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ABSTRACT 
In this paper we show that the workspace of a highly artic- 

ulated manipulator can be found by solving a partial differential 
equation. This diffusion-type equation describes the evolution of 
the workspace density function depending on manipulator length 
and kinematic properties. The support of the workspace density 
function is the workspace of the manipulator. The PDE govern- 
ing workspace density evolution is solvable in closed form using 
the Fourier transform on the group of rigid-body motions. We 
present numerical results that use this technique. 

INTRODUCTION 
Consider a highly articulated robot arm with macro- 

scopically serial structure. Tha t  is, the arm may either 
be serial or consist of serially stacked platforms. For a 
continuously-actuated manipulator  with n degrees of free- 
dom, each sampled at K values, K n positions and orien- 
tations in the workspace result. Such diseretizations of 
continuous-motion manipulators  has been considered in the 
literature. See, for example, (6; 9). For reviews of other 
techniques in the analysis of manipulators  and workspaees 
see (1; 2; 10). 

This discrete collection of reachable positions and orien- 
tations can be described using a probabili ty density function 
p(g) where g E SE(3)  is a frame of reference. If Pi(g) is the 
density function of the i th segment (joint or platform) in 
the manipulator  with n segments, then (3): 

p(g) = (pl • p~ , . - .  • pn)(~) 

where • denotes convolution of functions of motion, which 
1 
is defined as (4): 

8 pl(h)p2(h -1 og)d(h). (pl  * p2)(g)  = E(a) 

Here d(h) for h E SE(3)  is the bi-invariant integration mea- 
sure for SE(3)  (see (8)). 

In this paper  we view the workspace of a highly articu- 
lated manipulator  as something tha t  grows (or evolves) from 
a single point source at the base. As we allow the length of 
the manipulator  to increase from zero, the workspace grows 
into the full volume corresponding to the whole arm. In this 
way of viewing manipulator  workspaces, the density func- 
tion p(g; L) corresponds to a segment of length L. p(g; O) = 
6(g) and p(g; 1) is the density of the whole workspace (with 
the manipulator  length normalized to unity). If the manip- 
ulator is homogeneous along its length one would expect 

p(g; L1) * p(g; L~) = p(g; L1 + L2). 

In Section 3 we present a diffusion equation with two 
parameters  for planar manipulators:  the degree of articula- 
bility of the manipulator  and the degree of asymmetry.  We 
show how this equation can be solved to find the workspace 
density function p(g; 1). This requires the techniques re- 
viewed in Section 2. Numerical results are presented in 
Section 4. 
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FOURIER ANALYSIS OF MOTION 
The Euclidean motion group, SE(N) 1, is the semidi- 

rect product  of 1~ N with the special orthogonal group, 
SO(N). We denote elements of SE(N) as g = (a,A) E 
SE(N) where A E SO(N) and a E ~/:~N. For any g = (a, A) 
and h = ( r ,R)  E SE(N),  the group law is written as 
g o h = (a + Ar,  AR), and 9-1 = (_ATa, AT). It  is of- 
ten convenient to think of an element of SE(N) as an 
(N + 1) x (N + 1) homogeneous transformation matr ix  of 
the form: 

Each element of SE(2)  is parameterized in polar coor- 
dinates as: 

[ cos O - sin O a s~ ¢ cos ¢ "~ 
g(a,¢,O)= / s i ; 0  cos00 

where a is the magni tude of translation. 
The Fourier t ransform of a function of motion, f(g), is 

an infinite-dimensional matr ix  defined as (4): 

.T(f) = f(p) = ~ f(g)U(g -1,p) d(g) 

where U(g, p) is an infinite dimensional matr ix  function of g 
and a frequency paramete r  p with the property that  U(gl o 
g2,P) = U(gl,p)U(g2,p). This kind of matr ix  is called a 
matrix representation of SE(2) .  It  has the property that  it 
converts convolutions on SE(2)  into matr ix  products: 

~( f l  * f2) = .~(f2).T(fl), 

and the original function can be reconstructed as 

~0 °° 
~ - 1 ( ] )  : f ( g )  .~ trace(](p)U(g,p))pdp. 

Explicitly, the matr ix  elements of U(g,p) are expressed as 
(4): 

Umn(g(a, ¢, O),p) = in-me-i[nO+(rn-n)¢]Jn_m(pa) (1) 

1The notation SE(N)  comes from the terminology Special Eu- 
clidean group of N dimensional space. 
2 
where J r (x)  is the u th order Bessel function. 
From this expression, and the fact tha t  U(g, p) is a uni- 

ta ry  representation, we have that:  

Umn(g-l(a, ¢, O),p) = U~ln(g(a, ¢, O),p) = 

Unm (g( a, ¢, O ), p) = in-m ei[m°+(n-m)¢] Jm_n (pa ). 

Using the basis for the Lie algebra se(2): 

2 1  

(2) 

(i°i) (i°Z)(Z -1°) 0 ; X2 = 0 ; X3 = 0 0 ; 
0 0 0 0 

one finds 

gl(t) = exp(tX1) = 1 ; 
0 

g2(t) = exp(tX2) = 1 ; 
0 

cost  - s i n t  0 )  
g3(t) = e x p ( t X 3 ) =  | s i n t  cost  0 . 

\ o  0 1 

Many rigid-body motion in the plane can be expressed as 
an appropriate  combination of these three basic motions. 

The way to take partial  derivatives of a function of mo- 
tion (such as a workspace density function) is to evaluate 

2 ~ f  = d ~ f (g o exp( tXi) )[t=o. 

Explicitly, we can define differential operators  ~/R (in 
polar coordinates) as: 

0 2~=cos(O - ¢)~a + sin(0 - ¢) 0 

a 0¢  
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- 0 
X ~  = - sin(0 - ¢) ~a  + 

cos(O - ¢) O 

a 0 ¢  

- 0 

x ~  = N 

DIFFUSION ON THE M O T I O N  GROUP 
FORM SOLUTION 

Consider the diffusion-type equation 

WITH CLOSED- 

OL O--L= ( '~2R + /3(2~)2 + c~23R) f" (3) 

Equation (3) describes a process tha t  evolves on the 
group of rigid-body motions. The parameter  /3 describes 
how flexible the manipulator  is in the sense of how much a 
segment of the manipulator  can bend per unit length. If the 
manipulator  can bend a lot, then/3 will have a large value. 
If the range of motion is very small, the value of/3 will be 
small. The parameter  c~ describes the asymmetry  in how 
the manipulator  bends, when c~ = 0, the manipulator  can 
reach left and right with equal ease. When c~ < 0, there is 
a preference for bending to the right, and when a > 0 there 
is a preference for bending to the left. 

This simple two-parameter  model qualitatively cap- 
tures the behavior tha t  has been observed in numerical 
simulations of workspace densities of discretely-actuated 
variable-geometry truss manipulators  (7). 

In analogy with the classical Fourier transform, which 
converts derivatives of functions of position into algebraic 
operations in Fourier space, there are operational properties 
for the motion-group Fourier transform. 

By the definition of the SE(2)-Fourier  Transform 5 c and 
operator .,Y~, we can have 

f [ 2 g y ]  = ~ (x , , p ) ] (p )  

where 

d (U(exp(tXi),P)) t=o. ~(x~,p) = -di 

Explicitly, 

Umn (exp (tXl), p) = i n- m Jm- n (pt). 
We know that  

~xJm(x ) = 1 [Jm-l(X) - Jm+l (x)] 

and 

1 for m - n  = 0  
Jm-n(O) = 0 for m - n  ¢ O. 

Hence, 

~tUmn(exp(tX1)'P) t=o-  

Likewise, 

iN(am,n+1 -I'- rim,n--I). 

Umn (exp (tX2), p) = in-me-i(n-m)~'/2 Jm-n (pt) = Jm-n (pt), 

and so 

and 

~tUmn(exp(tX2), P) = (Jm-n-1 (0) (0)) Jm-n+l 
t=O 

P 5  = 5( re,n-{-1 -~ 5re,n--l). 

Similarly, we find 

Um~(exp(tX3),p) = e--imt Sm,n 

~tUmn(exp(tX3)'P) t=o = -irnSm,n. 

Hence, given an equation of the form of (3), we can con- 
vert this to an infinite system of linear ordinary differential 
equations: 

d_] = B ]  
dL 

where the elements of the matr ix  

B = ~,(X2,p) + N~(X3,p)] 2 + ~ ( X 3 , p )  
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are written explicitly as 

P6  Bran "= ~(  rn,n+l -- ~m,n--1) ( t im  2 q- io lm)~m,n.  

In principle, since f(g; O) = 5(g), and ](p; 0) is the identity, 
we have for L = 1 the solution 

f(p; 1) = exp(B),  

which is substi tuted in the Fourier inversion formula to re- 
cover f(g; 1) (which we denote simply as f(g)). 

In practice, the numerical solution requires the trun- 
cation of this infinite system so that  we consider a band- 
limited approximation.  The result is then substi tuted into 
the Fourier inversion formula for the motion group. 

NUMERICAL RESULTS 

In numerical implementations, the infinite-dimensional 
matrix function U(g,p) is truncated.  The result is a band- 
limited approximation.  We chose the upper bound of the 
frequency parameter  p to be 250. The matr ix  U(g,p) is 
t runcated at -LB _< rn, n _< LB where LB = 12. Since the 
numerical results of the Fourier t ransform of this diffusion 
equation are approximated by a band-limited version, the 
outer elements (values of f = exp(B) with Iml, Inl ~ LB) 
can have larger errors. We therefore impose a second cutoff 
frequency of LB = 3 after the exponentiation when substi- 
tuting into the Fourier inverse formula. 

The effects of the two parameters  a and fl on the 
workspace are shown in Figure 1 and Figure 2 respectively. 
In Figure 1, a is fixed to 0 and fl varies from 2 to 4. 
The function f(g) at different values of rotation angle 0 
(0, 7r/4, 7r/2, 3~-/4, and 7r) are given. We see that  for larger 
fl, i.e, a more flexible manipulator ,  the workspace (support 
of the density function f(g)) is larger. In Figure 2, we set 
fl =3, a = l ,  3, and -3. Slices of f(g) for several values of 
the rotation angle 0 are given. The positional workspace 
densities (integral of f(g) over all values of 0) for these six 
kinds of conditions are illustrated in Figure 3. Figures 3.e 
and 3.f show the fact the a affects how the workspace of the 
manipulator  bends to the left and right. 
4 
13=2 1~=3 13=4 

0 = 0 :  

0 =rd4: 

0 = ~ 2 :  

0 = 3 ~ 4 :  

0=/~: 

Figure 1 (a = 0) 

ot=l a = 3  a = - 3  

'1 I 

Figure 2 (fl = 0) 
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(a) a=O; 13=2 (b) a=O; 13=3 (c) a-.O; [3=4 

(d) c~l: ~ 3  (e) ct=3; 9=3 (0 ct=-3; ~3=3 

Figure 3 

CONCLUSION 
In this work, it is shown how the workspace density of 

frames reachable by a highly articulated manipulator can 
be generated as the solution to a partial differential equa- 
tion. This diffusion-type equation describes a process that 
evolves on the group of rigid-body motions. The support 
of this function is the workspace. We presented numerical 
solutions for different kinematic parameters. 
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