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ABSTRACT also showed two recursive factorization methods of the mass m:

Over the past several decades a number of O(n) methodstrix for fixed-base and mobile-base manipulators [4]: Newton-
for forward and inverse dynamics computations have been devel- Euler factorization; and Innovations factorization. As another ap
oped in the multibody dynamics and robotics literature. In this proach, a new decomposition method using analytical Gaussic
paper, a method developed in 1973 by Fixman for O(n) compu- Elimination (GE) of the inertia matrix was introduced by Saha
tation of the mass-matrix determinant for a polymer chain con- in [9]. Extending his previous work, in [8], he presented a re-
sisting of point masses is adapted and modified. In other recent cursive forward dynamics algorithm for open-loop, serial-chain
papers, we and our collaborators recently extended this methodrobots. This work builds on the work of Angeles and Ma who
in order for Fixman’s results to be applicable to robotic manip- developed the Natural Orthogonal Complement for the manipu
ulator models with lumped masses. In the present paper we ex-lator mass matrix [13]. Saha’s algorithm has O(n) computationa
tend these ideas further to the case of serial chains composedcomplexity and is also based on reverse GE applied to the an.
of rigid-bodies. This requires the use of relatively deep mathe- lytical expressions of the elements of the inertia matrix. Inter-
matics associated with the rotation gro®t)3), and the special estingly, all of these approaches appear to be unaware of deve
Euclidean groupSE(3), and how to differentiate functions of ~ opments in the polymer physics literature in which Fixman de-
group-valued argument. veloped an O(n) method for computing the determinant of a sel
ial chain structure composed of rigid links and point masses [1]
In a series of recent papers, we extended Fixman’s method f
yield a new method for O(n) inversion of the mass matrix for se-
rial chains consisting of point masses [2]. In the present pape
we extend this formulation further by considering chains of rigid
bodies.

Introduction

The first O(n) algorithm for dynamics calculation was de-
veloped in the multi-body systems literature by Vereshchagin in
1975 [10]. In the robotics literature, the Luh-Walker-Paul recur-
sive Newton-Euler approach [12] has been a cornerstone of ma-
nipulator inverse dynamics for many years. Hollerbach showed
that O(n) inverse dynamics could also be achieved within a La- Fixman’'s Theorem and Efficient Inversion of the Mass
grangian dynamics setting [11]. In [3] and [4], Rodriguez and Matrix
coworkers described O(n) solutions for both the forward and in- We begin by introducingrixman’s Theorento the ASME
verse dynamics problems for serial manipulators by using recur- community and showing how extensions of Fixman'’s results cat
sive techniques from linear filtering and smoothing theory. They be used to efficiently invert the expressiblx = b whereM is
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the mass matrix for a serial chain composed of point masses. Infomula(AB)~! = B~*A~!to get

Section , we extend this to systems composed of rigid bodies.

Fixman’s Method

Given a set oN point masse$my, ..., my } with correspond-
ing set of absolute position$x,...,xn}, we define the3N-
dimensional composite position vector as

Let us assume that generalized coordinateg, ...,q, are used
to parameteriz&. Then

S Ed "~ diag1/m)] [("X

oq

)]

But since in general for an invertible matiix

(AT)_l _ (A_l)T

and since for square Jacobians
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oxg oxq oxg it follows that
o0y 00 0cn
ST .
ox ax ox ax G1l= a—q diag(1l a—q 3
g | w 1) 3 | [diadL/m)[ = . (3)
@ m m Recall that the derivative of a scalar-valued function of
Oar 9 On vector-valued argumentf,(z) with z € RN, with respect to its
_ argument is a row vector,
If we define
| o 0 of [of of
n’b ...... az — 621’...7 aZN .
0
[diagm)] = ml . 0 | This means that
D L o . 0q . dg
o ... ... 0 n‘hl 0X1 00Xy OXN
. . . aq _ atl]j . aé,- ‘ al.qj
wherel now stands for th8 x 3 identity matrix, then the mass x| e
matrix can be computed as: . .
o . 0 . 0
an_ an 0XN

S " diagm) Edk @

The elements o above can be written in the more familiar
form

where each entry in the above matrix is a 3-dimensional row vec
tor. Therefore,

Oxx  OX T N
oo (G- @)@

In the case when no constraints are imposed 3N, and all 6q' T 6q.- T aq. T
of the matrices in (2) are square. This means that we can use the (ﬁ) (ﬁ) (ﬁ)
2 Copyright (© 2005 by ASME

N

gij = > M

k=1




Hence, multiplying out the matrices in (3), one finds the elements for a constrained system, such as a robotic manipulator arm wit

of G~1 are of the form

i N 1 /g [ag;\"
en-EAE) @)
g ( )'J k;]_n‘k an an

With this background, we can state the following:
Fixman'’s theorem

Given a chain ofN + 1 point masses with internal coor-
dinates(cy, ....,C3n41)) partitioned into f soft variables and
hard variables aqay, ...,as;bs,...,br) such thatf +r = 3(N+
1), then

(4)

N
gij = I;)ml(axl/aCi)'(6X|/<3CJ)

and

/= (G 1)y = 3 160/0x) - (91/0x)

wherex; is the absolute position of tH&' point mass (and the
dot product of row vectors above is defined in the obvious way).
The above matrices can be partitioned as

Gaa Gap
G =
(Gba be)
and
Haa H
G—l _ aa ab> )
( Hpa Hob
Using the fact thaGG 1 =1, and hence
I Hab _ Gaa O
(o) = (a27) ®

it follows that

(deG)(deHpp) = deGaa.

As we shall see, for serial chains this provides a very use-

ful tool to computedeiG,, (WhereGga = M is the mass matrix

3

mass lumped at the joints and constraints on link lengths). Th
usefulness comes from the fact tlideis) can be computed in
closed form and thatdetHy,) can be computed efficiently for
serial structures because the serial structure mblkgs ban-
dlimited matrix. Examples of the application of this method to
computing the determinant of mass matrice©ifm) computa-
tions can be found in the polymer literature, where the methoc
was introduced [1].

Extending Fixman’s Method to Compute M1

Let us now denote the set of soft variables with the subscrip
‘1" and hard variables with subscrip ‘2’ (rather than Fixman’s
notation of ‘a’ and ‘b’). We now consider the fast inversion of
the equation

Giix = b (6)

whereGy1 is the mass matrix for a serial chain with constraints
(i.e., the mass matrill known in the robotics literature). In con-
trast,G is the full mass matrix when motion in all coordinates is
allowed. The direct numerical inversion of (6) us@@?®) com-
putations sincé&;1 in general is a full matrix.

Our approach will be to solve the larger system of equations

(&) G)=()

Obviously, if we can solve this system, then we can solve the
original.
Recall that by definition

_ Hi1 Hiz
G1l= .
<H21 H22>
Hence, by multiplying block-by-block, we see that
(Hll le) (Gn 0) _ (I le)
Ha1 Hzz ) \ GLL 1 OHg /-

This is essentially the same as Fixman’s linear algebra trick
Viewed in a slightly different way, this can be written as:

(Gn 0)1: (l H12>1<H11 H12>
GL 1 0 Ha2 Ho1Hoo )
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which means we can solve (7) if we can efficiently compute the and so
above matrices. In fact, we can write

R'R=-R'R=—(R'R)".

<| H12> B <|| —H12H221)

0 Hzo 0 HEzl ' Due to the skew-symmetry of this matrix, we can write-
vectR"R). The vectorwis the angular velocity as seen in the

This means that (7) can be inverted as body-fixed frame of reference.

The kinetic energy of a rigid-body is then
X I —HiH Y\ (Hu H b
= 12122 12 : €) 1.1

Performing all of the block multiplications, and extacting wherel is the constant moment of inertia matrix as seen in the

(since we do not care aboylt, we find body-fixed frame with origin at the center of mass, arid the
position of the center of mass of the rigid body as seen in a spact

X = (Hy1— H12H521H1T2)b. (9) fixed frame of reference.

The following subsections develop the mathematical frame
work needed to handle the rotational contribution to kinetic en-

Now if we were to explicitly compute all of the matrices above ergy in our extension of Fixman's theorem.

and mutiply and add them together, this would not be particu-
larly fast. However, we can compute= Hy1b andd = HlTZb ef- _ _ . . .
ficiently since most of the entries k; are zeros for chains with ~ Jacobians Associated with Parameterized Rotations

many degrees of freedora= H,'d can be computed efficiently When a time-varying rotation matrix is parameterized as
by decomposingdi,; into LU form. SinceHa; is bandlimited, so
too will be L andU, and the evaluation af can be performed in R(t) = A(qy(t), 02(t),03(t)) = A(q(t)),

O(n) computations. Finallyf = Hise can again be computed in

O(n) as carx =c—f.
() then by the chain rule from calculus, one has

Extension to Rigid Bodies R 0A n 0A | n OA .
While Fixman’s theorem represents a clever insight into how - 0q; & o & 003 G-

to directly exploit the serial nature of a chain consisting of point

masses, the mathematics involved is nothing more than multi-

variable calculus. This is because the positions of point masses

are quantities that belong R?, and taking gradients in this space

is a common mathematical operation. In contrast, it is not at all

clear without invoking higher mathematics how to do the same w=J(A(d))q (10)

for rigid bodies. In other words, whereas it makes sense to com-

pute gradients of the ford/0x; wherex; € R®, and the uncon- where

strained Jacobiadx/dq in Equation 1 is square, when consid-

ering rigid bodies, would it mean _anything to comp@r,éﬁRi L 0A L 0A L 0A

whereR, € SQO3) ? And the dimensions of the associated Jaco- J(A(Q)) = {vect(A ) 7vect(A ) 7vect(A ﬂ .

bians would certainly not be square given that rotation matrices el 902

have nine elements and only three free parameters. Hence, in this

section we address how to compute derivatives in an appropriate ~ ForZXZ Euler anglesq, 3, andy, this is written explicitly

way for functions of rotations and rigid-body motions in orderto  as [18]

extend Fixman'’s approach.

Multiplying on the left byR" and extracting the dual vector from
both sides, one finds that

To begin, recall that iR is a rotation matrix, sinBsiny cosy 0
J=[Rs(—y)Ri(—B)es,Rs(—Yy)er, &3] = | sinBcosy —siny 0
d 1 d cosp 01
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Differential Operators for  SQ(3)

Let A € SQ(3) be an arbitrary rotation, anf{A) be a func-
tion which assigns a real or complex number to each value of
A. In analogy with the definition of the partial derivative (or di-
rectional derivative) of a complex-valued functionR¥-valued
argument, we can define differential operators which act on func-
tions of rotation-valued argument:

0 .1 _ df(A-ROT[n,t])
% f(A)=Ilim = [f(A-ROT[n,g]) — f(A)] = dt(|;=o.
12

e—0
In the above definition the variabéeis introduced to emphasize
that the derivative is not with respectiio but rather the deriva-
tive along a coordinate defined by the direction
Note that for small motions,

ROT[n,e] ~l+6N=1+ e(nlEl +noEs + n3E3)

where
00 O 001 0-10
Eiz=(00-1]|; Ex= 000]); Es=|1 00].
01 O -100 0 00
andvectE) = &.

We now find the explicit forms of the operato;;% in any

3-parameter description of rotatiédn= A(d1, 0z, g3). Expanding
in a Taylor series, one writes

% b

where{q/ } are the parameters such thdt)1, 0z, q3)ROT[Nn, €] =
A(d},05,05). The ‘r’ denotes the fact that eaghis perturbed by
multiplication on the right bROT[n, €].

The coefficients a'|€ o are determined by observing
two different-looking, though equivalent, ways of writirfy-
ROT[n, €] for smalle:

of oqf

aqg; O le=0

0A oqf
A+€eAN~ A-ROT[n, g] ~ A+EZ|0q| le=0-

We then have that

0A oqf

aq; 0 [e=o;

N = ZAT

or
n=vectN) = . vect( AT 2A aq, o
- - i; aq £=0,

. . . r .
which is written as = Jdd%|5=o. This allows us to solve for

dg’ .
dicl:|g:() - J 1I"I.

Recall that] is the “body” Jacobian calculated in (11) for the
ZXZ Euler angles. Its inverse is

|

cosy —siny O

siny/sinf cosy/sinf3 0
—cotBsiny —cotBcosy 1

Making the shorthand notatio(«;% = 0%, we then write for the
ZXZ Euler angles
B 9 siny o d
35, ~ CoWsIVGL + g aa 05"
B 0 cosyd .0
% cothosya/nL W£ smy%,
o _9
083 oy

Infinitesimal Motions and Associated Jacobians
For “small” motions the matrix exponential description of
a rigid-body motion is approximated well when truncated at the
Q

first two terms:
exp[(OT \(;)At} ~I1+ (é% \é)At.

HereQ = —QT andveci(Q) = wdescribe the rotational part of
the displacement. Since the second term in (13) consists most
of zeros, it is common to extract the information necessary t
describe the motion as

(56) -()
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This six-dimensional vector is called arfinitesimalscrew mo- where
tion orinfinitesimal twist

Given a homogeneous transform 00 00 0010 0-100
g_|00-10]| . [ 0000| . |1 000].
R@) b(a) o1 oo0|" 7| -1000|" =7 |0 o000|"
H(q):(o.g 1q> 00 00 0000 0 000
parameterized wittiqs, ...,qgs), which we write as a vectay € 0001 0000 0000
RS, one can express the homogeneous transform corresponding _ 0000 . 0001 5 0000
to a slightly changed set of parameters as the truncated Taylor E4 = ; Es= ; Ee=
2 Slightly 9 P y 0000 0000 0001
Seres 0000 0000 0000

6 oH It is often convenient to write these in vector form as
H(q+3q) =H(q) + zlAqi—,(Q)
& oa
a=(E)"

This result can be shifted to the identity transformation by mul-
tiplying on the left byH ! to define an equivalent relative infin-
itesimal motion:

Given that elements oSE(3) (viewed as homogeneous
transforms) are parameterizedtds= H(q), the differential op-
erators take the form

. _LOHNY _LOHNY o =
(¢)=s@a where s@=|(H52) o (W00 ]-a%f(H)=lm)i[f(HoHi(8))—f(H)]=df(HéltHEI))lt—o

(14) (16)
SinceH andH;(€) are4 x 4 matrices, we henceforth drop the’”
notation since it is understood as matrix multiplication.
v=R"b. In analogy with theSQ(3) case, we observe for the case of

b
5 that

Here

When the rotations are parameterizedRas R(qi, 0y, 03)

. : . ‘ : 6 b
and the translations are parameterized using Cartesian coordi- HteHE =HHi(e) =H +¢ oH 99 0.

natesb(qa, 0, ds) = (G4, s, G| ", one finds that pa aq; ot
We then have that
J= )0 (15)
~\ORT y
= & _10HOq;
G-y
whereJ is the Jacobian for the case of rotation. =1 aj
or
Differential Operators for ~ SE(3)
The differential operatord/0¢; for i = 1,...,6 acting on - 6 _, 0H v aq;vi
functions onSE(3) are calculated much like they were for the E)' = ( 6) e |0
=1 qj €
case ofSQ(3). ]

For small translational (rotational) displacements from the _
identity along (about) thé" coordinate axis, the homogeneous which is written as, :J(q)d%:\s:o whereJ is theSE(3) Jaco-

transforms representing infinitesimal motions look like bian defined earlier. This allows us to solve for
. . dqr,i .
Hi(e) éexp(sEi) ~ 454+ €E; E|8:0:] e,
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which is used to calculate

6 af6q|
Zan o =0

We use the tilde to distinguish between the full motion and rota-

This means that the inverse of the mass matrix can be written i
the Fixman-like form:

v~ (5] [5]

tion operators. For the case when the rotations are parameterizednverse of the Mass Matrix for a Chain of Rigid Bodies

with ZXZ Euler anglest, 3,y, and translations are parameterized
in Cartesian coordinatés, by, bz, one finds

fori=1,2,3

%
9 _ ' (17)
% | (RTOp)i_s fori=4,5,6

wherea% is defined in Subsection , arid,); = d/0b;.

Extending Fixman’s Approach to Chains of Rigid Bod-
ies
Inverse of the Mass Matrix for a Single Rigid Body

Let 01,092,093 and ga,0s5,0s respectively parameterize the
translational and rotational parts of a rigid-body motion. The
associated mass matriM,(q) is of the form

i = (™5 )

JEIRIR

wheredr = Jr(01,02,03) = [0X/001,0X/00z,0%X/0qs] is the Ja-
cobian for translations (or positions R?) andJr = J(04,0s, Ge)

is theSQ(3) Jacobian. The inverse of the mass matrix for a single
rigid body is

- mJ 13T 0 11T
M~1(q) = =971
(a) ( 0 JANLT J J
wherel = (ml) @1 is the6 x 6 inertia matrix.
The inverse of the mass matrix can be rewritten using the
derivatives defined in the previous section. In particular, if we
define theSE(3) gradient of a function to be

o[ ]
08 08, 0%e]’
then we can apply this gradient to the paramegetsqy, ..., gg] "
used to parameterize a motion, and find that
aq -1
— =7 18
5 (18)
7

For a collection oh rigid bodies, the configuration space is

(SE(3))" = SE(3) x SE(3) x --- x SE(3)
Each rigid body has six degrees of freedom that are describe
by twists, thei" of which is& € R®, and can be described al-

ternatlvely by the six parametets € R®. Composite vectors

i % andg = [q],...,q1]" can be formed. The inverse
of the unconstralned mass matrix for this collection of rigid bod-
ies is then of the form

0= (oo un 3]

(19)
Everything then follows using the extension of Fixman’s theo-
rem as in the point-mass case, with (19) replacing (3). The sam
partitioning into soft and hard variables and the saDe) per-
formance results.

Conclusions

More than 30 years ago, a method for O(n) computation o
the determinant of the mass matrix for a chain of point masse
was developed by Prof. Marshall Fixman. Whereas this theorer
apparently has remained unknown to the multibody and robotic
literature, we have applied it to develop O(n) forward dynamics
algorithms in a series of papers. The specific contribution of thit
paper is to extend Fixman’s theorem to the case of serial chair
of rigid bodies. The associated mathematics required for thi
extension have also been presented.
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