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ABSTRACT
Molecular replacement (MR) is frequently used to obtain

phase information for a unit cell packed with a macromolecule
of unknown structure. The goal of MR searches is to place a
homologous/similar molecule in the unit cell so as to maximize
the correlation with x-ray diffraction data. MR software pack-
ages typically perform rotation and translation searches sepa-
rately. This works quite well for single-domain proteins. How-
ever, for multi-domain structures and complexes, computational
requirements can become prohibitive and the desired peaks can
become hidden in a noisy landscape. The main contribution of
our approach is that computationally expensive MR searches in
continuous configuration space are replaced by a search on a
relatively small discrete set of candidate packing arrangements
of a multi-rigid-body model. These candidate arrangements are
generated by collision detections on a coarse grid in the con-
figuration space first. The list of feasible arrangements is short
because packing constraints together with unit cell symmetry and
geometry impose strong constraints. After computing Patterson
correlations of the collision-free arrangements, an even shorter
list can be obtained using the 10 candidates with highest cor-
relations. In numerical trials, we found that a candidate from
the feasible set is usually similar to the arrangement of the tar-
get structure within the unit cell. To further improve the accu-
racy, a Rapidly-exploring Random Tree (RRT) can be applied in
the neighborhood of this packing arrangement. Our approach

∗Address all correspondence to this author.

is demonstrated with multi-domain models in silico for 3D, with
ellipsoids representing both the domains of the model and target
structures. Configurations are defined by sets of angles between
the ellipsoids. Our results show that an approximate configura-
tion can be found with mean absolute error (MAE) less than 5
degrees.

INTRODUCTION
The field of structural biology is concerned with characteriz-

ing the shape, composition, flexibility, and motion of biological
macromolecules and the complexes that they form. An ultimate
goal of this field is to link these properties with the function of
macromolecular structures, in the hope of better understanding
biological phenomena and designing new drugs.

Here we review some of the issues involved in translating
experimental data into 3D structures in the context of protein
crystallography. Macromolecular X-ray crystallography (MX)
has been the most used method for determining protein structures
and associated complexes. It works very well for simple proteins
that can be described as single rigid-bodies (called domains).
This is because information about the shape of more than 70,000
previously solved structures in the Protein Data Bank (many of
which are single-domain structures) can be used to augment new
MX experimental information to gain a complete picture.

However, a challenge to MX arises in interpreting x-ray
diffraction patterns for crystals composed of multi-domain sys-
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tems. This is because even when a multi-domain structure has
been solved previously, its overall shape may vary widely from a
new version of the structure with, for example, a bound drug. In
this case, a widely used computational method called the molecu-
lar replacement method (MR) that is highly successful for single-
domain proteins becomes combinatorially intractable due to the
large number of degrees of freedom in multi-domain systems.
We present a new method for phasing based on geometric pack-
ing that can serve as an alternative to MR.

The remainder of this paper is structured as follows. The
mathematical aspects of the MR method for single-domain pro-
teins is reviewed first. Then the multi-domain phase problem is
formulated. Finally, we present out initial findings that diffrac-
tion patterns for multi-domain systems can be phased using our
new “phasing by packing” method.

Essentials of Macromolecular X-Ray Crystallography
(MX)

A biological macromolecule is a large collection of atomic
nuclei that are stabilized through a combination of covalent
bonds, hydrogen bonds, and hydrophobicity. A traditional goal
in structural biology is to obtain the Cartesian coordinates of all
atoms in a rigid single-domain protein.

Let xi = (xi,yi,zi) denote the Cartesian coordinates of the ith

of n atoms in a single-domain protein structure, and let ρ i(x) be
the electron density of that atom in a reference frame centered on
it. The density of the whole structure is then of the form

f (x) =
n

∑
i=1

ρi(x− xi). (1)

The coordinates {xi} are typically given either in a reference
frame attached to a crystallographic unit cell, or to the center
of mass of the protein.

MX does not provide f (x) directly. Rather, it provides par-
tial information about f (x). The goal is then to computationally
obtain f (x) and fit an atomic model to it, thereby extracting the
coordinates {xi}. But what information does an MX experiment
provide? Well, a macromolecular crystal is composed of unit
cells that have a discrete symmetry group, Γ. This symmetry
group divides R3 into unit cells, and also describes how copies
of the density f (x) are located within the unit cell. The whole
group Γ can be generated by translating unit cells and moving
within the unit cell using generators {γ1, ...,γm}. These form a
subgroup of Γ, which is in turn a subgroup of the group of rigid-
body motions, SE(3), which will be denoted as G.

The result of an MX experiment for a single-domain pro-
tein is a diffraction pattern. This is the magnitude of the Fourier
transform of the full contents of the crystallographic unit cell.

Mathematically, this is written as

I(k) =

∣∣∣∣∣F
(

m

∑
j=1

f ((γ j ◦ g)−1 ·x
)∣∣∣∣∣ , (2)

where | · | denotes the modulus of a complex number, c= a+ ib=
|c|eiφ . Here g ∈ G and ◦ is the group operation for both G and
Γ. In particular, it is well-known in robotics that each rigid-body
motion consists of a rotation-translation pair g = (R, t), and the
composition of any two rigid-body motions g 1 and g2 defines the
operation ◦:

g1 ◦ g2 = (R1, t1)◦ (R2, t2) = (R1R2,R1t2 + t1). (3)

Given that gi =(Ri, ti)∈G is a rotation-translation pair, its action
on R

3 is defined by

g−1
i ·x = RT

i (x− ti). (4)

Then the density of a collection of single-domain proteins in the
unit cell for i = 1, ...,m will be ∑m

i=1 f ((γi ◦ g)−1 ·x).
The difficulty in extracting f (x) from the MX data is that

this measurement folds in both information about f (x) and the
symmetry group Γ, and kills the phase information, φ(k), with-
out which f (x) cannot be recovered by inverse Fourier transform.
Moreover, there is an unknown g ∈ G that describes how each
symmetry-related copy of f (x) sits in the unit cell. This is what
single-domain MR is mostly about - finding that unknown g.

The crystallographic space groups have been cataloged in
great detail in the crystallography literature. For example, sum-
maries can be found in [1, 2, 5, 18, 19, 24, 27, 28, 34] as well as
in various online resources. Treatments of space group symme-
try from the perspective of pure mathematicians can be found
in [9, 13, 20, 22, 36, 41, 48].

Of the 230 possible space groups, only 65 are possible for
biological macromolecular crystals (i.e., the chiral/proper ones).
The reason for this is that biological macromolecules such as
proteins and nucleic acids are composed of constituent parts that
have handedness and directionality (e.g., amino acids and nu-
cleic acids respectively have C −N and 5′ − 3′ directionality).
This is discussed in greater detail in [31, 35, 43, 46]. Of these
65, some occur much more frequently than others. And these are
typically nonsymmorphic space groups (i.e., those that possess
screw symmetry operations, and which cannot be described as
a simple semi-direct product). For example, more than a quar-
ter of all proteins crystallized to date have P212121 symmetry, and
the three most commonly occurring symmetry groups represent
approximately half of all macromolecular crystals [46, 53].
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The number of proteins in a unit cell, the space group, Γ,
and aspect ratios of the unit cell can be taken as known inputs
in MR computations, since they are all provided by experimental
observation. And from homology modeling, it is often possible
to have reliable estimates of the shape of each domain in a multi-
domain protein. What remains unknown are the relative positions
and orientations of theses domains and the overall position and
orientation of the symmetry-related copies of the proteins within
the unit cell.

Once these are known, a model of the unit cell can be con-
structed and used as an initial phasing model that can be com-
bined with the x-ray diffraction data. This is, in essence, the
molecular replacement approach that is now more than half a
century old [21,29,44,45]. Many powerful software packages for
molecular replacement include those described in [6, 10, 38, 52].
Typically these perform rotation searches first, followed by trans-
lation searches.

Recently full 6 degree-of-freedom rigid-body searches and
6N DOF multi-rigid body searches have been investigated [23,
25, 26, 49] where N is the number of domains in each molecule
or complex. These methods have the appeal that the false peaks
and “noise” that results when searching the rotation and trans-
lation functions separately can be reduced. This paper analyzes
the mathematical structure of these search spaces and examines
what happens when rigid-body motions in crystallographic en-
vironments are concatenated. It is shown that unlike the sym-
metry operations of the crystal lattice, or rigid-body motions in
Euclidean space, the set of motions of a domain (or collection of
domains) within a crystallographic unit cell (or asymmetric unit)
with faces “glued” in an appropriate way does not form a group.
Rather, it has a quasigroup structure lacking the associative prop-
erty.

The Multi-Domain Molecular Replacement Method
(MMR)

The molecular replacement (MR) method, originally devel-
oped in the 1960s [11, 12, 29, 44] is a computational method
for phasing x-ray diffraction data for biomolecular structures. It
has been integrated into crystallographic structure determination
codes [4, 10, 15, 39, 40, 50, 51]. For recent reviews and novel
molecular replacement methods see [6, 14, 47, 52]. Though MR
has been wildly successful for single-domain proteins, signifi-
cant issues arise when using MR for multi-domain proteins and
complexes.

Currently two major computational paradigms exist for
phasing of x-ray diffraction patterns of multi-domain proteins:
(1) use existing software packages to obtain candidate peaks
in the rotation function for individual domains separately, then
solve for the translation function [3, 7, 30, 37, 49]; (2) attempt
to morph multi-domain candidate models that contain their full
“6N” degrees of freedom and iteratively refine those models

[16, 17, 23, 33, 42]. Both methods suffer from different aspects
of the “curse of dimensionality,” which we seek to circumvent
using a combination of our initial results reported in [25] and
new approaches based on advanced mathematical concepts that
are new to the crystallography community.

Consider a multi-domain protein or complex consisting of
N rigid bodies. If fi(x) denotes the density of the ith body,
then the density of the whole complex will be of the form
f (x) = ∑N

i=1 fi(g−1
i ·x) where gi = (Ri, ti) is a rigid-body motion

consisting of a rotation-translation pair and g−1
i ·x = RT

i (x− ti).
These motions are the unknowns in our problem.

If m identical copies of this complex are arranged symmet-
rically in a unit cell by symmetry operators γ j = (Qj,a j) ∈ Γ
(which is the group consisting of discrete rigid-body motions
that are known a priori from the crystal symmetry and geom-
etry), an x-ray diffraction experiment provides the magnitude
(without phase) of the Fourier transform of ∑m

j=1 f (γ−1
j · x). In

contrast, the model density for a single domain and its symme-
try mates is ∑m

j=1 fi(h
−1
i ◦ γ−1

j · x) where hi is the candidate po-
sition and orientation. The Fourier transform of the Patterson
functions P(g1, ...,gN ;x) and pi(hi;x) that correspond to these
densities and their correlation are respectively

P̂(g1, ...,gN ;k) =

∣∣∣∣∣
m

∑
j=1

F [ f (γ−1
j ·x)]

∣∣∣∣∣ , (5)

p̂i(hi;k) =

∣∣∣∣∣
m

∑
j=1

F [ fi(h
−1
i ◦ γ−1

j ·x)]
∣∣∣∣∣ , (6)

c(hi) =

∫
x∈C

P(g1, ...,gN ;x)pi(hi;x)dx (7)

where the Fourier transform F converts a function of spatial po-
sition, x, into a function of spatial frequency, k. Here C is the
unit cell and in MR searches the hope is that peaks in the function
c(·) correspond to hi = gi. The difficulty is that, unlike the single
domain case, in the multi-domain case P depends on many g j’s
that all interact with each other. Therefore, peaks in this rota-
tional correlation function do not necessarily correspond to good
overall matches.

Phasing By Packing
Instead of running traditional MR searches on domain ori-

entation or full conformation, we propose to construct packing
models for the multi-domain systems of interest. This will gen-
erate candidate sets of motions {h1, ...,hN} that can then be used
to construct a model of P(h1, ...,hN ;x) rather than pi(hi;x). If
P(h1, ...,hN ;x) and P(g1, ...,gN ;x) match well to each other, then
that is a much stronger indication that hi = gi than having high
correlations between pi(hi;x) and P(g1, ...,gN ;x).
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But in order for our proposed approach to work, the fraction
of the total 6N-dimensional search space that we search must be
very small. Otherwise it will be computationally expensive. In
other words, we must rapidly determine “where not to look.” Pre-
liminary results along these lines are very encouraging. We hy-
pothesize that the combination of crystal packing constraints and
limitations on the range of motion between domains imposed by
known motion constraints (in the case of multi-domain proteins
consisting of covalently bonded rigid domains) severely restricts
the allowable motions. And more restrictive symmetry groups
than P1 will disallow relative motion even for smaller packing
ratios. This leads us to believe that it will be possible to rapidly
eliminate vast portions of high-dimensional configuration space
based on their incompatibility with constraints, and that the enu-
meration of packing geometries can be performed in a computa-
tionally tractable manner.

In this paper, ellipsoids are used to represent different do-
mains of protein structures. The reason is that the ellipsoid or the
combination of ellipsoids can be used to describe a large variety
of shapes and also be expressed in simple closed-form equations.
To illustrate our approach, we construct a multi-ellipsoid-shaped
“rabbit” with one “face” and two “ears” as a packing model for
a 3-domain structure in P1 crystal symmetry. The rabbit has 7
degrees of freedom (DOF)—roll (α1), pitch(β1) and yaw(γ1) of
the face and rolls (α2, α3) and pitches (β2, β3) of the two ax-
isymmetric ears (Fig.1). The most important constraint of the
motion is that the rabbits cannot collide with (or insert into) each
other. With 50% volume ratio between the packing model and
the unit cell (see the dimensions in Table 1), there is not much
free room to move for the packing model. So the rabbits have to
be “smartly” close packed in the configuration space to avoid col-
lision, as most protein molecules are in real crystals. Fig.2 shows
examples of packing configurations with and without collisions
using our packing model in P1 symmetry, and the yellow part in
(a) shows the collision areas. Also, some constraints on the mo-
tion between domains are imposed(see the ranges of motion for
each DOF in Table 1).

The main procedures of finding phase information using
packing models can be described by a flowchart in Fig. 3. In the
first step, we discretize the configuration space by a coarse grid
(in 10-degree increments in this paper), and detect collisions for
the packing configurations on this grid. The collision detection
function of an arbitrary point to an ellipsoid is defined as

H(x) = (x− x0)
TRTAR(x− x0), (8)

where x0 = [x0,y0,z0]
T represents the origin of the ellipsoid in

Cartesian coordinates. A = diag[1/(r2
x),1/(r

2
y ),1/(r

2
z )], where

rx, ry and rz are semi-axis lengths in the x-, y- and z- axes, re-
spectively. R is the rotation matrix that describes the rotation of
the ellipsoid relative to the space-fixed frame. If H(x) is less

β1

β2

β3

α1

α2

α3

γ 1

FIGURE 1. ILLUSTATION OF 7 DEGREES OF FREEDOM IN
THE PACKING MODEL.

than 1, the point is inside the ellipsoid, and vice versa. For our
rabbit packing model, we only need to check H(x) for surface
points on the center copy with other surrounding copies. With a
closed form, evaluating H(x) is much less computationally ex-
pensive compared to calculating c(hi) in traditional MR searches
(see Eqn.(7)). After the collision detection, we reduce the whole
configuration space to a much shorter list. In this paper, only 150
collision-free configurations are found out of 944784 (9 3 ·64) on
a 10-degree-grid search.

In the next step, we use a Fourier-based cost function (FCF),
where

FCF(h1, ...,hN) (9)

=

[∫
k∈Ω

(
P̂(g1, ...,gN ;k)− P̂(h1, ...,hN ;k)

)2
dk
] 1

2

,

to sort these collision-free configurations from low to high. Mini-
mizing FCF(h1, ...,hN) is similar to finding peaks in c(hi) except
that we use a multi-domain model rather than a single-domain
one. After the sorting, we keep the 10 configurations with lowest
FCF as a candidate list. These candidates indicate high correla-
tions with the target structure. The FCF has the rugged surface
of the configuration space, so to further improve the accuracy,
a stochastic sampling method—Rapidly-exploring random tree
(RRT) algorithm [32] is used to minimize the FCF around the
“best candidate”. The best candidate can be first chosen as the
one with the lowest FCF in the set. If its FCF cannot be reduced
below a threshold C after running the RRT, we switch the best
candidate to the one with the next lowest FCF.

Numerical Results
In the numerical experiments, the same packing model is

used each time to construct target structures. All of the angu-
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FIGURE 2. EXAMPLES OF PACKING CONFIGURATIONS (a)
WITH COLLISIONS VS (b) WITHOUT COLLISIONS.

lar parameters of the target structure are treated as being un-
known, and the only priori information that we have is the mag-
nitude of the Fourier transform of the electron density function
P̂(g1, ...,gN ;k). Our goal is to find the closest model configura-
tion {h1, ...,hN} with respect to the target structure {g1, ...,gN}.
To evaluate the packing results, three different errors—E h, MAE,
and Emax are defined as,

Eh =
N

∑
i
||gi − hi||W , (10)

Emax = max{Δα1,Δβ1,Δγ1,Δα2,Δβ2,Δα3,Δβ3},
MAE = mean{|Δα1|, |Δβ1|, |Δγ1|, |Δα2|, |Δβ2|, |Δα3|, |Δβ3|},

where Eh is the error metric of motion {h1, ...,hN} relative to

(g1, ...,gN) and W is the weight matrix

(
J 0
0T M

)
as in [8]. Since

the examples in this paper have symmetry group Γ=P1, and since
there is no translation involved in P1 symmetry, g i and hi reduce
to pure translations and W reduces to J =

∫
V xxT ρ(x)dV . For

ellipsoids, J = diag[Mr2
x/5,Mr2

y/5,Mr2
z /5], where M is the mass

TABLE 1. THE DIMENSIONS AND RANGES OF MOTION OF
THE RABBIT PACKING MODEL.

f

Dimensions size of the unit cell 14 × 14 × 14

semi-axis lengths of the face 8; 6; 6

semi-axis lengths of the ears 2.5; 2.5; 6

Face range of roll (deg) 0 ∼ 90

range of pitch (deg) 0 ∼ 90

range of yaw (deg) 0 ∼ 90

Ears range of roll (deg) -30 ∼ 30

range of pitch (deg) -30 ∼ 30

and rx, ry and rz are the semi-axis lengths. Here ρ(x) is taken to
be 1 and semi-axis lengths are reported in Table 1. We note that
the absolute value of Eh depends on the mass of the model. Also,
Emax and MAE are maximum error and mean absolute error of
the angle parameters, respectively.

To demonstrate the proposed approach, the angular param-
eters of target structures are generated in two ways: 1) chosen
from the grid; 2) randomly sampled in the configuration space.
We note that all the target structures should be collision free due
to the physical constraints in the real world. In case 1 (see the
example in Fig.4), the best candidate in the set is identical to the
target structure, with three zero errors and zero FCF. When the
target structure is randomly generated in the configuration space,
as in case 2 (see the examples in Fig.5), we can see that the set
of candidates (Table 2) show similar conformations as the target
structure and the best candidate in the set (Cand.1) has only 3.9
degrees of MAE and 7.1 degrees of Emax. After running the RRT
stochastic search for 30 steps, MAE is further reduced to 2.5 de-
grees and Eh is also decreased by 50%. Fig.6 shows the trends
of errors before and after applying the RRT. The plot is generated
by the results of 20 trials. In the figure, we can see both Eh and
MAE go down as the RRT is running. We note that the reason for
the slight increase in Emax may be caused by the different impor-
tance of the face and ears in FCF. The RRT places more weight
on putting the face on the right position while the ears could be
off alignment to a small extent.

Conclusions
Macromolecular crystallography has been the traditional

workhorse for determining structural models in the field of bio-
physics. Within macromolecular crystallography, the molecu-
lar replacement method has been a highly successful method for
providing phasing models to combine with experimental infor-
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START

Impose a coarse grid to discretize the configuration 
space and check collisions at the grid points

Obtain collision-free packing configurations

Sort the collision-free configurations by FCF

Generate a candidate set of 
configurations with 10 lowest FCF

Select the candidate with i-th lowest FCF

Starting with this candidate, using RRT 
algorithm to further reduce FCF

FCF<C

i<10

END

No

No

Yes

Yes

FIGURE 3. FLOWCHART OF PROCEDURES FOR GENERAT-
ING CANDIDATE PHASING MODELS BY PACKING.

mation to obtain 3D models. In this paper we demonstrate that
an alternative to molecular replacement, called “phasing by pack-
ing” is promising for multi-rigid-domain structures. Numerical
results illustrate the potential of this method.
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