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Abstract— Molecular replacement (MR) is a computational
method that is frequently used to obtain phase information
for a unit cell packed with a macromolecule of unknown
structure. The goal of MR searches is to place a homol-
ogous/similar molecule in the unit cell so as to maximize
the correlation with x-ray diffraction data. MR software
packages typically perform rotation and translation searches
separately. This works quite well for single-domain pro-
teins. However, for multi-domain structures and complexes,
computational requirements can become prohibitive and the
desired peaks can become hidden in a noisy landscape. The
main contribution of our approach is that computationally
expensive MR searches in continuous configuration space
are replaced by a search on a relatively small discrete
set of candidate packing arrangements of a multi-rigid-
body model. These candidate arrangements are generated by
minimizing a Gaussian-based potential function that forces
the model conformations to separate from each other and
not overlap within the unit cell. This is done before com-
puting Patterson correlations rather than only performing
collision checks when evaluating the feasibility of peaks.
The list of feasible arrangements is short because collision-
free packing requirement together with unit cell symmetry
and geometry impose strong constraints. After computing
Patterson correlations of the candidate arrangements, an
even shorter list can be obtained using 10 candidates with
highest correlations. In numerical trials, we found that a
candidate from the feasible set is usually similar to the
arrangement of the target structure within the unit cell. To
further improve the accuracy, a Rapidly-exploring Random
Tree (RRT) can be applied in the neighborhood of this pack-
ing arrangement. Our approach is demonstrated with multi-
domain models in silico for 2D, with ellipses (ellipsoids
in 2D) representing both the domains of the model and
target structures. Configurations are defined by sets of angles
between the ellipses. Our results show that an approximate
configuration can be found with the mean absolute error less
than 3 degrees.

Keywords: X-ray crystallography, molecular replacement, multi-
domain system, packing model, Gaussian function

1. Introduction
The field of structural biology is concerned with char-

acterizing the shape, composition, flexibility, and motion

of biological macromolecules and the complexes that they
form. An ultimate goal of this field is to link these properties
with the function of macromolecular structures, in the hope
of better understanding biological phenomena and designing
new drugs.

Here we review some of the issues involved in translating
experimental data into 3D structures in the context of pro-
tein crystallography. Macromolecular X-ray crystallography
(MX) has been the most used method for determining protein
structures and associated complexes. It works very well for
simple proteins that can be described as single rigid-bodies
(called domains). This is because information about the
shape of 75,000 previously solved structures in the Protein
Data Bank (many of which are single-domain structures)
can be used to augment new MX experimental information
to gain a complete picture.

However, a challenge to MX arises in interpreting X-ray
diffraction patterns for crystals composed of multi-domain
systems. This is because even when a multi-domain structure
has been solved previously, its overall shape may vary widely
from a new version of the structure with, for example,
a bound drug. In this case, a widely used computational
method called the molecular replacement method (MR),
which has been highly successful for single-domain proteins,
becomes combinatorially intractable due to the large number
of degrees of freedom in multi-domain systems. We present
a new method for phasing based on geometric packing that
can serve as an alternative to MR. Decades ago, the concept
of building models of crystallographic unit cells to phase
crystallographic data was explored in the context of small
molecules [1], [2], [3]. But to our knowledge, this approach
has not been pursued and is virtually unknown in the con-
text of multi-domain macromolecular crystallography, and
“phasing by packing” therefore represents a very different
way of approaching the problem than MR.

The remainder of this paper is structured as follows.
The mathematical aspects of the MR method for single-
domain proteins is reviewed first. Then the multi-domain
phase problem is formulated. Finally, we present our initial
findings that diffraction patterns for multi-domain systems
can be phased using our new “phasing by packing” method.



2. Essentials of Macromolecular X-Ray
Crystallography (MX)

A biological macromolecule is a large collection of atomic
nuclei that are stabilized through a combination of covalent
bonds, hydrogen bonds, and hydrophobicity. A traditional
goal in structural biology is to obtain the Cartesian coordi-
nates of all atoms in a rigid single-domain protein.

Let xi = (xi,yi,zi) denote the Cartesian coordinates of the
ith of n atoms in a single-domain protein structure, and let
ρi(x) be the electron density of that atom in a reference
frame centered on it. Due to thermal motions, the electron
density of each of these atomic nuclei can be treated as a
Gaussian distribution. The density of the whole structure is
then of the form

f (x) =
n

∑
i=1

ρi(x− xi). (1)

The coordinates {xi} are typically given either in a reference
frame attached to a crystallographic unit cell, or to the center
of mass of the protein.

MX does not provide f (x) directly. Rather, it provides
partial information about f (x). The goal is then to compu-
tationally obtain f (x) and fit an atomic model to it, thereby
extracting the coordinates {x i}. A macromolecular crystal
is composed of unit cells that have a discrete symmetry
group, Γ. This symmetry group divides R

3 into unit cells,
U ∼=Γ\R3, and also describes how copies of the density f (x)
are located within the unit cell. The whole group Γ can be
generated by translating unit cells and moving within the unit
cell using generators {γ1, ...,γm}. These form a subgroup of
Γ, which is in turn a subgroup of the group of rigid-body
motions, SE(3), which will be denoted here as G.

The result of an MX experiment is a diffraction pattern.
This is the magnitude of the Fourier transform of the full
contents of the crystallographic unit cell. Mathematically,
this is written for a single-domain protein as

P̂(g;k) =

∣∣∣∣∣F
(

m−1

∑
j=0

f ((γ j ◦ g)−1 ·x
)∣∣∣∣∣ , (2)

where | · | denotes the modulus of a complex number, c =
a+ ib = |c|eiφ . Our reason for using the notation P̂(g;k)
will be explained shortly. Here g ∈ G is the unknown pose
of the protein that is sought, and ◦ is the group operation
for both G and Γ. In particular, it is well-known in robotics
that each rigid-body motion consists of a rotation-translation
pair g = (R, t), and the composition of any two rigid-body
motions g1 and g2 defines the operation ◦:

g1 ◦ g2 = (R1, t1)◦ (R2, t2) = (R1R2,R1t2 + t1). (3)

Given that g = (R, t) ∈ G is a rotation-translation pair, its
action on R

3 is defined by

g ·x = Rx+ t. (4)

Then the density of a collection of single-domain proteins in
the unit cell for j = 0, ...,m−1 will be ∑m−1

i=0 f ((γi ◦g)−1 ·x).
The difficulty in extracting f (x) from the MX data is

that this measurement folds in both information about f (x)
and the symmetry group Γ, and kills the phase information,
φ(k), without which f (x) cannot be recovered by inverse
Fourier transform. Moreover, there is an unknown g ∈ G
that describes how each symmetry-related copy of f (x) sits
in the unit cell. Single-domain MR is mostly about finding
the unknown g, and most commonly this is done by dividing
the search into rotational and translational parts.

The number of proteins in a unit cell, the crystallographic
space group, Γ, and aspect ratios of the unit cell can be
taken as known inputs in MR computations, since they are all
provided by experimental observation. And from homology
modeling, it is often possible to have reliable estimates of
the shape of each domain in a multi-domain protein. What
remains unknown are the relative positions and orientations
of theses domains and the overall position and orientation of
the symmetry-related copies of the proteins within the unit
cell.

Once these are known, a model of the unit cell can be
constructed and used as an initial phasing model that can be
combined with the X-ray diffraction data. This is, in essence,
the molecular replacement approach that is now more than
half a century old [4], [5]. Many powerful software packages
for molecular replacement include those described in [6], [7].
Typically these perform rotation searches first, followed by
translation searches.

3. The Multi-Domain Molecular Re-
placement Method (NMR)

The molecular replacement (MR) method, originally de-
veloped in the 1960s [4], [10], [11], [12] is a computational
method for phasing X-ray diffraction data for biomolecular
structures. It has been integrated into crystallographic struc-
ture determination codes [6], [14]. Though MR has been
wildly successful for single-domain proteins, significant is-
sues arise when using MR for multi-domain proteins and
complexes.

Currently two major computational paradigms exist for
phasing of X-ray diffraction patterns of multi-domain pro-
teins: (1) use existing software packages to obtain candidate
peaks in the rotation function for individual domains sepa-
rately, then solve for the translation function [13]; (2) attempt
to morph multi-domain candidate models that contain their
full “6N” degrees of freedom and iteratively refine those
models [8]. Both methods suffer from different aspects of
the “curse of dimensionality,” which we seek to circumvent
using a combination of our initial results reported in [9] and
new approaches based on advanced mathematical concepts
that are new to the crystallography community.



Consider a multi-domain protein or complex consisting of
N rigid bodies. If fi(x) denotes the density of the ith body,
then the density of the whole complex will be of the form
f (x) = ∑N

i=1 fi(g
−1
i · x) where gi = (Ri, ti) is a rigid-body

motion consisting of a rotation-translation pair and g−1
i ·x=

RT
i (x− ti). These motions are the unknowns in our problem.
If m identical copies of this complex are arranged symmet-

rically in a unit cell by symmetry operators γ j = (Qj,a j)∈ Γ
(which is the group consisting of n discrete rigid-body
motions that are known a priori from the crystal symmetry
and geometry), an X-ray diffraction experiment provides
the magnitude (without phase) of the Fourier transform of
∑m−1

j=0 f (γ−1
j · x). In contrast, the model density for a single

domain and its symmetry mates is ∑m−1
j=0 fi(h

−1
i ◦ γ−1

j · x)
where hi is the candidate position and orientation. In tra-
ditional MR, the Fourier transform of the Patterson func-
tions, P̂(g1, ...,gN ;k) = F [P(g1, ...,gN ;x)] and p̂i(hi;k) =
F [pi(hi;x)], that correspond to these densities and their
correlation are respectively

P̂(g1, ...,gN ;k) =

∣∣∣∣∣
m−1

∑
j=0

F [ f (γ−1
j ·x)]

∣∣∣∣∣ , (5)

p̂i(hi;k) =

∣∣∣∣∣
m−1

∑
j=0

F [ fi(h
−1
i ◦ γ−1

j ·x)]
∣∣∣∣∣ , (6)

c(hi) =

∫
x∈C

P(g1, ...,gN ;x)pi(hi;x)dx (7)

where the Fourier transform F converts a function of spatial
position, x, into a function of spatial frequency, k. The
real-space Pattersons themselves are obtained by applying
the inverse Fourier transform. Of the quantities in (5)-(7),
P̂(g1, ...,gN ;k) comes from the experiment (this is the multi-
domain version of (2)), and p̂ i(hi;k) and c(hi) are computed.
Here C is the unit cell and in MR searches the hope
is that peaks in the function c(·) correspond to hi = gi.
The difficulty is that, unlike the single domain case, in
the multi-domain case P depends on many g j’s that all
interact with each other. Therefore, peaks in this rotational
correlation function do not necessarily correspond to good
overall matches.

4. PHASING BY PACKING
Instead of running traditional MR searches on domain

orientation or full conformation, we propose to construct
packing models for the multi-domain systems of interest. This
will generate candidate sets of motions {h1, ...,hN} that can
then be used to construct a model of P(h1, ...,hN ;x) rather
than pi(hi;x). If P(h1, ...,hN ;x) and P(g1, ...,gN ;x) match
well to each other, then that is a much stronger indication
that hi = gi than having high correlations between pi(hi;x)
and P(g1, ...,gN ;x).

In this approach, an ellipsoid or a combination of several
ellipsoids are used to approximate the convex hull of each

domain of protein structures. A multi-ellipsoid-shaped model
is built for a multi-domain structure and packed in space to
detect feasible packing arrangements. The most important
crystal packing constraint is that protein macromolecules
do not collide with (or insert into) each other. With high
protein-water volume ratio in crystals, they usually have
to “smartly” close packed. Since the allowable motion is
severely restricted, we can find a discrete candidate set to
represent all the feasible packing arrangements. Noticing
Gaussian functions have infinite tails, a Gaussian-based
cost function (GCF) is constructed to evaluate the level
of overlapping (or closeness) among ellipsoids with each
ellipsoid represented by a Gaussian function or a mixture
of Gaussian functions. The candidate packing arrangements
can be obtained by minimizing the GCF to force the packing
model to separate from each other and not overlap within
the unit cell.

The shape of an ellipsoid can be captured by equidensity
contours of a Gaussian function with the mean located at
the ellipsoid center and the covariance matrix related to its
semi-axis lengths. An arbitrarily oriented ellipsoid in R

n can
be described as

(x− μ)TRT AR(x− μ) = 1, (8)

where R is the rotation matrix, and A =
diag[1/a2

1,1/a2
2, · · · ,1/a2

n], with ai denoting the semi-
axis length of the ellipsoid. Compared with a Gaussian
function in R

n,

ρ(x; μ ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− μ)T Σ−1(x− μ)

)
,

(9)
we can see that when Σ−1 = RT AR, the equidensity con-
tours of the Gaussian function are ellipsoids with semi-axis
lengths k · a1, k · a2, · · · , k · an, where k ∈ R≥0. To more
accurately capture the shape of the ellipsoid with semi-axis
lengths a1, a2, · · · , an, we want the Gaussian function to
have high and steady value inside the ellipsoid region and
a quick drop outside it. We note that it is not necessary to
eliminate the tail outside the ellipsoid since the interaction
among the tails can help push the ellipsoids away from each
other. We use a Gaussian mixture function ψ(x;a,b), i.e.,

ψ(x;a,b)=
n

∑
i=1

ai

(2π)n/2|Σ|1/2
exp

(
−bi

2
(x− μ)T Σ−1(x− μ)

)
,

(10)
instead of a single Gaussian ρ(x) to approximate an ellip-
soid. In the 1D case in Fig. 1, with both variances σ = 1, we
can see that compared to the single Gaussian 1√

2π exp(− x2

2 ),
the Gaussian mixture function with a = 0.44 · [3,−1] and
b = 1.16 · [1,3], i.e.,

ψ(x;a,b) =
1.32√

2π
exp(−0.58x2)− 0.44√

2π
exp(−1.73x2),

(11)
has a flatter top and faster decay tails.
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THE COMPARISON BETWEEN A SINGLE GAUSSIAN WITH A MIXTURE OF

GAUSSIANS.

The ellipsoid model of ith domain in a multi-domain
structure under a symmetry group Γ can be approximated
by ψ((h−1

i ◦ γ−1
j · x);a,b), where hi is rigid-body operation

of the ith domain and γ j is the symmetry operator in the
symmetry group Γ. Therefore we define the GCF as

GCF(h1, · · · ,hN)�
∫
Rn

[
m−1

∑
j=0

N

∑
i=1

ψ((h−1
i ◦ γ−1

j ·x),a,b)
]2

dx.

(12)
An advantage of Gaussian functions is that the integration

of quadratic terms over Rn has a closed-form expression. We
derived it as follows,∫

Rn
ρ1(x; μ1,Σ1)ρ2(x; μ2;Σ2)dx (13)

=
∫
Rn
(2π)−n/2|detΣ1|−1/2 exp(−1

2
(x− μ1)

T Σ−1
1 (x− μ1))

(2π)−n/2|detΣ2|−1/2 exp(−1
2
(x− μ2)

T Σ−1
2 (x− μ2))dx

= (2π)−n|detΣ1 detΣ2|−1/2
∫
Rn

exp(−1
2
(x− μ1)

T Σ−1
1 (x− μ1)

−1
2
(x− μ2)

T Σ−1
2 (x− μ2))dx.

Since
∫
Rn

exp(−1
2

xT Mx−mTx−C)dx (14)

= (2π)n/2|detM|−1/2 exp(
1
2

mT M−1m−C),

(13) can be rewritten in a closed-form as∫
Rn

ρ1(x; μ1,Σ1)ρ2(x; μ2;Σ2)dx (15)

= (2π)−n/2|detΣ1 detΣ2 det(Σ−1
1 +Σ−1

2 )|−1/2

exp(
1
2
(μT

1 Σ−1
1 + μT

2 Σ−1
2 )(Σ−1

1 +Σ−1
2 )(Σ−T

1 μ1 +Σ−T
2 μ2)

−1
2
(μT

1 Σ−1
1 μ1 + μT

2 Σ−1
2 μ2)).

The closed-form expression of the GCF can be easily derived
from (15).

The main procedures of generating candidate phasing
models by packing can be described by a flowchart in Fig.
2. In the first step, we discretize the configuration space by
a coarse grid, and find the configuration with the smallest
GCF value inside each “configuration cell” defined by the
grid. The collision-free ones of these configurations form
the candidate set of packing arrangements. This discrete
candidate set reduces the whole configuration space to a
much shorter list. We note that with a closed-form expres-
sion, minimizing the GCF is less computationally expensive
compared to calculating c(hi) in traditional MR searches (see
(7)).

In the next step, we use a Fourier-based cost function
(FCF), where

FCF(h1, ...,hN) (16)

=

[∫
k∈Ω

(
P̂(g1, ...,gN ;k)− P̂(h1, ...,hN ;k)

)2
dk
] 1

2

,

to sort these collision-free configurations from low to high.
In our simulation, the function f i(x) defined in Sec. 3 are
chosen to be the set indicator function for the ellipsoid
representing body i. Then P̂(g1, ...,gN ;k) and P̂(h1, ...,hN ;k)
are defined in (5) and (6), respectively.

Minimizing FCF(h1, ...,hN) is similar to finding peaks in
c(hi) except that we use a multi-domain model rather than a
single-domain one. After the sorting, we keep 10 configura-
tions with lowest FCF as a candidate list. These candidates
indicate high correlations with the target structure. The FCF
has the rugged surface of the configuration space, so to fur-
ther improve the accuracy, a stochastic sampling method—
Rapidly-exploring random tree (RRT) algorithm [15] is used
to minimize the FCF around the “best candidate”. The best
candidate can be first chosen as the one with the lowest FCF
in the set. If its FCF cannot be reduced below a threshold
value C after running the RRT, we switch the best candidate
to the one with the next lowest FCF.

5. EXPERIMENTAL EXAMPLE
In this section, the approach to phasing by using packing

models is demonstrated in a 2D planar case, with ellipses
representing both the domains of the model and target
structures. All the angular parameters of the target structure
are treated as being unknown, and the only priori information
that we have is the magnitude of the Fourier transform
of the electron density function P̂(g1, ...,gN ;k). Our goal
is to find the closest model configuration {h1, ...,hN} with
respect to the target structure {g1, ...,gN}. To illustrate our
approach, a multi-ellipse-shaped “rabbit” with one “face”
and two “ears” is constructed as a packing model for a 3-
domain structure in P1 symmetry. Since translations have
no impact on the packing result in P1 symmetry, the rabbit
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Fig. 2

FLOWCHART OF FINDING CANDIDATE PHASING MODELS BY PACKING.

model has 3 DOF— the rotations of the face, θ1 and two
ears, θ2 and θ3 (see the dimensions and ranges of motion in
Table 1).

For the Gaussian mixture function in this 2D planar case,
we use the same ratios of a1, a2 and b1, b2 as the 1D case in
(11), i.e., a= ma · [3,−1] and b= mb · [1,3]. m∗

b—the optimal
value of mb, is chosen to “stretch or shrink” the Gaussian
mixture function so that it can “ best” represent the defined
ellipse. After that, m∗

a is calculated to normalize the Gaussian
mixture function with m∗

b. More specifically, we define m∗
b

as
m∗

b = argmax
mb

|Scand.(mb)|, (17)

where Scand. represents the non-collision candidate set,
generated by obtaining the packing arrangements with the
smallest GCF value inside each configuration box defined
by the grid, and deleting the collision ones afterwards.
|Scand.(mb)| denotes the number of non-collision candidates
in this set. With the optimal mb, the GCF forces the
packing models to separate from each other to the greatest
extent, and the size of the non-collision candidate set is
therefore maximized. Fig. 3 shows the size of the non-
collision candidate set |Scand.(mb)| with different mb values
under 3 different defined grids (in 30-, 40- and 60-degree

increments). We can see when mb = 0.2, |Scand.(mb)| has
the highest value, and the peak is independent of how we
define the grid. In the experiment, we use the 30-degree
grid, and 48 non-collision candidates can be found. With
mb = 0.2, we compare the contours of the Gaussian mixture
function with the rabbit shape in Fig. 4, and we can see that
it fits the shape of the rabbit model well. Also in Fig. 5,
we compare collision checking results with GCF values in
the θ1-θ2 plane with fixed θ3=-90 degrees. It is shown that
all non-collision configurations are located in the low GCF
value regions, which demonstrates that by minimizing the
GCF, the ellipses are less likely to have overlapping.
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THE SIZE OF THE NON-COLLISION CANDIDATE SET WITH DIFFERENT mb

VALUES UNDER 3 DIFFERENT DEFINED GRIDS (IN 30-, 40- AND

60-DEGREE INCREMENTS, RESPECTIVELY).

An example of packing results with the target structure
randomly sampled in space is illustrated in Fig. 6. After
generating the candidate set by minimizing the GCF, and
sorting these candidates by the FCF from high to low, the
best candidate in the set (Candidate 1 in Fig. 7) shows
1.50, 17.81 and 10.97 degrees of the error in θ 1, θ2 and θ3,
respectively. After running the RRT around this candidate,
these errors are further reduced to only 0.79, 2.14 and 0.19
degrees respectively, less than 1.2 % of the total rotation
range. Table 2 shows 10 different numerical trials and the
mean absolute errors (MAE), mean{Δθ1,Δθ2,Δθ3}, are all
below 3 degrees.

6. CONCLUSIONS
Macromolecular crystallography has been the traditional

workhorse for determining structural models in the field
of biophysics. Within macromolecular crystallography, the
molecular replacement method has been a highly successful



Fig. 4

THE COMPARISON OF THE RABBIT SHAPE WITH THE CONTOURS OF THE

GAUSSIAN MIXTURE FUNCTION (mb = 0.2).
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GCF VALUES (WITH mb = 0.2) IN THE θ1-θ2 PLANE (WITH θ3=-90

DEGREES). IN (A), BLACK PIXELS REPRESENT THE NON-COLLISION

CONFIGURATIONS AND WHITE ONES ARE COLLISION FREE. IN (B), THE

PIXELS WITH DARKER COLORS REPRESENT THE CONFIGURATIONS WITH

LOWER GCF VALUES, AND VISE VERSA.

Table 1

THE DIMENSIONS AND RANGES OF MOTION OF THE RABBIT PACKING

MODEL

Dimensions size of the unit cell 9 × 6.75
semi-axis lengths of the face 2; 2.5
semi-axis lengths of the ears 2.3; 0.92

Range of rotation face: θ1 (deg) 0 ∼ 180
ears: θ2, θ3 (deg) -90 ∼ 90

method for providing phasing models to combine with exper-
imental information to obtain protein structures. In this paper
we demonstrate that an alternative to molecular replacement,
called “phasing by packing” is promising for multi-rigid-
domain structures. Numerical results illustrate the potential
of this method.
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Table 2

10 NUMERICAL TRIALS.

Target Best Cand. After RRT Final errors
Trial θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3 e1 e2 e3

1 100.82 -72.21 -3.03 100.32 -90.00 -14.00 101.61 -74.35 -3.22 0.79 2.14 0.19
2 42.29 64.37 -69.25 43.07 60.00 60.00 42.96 64.29 -67.17 0.67 0.08 2.08
3 136.67 -68.70 -67.33 120.00 -39.37 -79.98 135.58 -67.54 -68.39 1.09 1.16 1.06
4 114.21 -63.46 -51.42 120.00 -81.03 -60.00 116.43 -64.71 -49.70 2.22 1.25 1.72
5 54.83 -49.51 -70.41 61.85 -60.00 -60.00 55.83 -50.37 -69.37 1.00 0.86 1.04
6 159.67 47.67 -2.65 173.97 26.77 14.89 160.75 44.52 0.43 1.08 3.15 3.08
7 101.63 -67.65 12.06 114.08 -88.32 31.05 103.72 -70.20 13.08 2.09 2.55 1.02
8 113.89 -73.69 30.76 120.00 -90.00 38.95 112.72 -74.80 29.70 1.17 1.11 1.06
9 66.41 27.29 -76.94 60.00 38.95 -90.00 63.20 30.78 -78.49 3.21 3.49 1.55

10 97.19 -1.59 -86.46 120.00 -39.37 -79.98 100.02 -2.89 -83.53 2.83 1.30 2.93

Best candidate  TargetFinal result after RRT
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Fig. 6

AN EXAMPLE OF PACKING RESULTS WITH THE TARGET STRUCTURE RANDOMLY SAMPLED IN THE SPACE.

Candidate #1 Candidate #2 Candidate #3
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3 CANDIDATE PACKING ARRANGEMENTS FOR THE EXAMPLE IN FIG. 6.


