about the composition and
shape of particular fragments of a biomolecule are known
in advance. In fact, as of this writing, the protein data bank
(PDB) contains more than 80,000 protein structures that can
be used as prior models when doing new experiments.

X-ray crystallography has been responsible for the vast
majority of entries in the PDB. In order to interpret the
information contained in an x-ray diffraction pattern when
the shape of fragments of the proteins in crystal are known
in advance, it is critical to find unknown rigid-body motions
that relate the fragments to each other. The computational
problem of finding these rigid-body motions is known as
‘molecular replacement’ and algorithms for solving the prob-
lem have been investigated for half a century [27], [29].
Similar rotational correlation problems are necessary in the
context of cryo-EM [14]. We note that deterministic sampling
of rotations in an almost-uniform way also has application
in robot motion planning [35].

Obviously, when performing a search over rotations, one
desires the samples to be generated as ‘uniformly’ as possi-
ble, since having samples clumped in some areas and sparse
in others will be a waste of computational resources. In [8],
[9], [36], [37] we devised new strategies for sampling based
on coset decompositions. These are particularly natural in
the context of molecular replacement problems because a
crystal has space group symmetry and the functions of rigid-
body motion that need to be minimized have the property
f(yog) = f(g) for all y€T, a crystallographic space group.
That is, f: G — R 1is invariant on all cosets I'g, and
is therefore a ‘right-coset function’. Hence in sampling
problems in molecular replacement, the only samples that
need to be generated are in the space I'\G, or equivalently,
Fr‘\G.

Here we establish for the first time what these fundamental
regions look like when G = SE(2) and T’ is one of the five
chiral wallpaper groups. SE(2) is mapped to R with x-y
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axes representing translations in the x and y directions and z
axis representing the rotation angle 6. The Voronoi cells are
generated using the metric (2). Fig. 1 illustrates the lattice
structure for wallpaper group pl and the corresponding
Voronoi cells of SE(2). The Voronoi cells centered at the
identity for all the five wallpaper groups pl, p2, p4, p3
and p6 are shown in Fig. 2. The group pl consists only
of translations, in a parallelogrammatic lattice. Its center
Voronoi cell looks like a hexagonal box with the height from
—7 to w. We note that when the lattice is square, the center
Voronoi cell becomes a square box. The group p2 differs
only from p1 in that it contains 180° rotations, or rotations
of order 2, so its center Voronoi cell has the same hexagonal
shape in x —y cross section, but the height is from —7x/2 to
7 /2, reduced by half along the 0-axis. p4 is the group with a
90° rotation, in a square lattice, so it has square-shaped center
Voronoi cell, with the height from —x /4 to m/4, further cut
by half from p2. p3 and p6 are the symmetry groups for a
hexagonal lattice, with a 120° rotation and a 60° rotation,
respectively. So they have regular hexagonal-shaped center
Voronoi cells, with the height from —n/3 to 7/3 and from
—7/6 to m/6, respectively.

(

a)

Fig. 1. (a) SE(2) illustrated in R3 and the parallelogrammatic lattice for
pl; (b) the Voronoi cells for SE(2) based on pl.

This discussion of the 2D case is instructive. As can be
seen, the cells can be viewed as having the same cross section
for different values of 6. The spatial generalization of this
is that if G =R3 xSO(3) and T = Z> x P where P < SO(3)
is the crystallographic point group and Z3 < R? is the lattice
translation group, then

Fr = Fzaps X Fp\so(3)-

It has been known for more than a century that of the 230
space groups, 65 are chiral ones, and only these occur in
protein crystallography. Of these, 24 can be written as semi-
direct products, as above. These are called symmorphic,
and the other 41 are called nonsymmorphic. In the planar
case discussed above, all five chiral wallpaper groups are

Fig. 2. Fr)\sg(o) for chiral wallpaper groups pl (a), p2 (b), p4 (c), p3 (d)
and p6 (e).

symmorphic. Though motivated by the symmorphic case, in
general g can be decomposed into a product of some-
thing akin to Fp\go(3) with a sample space of translations
(though in the nonsymmorphic case it will not be as simple
as Fy3 p3). For this reason we investigate almost-uniform
sampling on Fp\ 50(3) by further subdividing it using double-
coset decompositions.

IV. APPLICATIONS TO OPTIMIZATION

In many problems (including the structural biology one),
but also in attitude estimation, medical image registration,
and in maximum likelihood computations in robot local-
ization, one seeks to minimize a function on a Lie group
(typically either SO(n) or SE(n) or their products). Such
minimizations can be performed either using gradient de-
scent, or using a grid-based search strategy [1]. Grid-based
strategies are often favored when the terrain of the function
is rugged with many local minima. Here we establish a
group-theory based method for establishing grids with points
that are spaced well, in contrast to a uniform grid in Euler
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angles. In so doing, computational resources are not wasted
on poorly constructed grid searches.

Given two finite subgroups H, K < G where G = SO(3),
and the condition [H NK| =1, then Fy\ ¢/ can be defined
as in (1) and the resulting nonoverlapping tiles generated by
the action of H x K on Fp gk satisfy

G - U U hFH\G/Kkil.
heH keK

Some examples of double-coset spaces are given in Fig.
3 with K taken as the icosahedral group for all cases and H
taken as the conjugated tetrahedral group (a), the conjugated
octahedral group (b) and the conjugated icosahedral group
(c), respectively, where the conjugated group H with respect
to the original group Hy is defined as H = gHyg ! forg € G.
In all cases conjugation is taken with respect to an element
of G that is not in Hy or K. In all of these figures, the shaded
region is the fundamental domain for the double-coset space,
the yellow dodecahedron is the fundamental domain for the
single-coset space of SO(3) modulo the icosahedral group
computed in [36], and the plot is in terms of exponential
coordinates, with SO(3) itself being represented as a solid
ball of radius 7 with antipodal points glued (not shown).

A great advantage to use the double-coset space to sample
SO(3) is that it can result in less metric distortion. A measure
of distortion is how different the metric tensor J7 (x)J(x) is
from the identity matrix:

R
V3

Explicit expressions for the Jacobians for the SO(3) exponen-
tial map are known (see e.g. [6] and references therein). Here
the vector of Cartesian coordinates, X, corresponds to the ex-
ponential coordinates for SO(3) in (3). Since the exponential
parametrization behaves like Cartesian coordinates near the
identity, i.e., expk &~ [+ % when ||x|| << 1, the metric tensor
becomes J7 (x)J(x) ~ I, and the distortion measure C(x) of
the samples on SO(3) parametrized by Cartesian grids on the
center Voronoi cell is close to zero. Therefore, as |H|- K|
increases and the size of the center Voronoi cells shrinks,
the smaller the overall distortion will be. C(x) is the same
distortion measure used in [36] to calculate the distortions
in different single and double-coset spaces. In Fig. 4, we
can see the maximum distortion is only 0.0074 using the
double-coset space with H as the icosahedral group and K
as a conjugated icosahedral group, which is only 21% of the
smallest maximum distortion from the single-coset space,
i.e., when one copy of the icosahedral group is used.

When H = K, it is possible to construct Fi /g, but not in
the way described above. In this scenario, the way to interpret
Fy\G/m 1s as a barycentric subdivision of Fy\ g such that the
original coset space can be reconstructed (up to a missing
set of measure zero) by the following combination of adjoint
action and union

Fpg = JhFagmh™
heH

C(x) = —= /" (x)J (x) - 1J.

(a) Tetrahedron/ Icosahedron

(b) Octahedron/ Icosahedron

(c) Icosahedron/ Icosahedron

Fig. 3. The center Voronoi cell in a single-coset-space decomposition
(Fx\so(3) = Fso3)/x = yellow-shaded region) with K as the icosahedral
group, and the center Voronoi cells in double-coset-space decompositions
(red-shaded regions) with K as the icosahedral group for all cases and H
as the conjugated tetrahedral group (a), the conjugated octahedral group (b)
and the conjugated icosahedral group (c), respectively.

For example, if H is the group of rotational symmetry
operations of the icosahedron, and G = SO(3), then |H| =60
and log(FH\G) can be viewed as a dodecahedral cell (see Fig.
5) centered at the origin of the Lie algebra, ¢ = s0(3), and
each Fyy\g/p can be viewed as an irregular tetrahedron (the
red-shaded region in Fig. 5).

Similarly, if K < H, then a |K|-fold division of Fi
can be computed to represent Fi\ g/ and these pieces can
be reconstructed by adjoint action, which has the effect of
rotation in so(3) since (RXRT)" = Rx.

This means that when using two copies of the icosahedral
group, we can divide SO(3) into 3600 tetrahedral pieces
of equal size and shape. A reasonably uniform and fine
sampling can be obtained by choosing the point at the
barycenter of each of these tetrahedra (and at their vertices
if desired). If even finer samples are required, then sampling
from an arbitrarily fine Cartesian grid in the Lie algebra can
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Fig. 4. The maximum distortions from different double and single coset
spaces.
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Fig. 5. The dodecahedral cell (yellow-shaded region) and the tetrahedral

wedge (red-shaded region). The dodecahedral cell can be decomposed into
60 identical tetrahedral wedges like this, with 5 packed to form a pyramid
with pentagonal base corresponding to a face of the dodecahedron.

be imposed within each tetrahedron.

V. FFTs AND FAST CONVOLUTIONS BASED ON COSET
DECOMPOSITIONS

In a wide variety of problems in engineering and the
physical sciences, convolutions of the form

/fl )fa(h ™ o g)dh

arise [6]. Here dh is the natural integration measure for G,
which can be any unimodular Lie group such as SO(3),
SE(2), or SE(3). Efficient algorithms for computing convo-
lutions on rotation and motion groups have been developed
previously using “group FFTs” [6], [13], [16], [21], [22].
In this context, usually Euler angle decompositions are used
for SO(3). Classical FFTs are used for the a and y Euler
angles, and various fast “Wigner-d-function transforms” in
the B variable. Both Wigner-d-functions and IUR (irreducible
unitary representation) matrices as developed in [30], [31].

Here we introduce two potential alternatives to this
approach: (1) computing convolutions directly using the
double-coset decompositions described earlier, without con-
verting to the Fourier domain; (2) by rapidly computing
Fourier transforms on groups using double-coset decompo-
sitions of the sort derived earlier.

(fixf)(g 4

A. Fast Convolutions by Direct Evaluation

Any integral over G can be decomposed as [32]

| 1@ f o ce

where dg’ is the same volume volume element as for G, but
restricted to F\g/x < G.

In analogy with the FFT, which predicates speed only
under the restriction that f(g) is a band-limited function,
we can assume that f(g) can be approximated to any
desired precision on F\g/k as a polynomial in exponential
coordinates. Then, if we seek to compute (5) we can compute
each fFH\G/K f(hog' ok)dg rapidly via a combination of
the divergence theorem and closed-form quadrature rules.
The effect of this is that instead of evaluating an integral
such as (5) at B sample points in each coordinate direction,
which would normally take ¢(BY™(G)) computations, it will
take ¢(BY™©)-1) (and some constant factor that depends
on the quadrature). Since a convolution involves an integral
for each value of the argument, when doing by brute force,
it requires ¢'(B>9™(©)). However, since the values of a
polynomial function can be reconstructed on the interior of
the cells Fy\ g/ from values on their faces, this means that
effectively convolutions can be computed in &(B>4m(G)-2),
For example, for SO(3) and SE(2), this is ¢'(B*) which is
much more manageable than ¢ (B®)

The next section reviews Fast Fourier methods on groups,
which have theoretical estimates of speed that can be faster
than this, but can have numerical stability problems. We then
introduce a new FFT method that builds on the double-coset
decompositions of G with respect to discrete subgroups.

B. Euler-Angle-Based Sampling and FFTs for SO(3)

The need for FFTs on the rotation group has been artic-
ulated in the context of many different applications ranging
from x-ray crystallography [10], [14], [17], [26], [27], [29] to
satellite attitude estimation [18], [33], [34]. Here we review
the most well-known FFTs on the rotation group. In the next
section we introduce our own.

Sampling and fast Fourier transforms for the rotation
group were developed in [13], [21], [22]. Essentially, the dou-
ble coset decomposition of SO(3) as SO(2)\SO(3)/S0O(2)
corresponding to ZXZ Euler angles

R(a,B,y) = exp(aes) exp(Ber) exp(yes)

yields matrix elements of the IUR matrices that lend them-
selves to fast transforms in each coordinate (Euler angle).
In some instances, speed is sacrificed for stability when
computing d-function transforms, as in [14], [24], [25].

The concept of a Fourier transform of functions with
group-valued argument is well established, and the details
for SO(3), SE(2), and SE(3) have all been worked out [6],
[16]. Here we focus on an alternative formulation for the
SO(3) case. In this context, the group Fourier transform is
computed as

5)

(h.k) €H><K

W=, SRV ® R
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where U(g,/) is a (2/+1) x (2I+ 1) IUR matrix and =
denotes the Hermitian conjugate. IURs satisfy certain con-
ditions such as U(R|R2,l) = U(Ry,[)U(Ry,1), U*(R,)]) =
U(RT,l) and U(I3,I) = I, . By the famous Peter-Weyl
theorem (which holds for any compact Lie group), the entries
in these matrices form a complete orthonormal basis with
which to reconstruct any f € L*(SO(3)). Any such function
on SO(3) can be reconstructed from its ‘spectrum’ { (1) |l =
0,1,2,...} using the Fourier inversion formula

FR) =) (21+ Dtrace(f()U(R,1)).
I€Z

One reason why Fourier analysis on groups is a valuable tool
is that it provides a way to compute convolutions efficiently
as

(Fxf)(l) = f() /).

Even without a ‘fast’ Fourier transform, this provides a
speed-up over brute-force evaluation of the convolution in-
tegral at all values of its argument.

Using the notational simplification

f(R(avﬁv’)/)) :f(avﬁv’)/)a

it is possible to expand a function on the rotation group into
harmonics, similar to what is done on the circle or sphere:
i i

24+1) Y, Y funDum(eB7)
m=—In=—1
(6)

flapy= Y

1=0,12..<B

where
Um(R, 1) =D. (a,B,7) =e ™*d (cosBle ™  (7)

where —I <m,n <1. D! (o, B,y) and d’, (cosB) are re-
ferred to as Wigner-D (or Wigner-d) functions, and they
play a central role in quantum mechanics, where these
functions serve as a complete orthonormal basis for the set of
square-integrable functions on the rotation group, L*(SO(3)).
Essentially (6) is a Fourier series, and the coefficients can
be obtained by the computation

flfi T 2 Zﬂ:f(aﬁ Dl  BdadBd
=5 foo |y [y /(0B VDh (@B V)sinpdaapay

()
which is shorthand for f,,,({). The whole spectrum® can be
calculated fast in principle by using the classical FFT over
o and y and fast transforms over 3. By using a quadrature
rule, (8) can be sampled in each coordinate at &'(B) values
to exactly compute the integral because of the structure of U
in (7). In this context the three-dimensional group manifold
SO(3) is then sampled at N = ¢'(B3) points.

The 0(B(logB)?) required for the fast transform in the
variable f is the limiting calculation, making the whole
procedure is @ (N(logN)?) for all values of m,n,l up to
the band-limit. If the expansion in f is done directly (i.e.,
using O'(B?) operations instead of using an ¢ (B(logB)?)
fast polynomial transform), then the number of arithmetic
operations to compute the SO(3) Fourier transforms for all
m,m,l up to the band-limit would be @ (B*) = O(N*/3) .

3Collection of Fourier transform matrix elements in (8).

Reconstructing a function on SO(3) from its spectrum is a
dual problem and has the same cost.

Since convolution of functions on SO(3) with band-limit
B requires the multiplication of matrices of dimensions (2/+
1) x (214 1) for [ =0,...,B, the cost of convolution will be

B
0 <Z(21+ 1)7> = O(B").
1=0

Hence, when Gaussian elimination is used (y = 3), the order
of computation of the Fourier transforms will be no greater
than the cost of convolution (even when the ¢(B*) version
is used). In principle, matrix multiplication can be computed
with lower exponent than y = 3, but in practice these methods
can be unstable.

There are several problems with current algorithms for
FFTs on SO(3). First, sampling Euler angles on a grid
does not result in rotational samples that are equally spaced,
even when B is sampled with a cos™! distribution, as in
[21]. This requires over sampling of 8 to ensure sufficient
coverage around § = /2. Second, the recurrence relations
used for fast Wigner-d function transforms in the  variable
are notoriously unstable for large values of /. The essential
reason for this is that Euler angles have singularities at 8 =0
and 7. In the next section we show how FFTs based on
coset decompositions allow for potentially fast (yet stable)
approximate FFTs on the rotation group and on SE(2).

C. Double-Coset Decompositions and Fast Approximate
FFTs on SO(3) and SE(2)

Euler angles are by no means the only way to parameterize
SO(3). And one can imagine different FFT algorithms based
on different parameterizations and coset decompositions with
respect to subgroups other than SO(2).

The specific property of IURs that will be used in this
section is that [7]

U(expX, 1) = exp(W(X,1)) ©)
where W(X,1) = Y3, x;W;(l) with
i i

_C7n5m+1,n - B

!
) Cn5m71,n

(Wl (l))mn =

i i
(WZ(Z))mﬂ = +§len6m+l,n - ch'[ m—1,n
[

(W3(l))mn =

where Sm,n is the Kronecker delta, and ”
(I—n)(l+n+1) for |n| <I. We use the property in
(9) together with the double-coset decomposition. Explicitly,

)= J(PRQ)U((PRQ)" ,1)dR,

—indm

(PO)EPxQ '/F]P’\SO(S)/Q
which can be rewritten as
Y v U F(PRQ)U(R" ,1)dR|U(P" ).
(P,Q)ePxQ Fp\s0(3)/0

where P,Q < SO(3) are finite. We can think of f(PRQ) as
the function f(R) being moved under left and right action so
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that the point initially at R is now in the vicinity of I. The
fact that on the fundamental domain centered on the identity
U(expX,!l) can be expressed as a truncated Taylor series in
X is then very useful because W (X,/) will have polynomial
entries, each of which can be computed by evaluation on
their boundary. And hence the computation of the integral
over Fp\s0(3)/q 1s efficient.

The number of terms needed in the truncation of
U(expX,I) is related to how fine the subdivision of SO(3)
into cells is; The finer the subdivision, the fewer terms
needed in the Taylor series.

Regarding the Fourier inversion formula, the double-coset
decompositions of the sort used throughout this paper have
the benefit that they can use the tri-diagonal nature of the
W; matrices (when each PRQ is close to the identity, which
is the case by our choice of fundamental domain for double
cosets). This is in place of the recurrence relations that are
usually used for matrix elements of D(R,l), which can be
unstable.

VI. CONCLUSIONS

We make a connection between Voronoi cells in the
groups SO(3) and SE(2) centered on elements of discrete
subgroups, and coset- and double-coset-spaces. We show
that sampling within these Voronoi cells can be made almost
uniform by exponentiating a Cartesian grid in a region of
the corresponding Lie algebra, which is the pre-image of
these cells under the exponential map. We show how the
resulting cells, and the samples therein, can be used for
searches, optimization, and Fourier analysis on certain Lie
groups of interest in robotics and control.
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