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ABSTRACT
Over the past several decades a number of O(n) metho

for forward and inverse dynamics computations have been dev
oped in the multibody dynamics and robotics literature. In th
paper, a method developed in 1973 by Fixman for O(n) comp
tation of the mass-matrix determinant for a polymer chain co
sisting of point masses is adapted and modified. In other rece
papers, we and our collaborators recently extended this meth
in order for Fixman’s results to be applicable to robotic manip
ulator models with lumped masses. In the present paper we
tend these ideas further to the case of serial chains compo
of rigid-bodies. This requires the use of relatively deep math
matics associated with the rotation group,SO(3), and the special
Euclidean group,SE(3), and how to differentiate functions of
group-valued argument.

Introduction
The first O(n) algorithm for dynamics calculation was de

veloped in the multi-body systems literature by Vereshchagin
1975 [10]. In the robotics literature, the Luh-Walker-Paul recu
sive Newton-Euler approach [12] has been a cornerstone of m
nipulator inverse dynamics for many years. Hollerbach showe
that O(n) inverse dynamics could also be achieved within a L
grangian dynamics setting [11]. In [3] and [4], Rodriguez an
coworkers described O(n) solutions for both the forward and i
verse dynamics problems for serial manipulators by using recu
sive techniques from linear filtering and smoothing theory. The
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also showed two recursive factorization methods of the mass ma-
trix for fixed-base and mobile-base manipulators [4]: Newton-
Euler factorization; and Innovations factorization. As another ap-
proach, a new decomposition method using analytical Gaussian
Elimination (GE) of the inertia matrix was introduced by Saha
in [9]. Extending his previous work, in [8], he presented a re-
cursive forward dynamics algorithm for open-loop, serial-chain
robots. This work builds on the work of Angeles and Ma who
developed the Natural Orthogonal Complement for the manipu-
lator mass matrix [13]. Saha’s algorithm has O(n) computational
complexity and is also based on reverse GE applied to the ana-
lytical expressions of the elements of the inertia matrix. Inter-
estingly, all of these approaches appear to be unaware of devel-
opments in the polymer physics literature in which Fixman de-
veloped an O(n) method for computing the determinant of a ser-
ial chain structure composed of rigid links and point masses [1].
In a series of recent papers, we extended Fixman’s method to
yield a new method for O(n) inversion of the mass matrix for se-
rial chains consisting of point masses [2]. In the present paper
we extend this formulation further by considering chains of rigid
bodies.

Fixman’s Theorem and Efficient Inversion of the Mass
Matrix

We begin by introducingFixman’s Theoremto the ASME
community and showing how extensions of Fixman’s results can
be used to efficiently invert the expressionMx = b whereM is
Copyright c© 2005 by ASME



the mass matrix for a serial chain composed of point masses. I
Section , we extend this to systems composed of rigid bodies.

Fixman’s Method
Given a set ofN point masses{m1, ...,mN}with correspond-

ing set of absolute positions{x1, ...,xN}, we define the3N-
dimensional composite position vector as

x =




x1
...

xN




Let us assume thatn generalized coordinatesq1, ...,qn are used
to parameterizex. Then

∂x
∂q

=




∂x1
∂q1

· · · ∂x1
∂qk

· · · ∂x1
∂qn

...
. ..

...
.. .

...
∂x j
∂q1

· · · ∂x j
∂qk

· · · ∂x j
∂qn

...
. ..

...
.. .

...
∂xN
∂q1

· · · ∂xN
∂qk

· · · ∂xN
∂qn




(1)

If we define

[diag(mi)] =




m0II 0 · · · · · · 0

0
...

...
.. .

...
...

.. . mi II
. . . 0

...
...

. . .
. . .

...
0 · · · · · · 0 mnII




,

whereII now stands for the3×3 identity matrix, then the mass
matrix can be computed as:

G =
[

∂x
∂q

]T

[diag(mi)]
[

∂x
∂q

]
. (2)

The elements ofG above can be written in the more familiar
form

gi j =
N

∑
k=1

mk
∂xk

∂qi
· ∂xk

∂q j

In the case when no constraints are imposed,n= 3N, and all
of the matrices in (2) are square. This means that we can use th
2

n

e

fomula(AB)−1 = B−1A−1 to get

G−1 =
[

∂x
∂q

]−1

[diag(1/mi)]

[(
∂x
∂q

)T
]−1

.

But since in general for an invertible matrixA,

(AT)−1 = (A−1)T

and since for square Jacobians

[
∂x
∂q

]−1

=
[

∂q
∂x

]

it follows that

G−1 =
[

∂q
∂x

]
[diag(1/mi)]

[
∂q
∂x

]T

. (3)

Recall that the derivative of a scalar-valued function of
vector-valued argument,f (z) with z ∈ IRN, with respect to its
argument is a row vector,

∂ f
∂z

=
[

∂ f
∂z1

, ...,
∂ f
∂zN

]
.

This means that

∂q
∂x

=




∂q1
∂x1

· · · ∂q1
∂xk

· · · ∂q1
∂xN

...
. . .

...
. ..

...
∂q j
∂x1

· · · ∂q j
∂xk

· · · ∂q j
∂xN

...
. . .

...
. ..

...
∂qn
∂x1

· · · ∂qn
∂xk

· · · ∂qn
∂xN




where each entry in the above matrix is a 3-dimensional row vec-
tor. Therefore,

(
∂q
∂x

)T

=




(
∂q1
∂x1

)T
· · ·

(
∂q j
∂x1

)T
· · ·

(
∂qn
∂x1

)T

...
.. .

...
.. .

...(
∂q1
∂xk

)T
· · ·

(
∂q j
∂xk

)T
· · ·

(
∂qn
∂xk

)T

...
.. .

...
.. .

...(
∂q1
∂xN

)T
· · ·

(
∂q j
∂xN

)T
· · ·

(
∂qn
∂xN

)T



Copyright c© 2005 by ASME



Hence, multiplying out the matrices in (3), one finds the elemen
of G−1 are of the form

gi j = (G−1)i j =
N

∑
k=1

1
mk

(
∂qi

∂xk

)(
∂q j

∂xk

)T

. (4)

With this background, we can state the following:
Fixman’s theorem

Given a chain ofN + 1 point masses with internal coor-
dinates(c1, ....,c3(N+1)) partitioned into f soft variables andr
hard variables as(a1, ...,af ;b1, ...,br) such thatf + r = 3(N +
1), then

gi j =
N

∑
l=0

ml (∂xl/∂ci) · (∂xl/∂c j)

and

gi j = (G−1)i j =
N

∑
l=0

1
ml

(∂ci/∂xl ) · (∂c j/∂xl )

wherexl is the absolute position of thel th point mass (and the
dot product of row vectors above is defined in the obvious way

The above matrices can be partitioned as

G =
(

Gaa Gab

Gba Gbb

)

and

G−1 =
(

Haa Hab

Hba Hbb

)
.

Using the fact thatGG−1 = I , and hence

G

(
I Hab

0 Hbb

)
=

(
Gaa 0
Gba I

)
, (5)

it follows that

(detG)(detHbb) = detGaa.

As we shall see, for serial chains this provides a very us
ful tool to computedetGaa (whereGaa = M is the mass matrix
3

ts

).

e-

for a constrained system, such as a robotic manipulator arm with
mass lumped at the joints and constraints on link lengths). The
usefulness comes from the fact that(detG) can be computed in
closed form and that(detHbb) can be computed efficiently for
serial structures because the serial structure makesHbb a ban-
dlimited matrix. Examples of the application of this method to
computing the determinant of mass matrices inO(n) computa-
tions can be found in the polymer literature, where the method
was introduced [1].

Extending Fixman’s Method to Compute M−1

Let us now denote the set of soft variables with the subscript
‘1’ and hard variables with subscrip ‘2’ (rather than Fixman’s
notation of ‘a’ and ‘b’). We now consider the fast inversion of
the equation

G11x = b (6)

whereG11 is the mass matrix for a serial chain with constraints
(i.e., the mass matrixM known in the robotics literature). In con-
trast,G is the full mass matrix when motion in all coordinates is
allowed. The direct numerical inversion of (6) usesO(n3) com-
putations sinceG11 in general is a full matrix.

Our approach will be to solve the larger system of equations:

(
G11 0
GT

12 II

)(
x
y

)
=

(
b
0

)
. (7)

Obviously, if we can solve this system, then we can solve the
original.

Recall that by definition

G−1 =
(

H11 H12

H21 H22

)
.

Hence, by multiplying block-by-block, we see that

(
H11 H12

H21 H22

)(
G11 0
GT

12 II

)
=

(
II H12

0 H22

)
.

This is essentially the same as Fixman’s linear algebra trick.
Viewed in a slightly different way, this can be written as:

(
G11 0
GT

12 II

)−1

=
(

II H12

0 H22

)−1(
H11 H12

H21 H22

)
.

Copyright c© 2005 by ASME



which means we can solve (7) if we can efficiently compute th
above matrices. In fact, we can write

(
II H12

0 H22

)−1

=
(

II −H12H
−1
22

0 H−1
22

)
.

This means that (7) can be inverted as

(
x
y

)
=

(
II −H12H

−1
22

0 H−1
22

)(
H11 H12

H21 H22

)(
b
0

)
. (8)

Performing all of the block multiplications, and extactingx
(since we do not care abouty), we find

x = (H11−H12H
−1
22 HT

12)b. (9)

Now if we were to explicitly compute all of the matrices above
and mutiply and add them together, this would not be partic
larly fast. However, we can computec = H11b andd = HT

12b ef-
ficiently since most of the entries inHi j are zeros for chains with
many degrees of freedom.e= H−1

22 d can be computed efficiently
by decomposingH22 into LU form. SinceH22 is bandlimited, so
too will be L andU , and the evaluation ofe can be performed in
O(n) computations. Finally,f = H12e can again be computed in
O(n) as canx = c− f.

Extension to Rigid Bodies
While Fixman’s theorem represents a clever insight into ho

to directly exploit the serial nature of a chain consisting of poin
masses, the mathematics involved is nothing more than mu
variable calculus. This is because the positions of point mass
are quantities that belong toIR3, and taking gradients in this space
is a common mathematical operation. In contrast, it is not at a
clear without invoking higher mathematics how to do the sam
for rigid bodies. In other words, whereas it makes sense to co
pute gradients of the form∂/∂xi wherexi ∈ IR3, and the uncon-
strained Jacobian∂x/∂q in Equation 1 is square, when consid-
ering rigid bodies, would it mean anything to compute∂/∂Ri

whereRi ∈ SO(3) ? And the dimensions of the associated Jaco
bians would certainly not be square given that rotation matric
have nine elements and only three free parameters. Hence, in
section we address how to compute derivatives in an appropri
way for functions of rotations and rigid-body motions in order to
extend Fixman’s approach.

To begin, recall that ifR is a rotation matrix,

d
dt

(
RTR

)
=

d
dt

(II ) = 0,
4
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and so

RTṘ=−ṘTR=−(RTṘ)T .

Due to the skew-symmetry of this matrix, we can writeω=
vect(RTṘ). The vectorω is the angular velocity as seen in the
body-fixed frame of reference.

The kinetic energy of a rigid-body is then

T =
1
2

mẋ · ẋ+
1
2

ωT Iω

whereI is the constant moment of inertia matrix as seen in the
body-fixed frame with origin at the center of mass, andx is the
position of the center of mass of the rigid body as seen in a space-
fixed frame of reference.

The following subsections develop the mathematical frame-
work needed to handle the rotational contribution to kinetic en-
ergy in our extension of Fixman’s theorem.

Jacobians Associated with Parameterized Rotations
When a time-varying rotation matrix is parameterized as

R(t) = A(q1(t),q2(t),q3(t)) = A(q(t)),

then by the chain rule from calculus, one has

Ṙ=
∂A
∂q1

q̇1 +
∂A
∂q2

q̇2 +
∂A
∂q3

q̇3.

Multiplying on the left byRT and extracting the dual vector from
both sides, one finds that

ω= J(A(q))q̇ (10)

where

J(A(q)) =
[
vect

(
AT ∂A

∂q1

)
,vect

(
AT ∂A

∂q2

)
,vect

(
AT ∂A

∂q3

)]
.

For ZXZ Euler angles,α, β, andγ, this is written explicitly
as [18]

J = [R3(−γ)R1(−β)e3,R3(−γ)e1,e3] =




sinβsinγ cosγ 0
sinβcosγ −sinγ 0

cosβ 0 1


 .

(11)
Copyright c© 2005 by ASME



Differential Operators for SO(3)
Let A∈ SO(3) be an arbitrary rotation, andf (A) be a func-

tion which assigns a real or complex number to each value
A. In analogy with the definition of the partial derivative (or di-
rectional derivative) of a complex-valued function ofIRN-valued
argument, we can define differential operators which act on fun
tions of rotation-valued argument:

∂
∂ξn

f (A)= lim
ε→0

1
ε

[ f (A·ROT[n,ε])− f (A)]=
d f(A·ROT[n, t])

dt
|t=0.

(12)
In the above definition the variableξ is introduced to emphasize
that the derivative is not with respect ton, but rather the deriva-
tive along a coordinate defined by the directionn.

Note that for small motions,

ROT[n,θ]≈ II +θN = II +θ(n1E1 +n2E2 +n3E3)

where

E1 =




0 0 0
0 0−1
0 1 0


 ; E2 =




0 0 1
0 0 0

−1 0 0


 ; E3 =




0 −1 0
1 0 0
0 0 0


 .

andvect(Ei) = ei .
We now find the explicit forms of the operators∂∂ξn

in any
3-parameter description of rotationA= A(q1,q2,q3). Expanding
in a Taylor series, one writes

∂ f
∂ξn

=
3

∑
i=1

∂ f
∂qi

∂qr
i

∂ε
|ε=0

where{qr
i } are the parameters such thatA(q1,q2,q3)ROT[n,ε] =

A(qr
1,q

r
2,q

r
3). The ‘r’ denotes the fact that eachqi is perturbed by

multiplication on the right byROT[n,ε].
The coefficients ∂qr

i
∂ε |ε=0 are determined by observing

two different-looking, though equivalent, ways of writingA ·
ROT[n,ε] for smallε:

A+ εAN≈ A·ROT[n,ε]≈ A+ ε
3

∑
i=1

∂A
∂qi

∂qr
i

∂ε
|ε=0.

We then have that

N =
3

∑
i=1

AT ∂A
∂qi

∂qr
i

∂ε
|ε=0,
5

of

c-

or

n = vect(N) =
3

∑
i=1

vect

(
AT ∂A

∂qi

)
∂qr

i

∂ε
|ε=0,

which is written asn = Jdqr

dε |ε=0. This allows us to solve for

dqr

dε
|ε=0 = J−1n.

Recall thatJ is the “body” Jacobian calculated in (11) for the
ZXZ Euler angles. Its inverse is

J−1 =




sinγ/sinβ cosγ/sinβ 0
cosγ −sinγ 0

−cotβsinγ −cotβcosγ 1


 .

Making the shorthand notation∂
∂ξei

= ∂
∂ξi

, we then write for the

ZXZ Euler angles

∂
∂ξ1

=−cotβsinγ
∂
∂γ

+
sinγ
sinβ

∂
∂α

+cosγ
∂

∂β
;

∂
∂ξ2

=−cotβcosγ
∂
∂γ

+
cosγ
sinβ

∂
∂α
−sinγ

∂
∂β

;

∂
∂ξ3

=
∂
∂γ

.

Infinitesimal Motions and Associated Jacobians
For “small” motions the matrix exponential description of

a rigid-body motion is approximated well when truncated at the
first two terms:

exp

[(
Ω v
0T 0

)
∆t

]
≈ II +

(
Ω v
0T 0

)
∆t. (13)

HereΩ = −ΩT andvect(Ω) = ωdescribe the rotational part of
the displacement. Since the second term in (13) consists mostly
of zeros, it is common to extract the information necessary to
describe the motion as

(
Ω v
0T 0

)∨
=

(
ω
v

)
.

Copyright c© 2005 by ASME



This six-dimensional vector is called aninfinitesimalscrew mo-
tion or infinitesimal twist.

Given a homogeneous transform

H(q) =
(

R(q) b(q)
0T 1

)

parameterized with(q1, ...,q6), which we write as a vectorq ∈
IR6, one can express the homogeneous transform correspond
to a slightly changed set of parameters as the truncated Tay
series

H(q+δq) = H(q)+
6

∑
i=1

∆qi
∂H
∂qi

(q).

This result can be shifted to the identity transformation by mu
tiplying on the left byH−1 to define an equivalent relative infin-
itesimal motion:

(
ω
v

)
= J (q)q̇ where J (q)=

[(
H−1 ∂H

∂q1

)∨
, · · · ,

(
H−1 ∂H

∂q6

)

(14)
Here

v = RT ḃ.

When the rotations are parameterized asR = R(q1,q2,q3)
and the translations are parameterized using Cartesian coo
natesb(q4,q5,q6) = [q4,q5,q6]T , one finds that

J =
(

J 0
0 RT

)
(15)

whereJ is the Jacobian for the case of rotation.

Differential Operators for SE(3)
The differential operators∂/∂ξ̃i for i = 1, ...,6 acting on

functions onSE(3) are calculated much like they were for the
case ofSO(3).

For small translational (rotational) displacements from th
identity along (about) theith coordinate axis, the homogeneou
transforms representing infinitesimal motions look like

Hi(ε)
4
= exp(εẼi)≈ II 4×4 + εẼi

6

ing
lor

l-

∨]
.

rdi-

e
s

where

Ẽ1 =




0 0 0 0
0 0−1 0
0 1 0 0
0 0 0 0


 ; Ẽ2 =




0 0 1 0
0 0 0 0

−1 0 0 0
0 0 0 0


 ; Ẽ3 =




0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 ;

Ẽ4 =




0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


 ; Ẽ5 =




0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0


 ; Ẽ6 =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 .

It is often convenient to write these in vector form as

ei = (Ẽi)∨

Given that elements ofSE(3) (viewed as homogeneous
transforms) are parameterized asH = H(q), the differential op-
erators take the form

∂
∂ξ̃i

f (H)= lim
ε→0

1
ε

[ f (H ◦Hi(ε))− f (H)]=
d f(H ◦ (II + tẼi))

dt
|t=0

(16)
SinceH andHi(ε) are4×4 matrices, we henceforth drop the “◦”
notation since it is understood as matrix multiplication.

In analogy with theSO(3) case, we observe for the case of
∂

∂ξ̃i
that

H + εHẼi = HHi(ε) = H + ε
6

∑
j=1

∂H
∂q j

∂qr,i
j

∂ε
|ε=0.

We then have that

Ẽi =
6

∑
j=1

H−1 ∂H
∂q j

∂qr,i
j

∂ε
|ε=0,

or

(Ẽi)∨ =
6

∑
j=1

(
H−1 ∂H

∂q j

)∨ ∂qr,i
j

∂ε
|ε=0,

which is written asei = J (q)dqr,i

dε |ε=0 whereJ is theSE(3) Jaco-
bian defined earlier. This allows us to solve for

dqr,i

dε
|ε=0 = J−1ei ,

Copyright c© 2005 by ASME



which is used to calculate

∂ f

∂ξ̃i
=

6

∑
j=1

∂ f
∂q j

∂qr,i
j

∂ε
|ε=0.

We use the tilde to distinguish between the full motion and rota
tion operators. For the case when the rotations are parameteriz
with ZXZ Euler anglesα,β,γ, and translations are parameterized
in Cartesian coordinatesb1,b2,b3, one finds

∂
∂ξ̃i

=





∂
∂ξi

for i = 1,2,3

(RT∇b)i−3 for i = 4,5,6
(17)

where ∂
∂ξi

is defined in Subsection , and(∇b)i = ∂/∂bi .

Extending Fixman’s Approach to Chains of Rigid Bod-
ies
Inverse of the Mass Matrix for a Single Rigid Body

Let q1,q2,q3 and q4,q5,q6 respectively parameterize the
translational and rotational parts of a rigid-body motion. The
associated mass matrix,M(q) is of the form

M(q) =
(

mJTJT
T 0

0 JT
R IRJR

)

whereJT = JT(q1,q2,q3) = [∂x/∂q1,∂x/∂q2,∂x/∂q3] is the Ja-
cobian for translations (or positions inIR3) andJR = J(q4,q5,q6)
is theSO(3) Jacobian. The inverse of the mass matrix for a singl
rigid body is

M−1(q) =
(

mJ−1
T J−T

T 0
0 J−1

R I−1
R J−T

R

)
= J−1I−1J−T

whereI = (mII)⊕ I is the6×6 inertia matrix.
The inverse of the mass matrix can be rewritten using th

derivatives defined in the previous section. In particular, if we
define theSE(3) gradient of a function to be

∂ f

∂ξ̃
=

[
∂ f

∂ξ̃1
, · · · , ∂ f

∂ξ̃6

]
,

then we can apply this gradient to the parametersq = [q1, ...,q6]T

used to parameterize a motion, and find that

∂q

∂ξ̃
= J−1. (18)
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This means that the inverse of the mass matrix can be written in
the Fixman-like form:

M−1(q) =
[

∂q

∂ξ̃

]
I−1

[
∂q

∂ξ̃

]T

.

Inverse of the Mass Matrix for a Chain of Rigid Bodies
For a collection ofn rigid bodies, the configuration space is

(SE(3))n = SE(3)×SE(3)×·· ·×SE(3)

Each rigid body has six degrees of freedom that are described
by twists, theith of which is ξ̃i ∈ IR6, and can be described al-
ternatively by the six parametersqi ∈ IR6. Composite vectors

ξ̃= [̃ξ
T
1 , ..., ξ̃

T
n ]T andq = [qT

1 , ...,qT
n ]T can be formed. The inverse

of the unconstrained mass matrix for this collection of rigid bod-
ies is then of the form

M−1(q) =
[

∂q

∂ξ̃

]
[I−1

1 ⊕·· ·⊕ I−1
n ]

[
∂q

∂ξ̃

]T

. (19)

Everything then follows using the extension of Fixman’s theo-
rem as in the point-mass case, with (19) replacing (3). The same
partitioning into soft and hard variables and the sameO(n) per-
formance results.

Conclusions
More than 30 years ago, a method for O(n) computation of

the determinant of the mass matrix for a chain of point masses
was developed by Prof. Marshall Fixman. Whereas this theorem
apparently has remained unknown to the multibody and robotics
literature, we have applied it to develop O(n) forward dynamics
algorithms in a series of papers. The specific contribution of this
paper is to extend Fixman’s theorem to the case of serial chains
of rigid bodies. The associated mathematics required for this
extension have also been presented.
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