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ABSTRACT

In this paper we show that the workspace of a highly artic-
ulated manipulator can be found by solving a partial differential
equation. This diffusion-type equation describes the evolution of
the workspace density function depending on manipulator length
and kinematic properties. The support of the workspace density
function is the workspace of the manipulator. The PDE govern-
ing workspace density evolution is solvable in closed form using
the Fourier transform on the group of rigid-body motions. We
present numerical results that use this technique.

INTRODUCTION

Consider a highly articulated robot arm with macro-
scopically serial structure. That is, the arm may either
be serial or consist of serially stacked platforms. For a
continuously-actuated manipulator with n degrees of free-
dom, each sampled at K values, K™ positions and orien-
tations in the workspace result. Such discretizations of
continuous-motion manipulators has been considered in the
literature. See, for example, (6; 9). For reviews of other
techniques in the analysis of manipulators and workspaces
see (1; 2; 10).

This discrete collection of reachable positions and orien-
tations can be described using a probability density function
p(g) where g € SE(3) is a frame of reference. If p;(g) is the
density function of the it" segment (joint or platform) in
the manipulator with n segments, then (3):

p(g) = (p1 % p2 % --- % pn)(g)

where * denotes convolution of functions of motion, which

is defined as (4):

(o1 % p2)(g) = / pr(R)pa(h™ o g)d(R).

SE(3)

Here d(h) for h € SE(3) is the bi-invariant integration mea-
sure for SE(3) (see (8)).

In this paper we view the workspace of a highly articu-
lated manipulator as something that grows (or evolves) from
a single point source at the base. As we allow the length of
the manipulator to increase from zero, the workspace grows
into the full volume corresponding to the whole arm. In this
way of viewing manipulator workspaces, the density func-
tion p(g; L) corresponds to a segment of length L. p(g;0) =
d(g) and p(g; 1) is the density of the whole workspace (with
the manipulator length normalized to unity). If the manip-
ulator is homogeneous along its length one would expect

p(g; L1) * p(g; L2) = p(g; L1 + L2).

In Section 3 we present a diffusion equation with two
parameters for planar manipulators: the degree of articula-
bility of the manipulator and the degree of asymmetry. We
show how this equation can be solved to find the workspace
density function p(g;1). This requires the techniques re-
viewed in Section 2. Numerical results are presented in
Section 4.
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FOURIER ANALYSIS OF MOTION

The Euclidean motion group, SE(N) 1, is the semidi-
rect product of RN with the special orthogonal group,
SO(N). We denote elements of SE(N) as g = (a, A) €
SE(N) where A € SO(N) and a € IRN. For any g = (a, A)
and h = (r,R) € SE(N), the group law is written as
goh = (a+ Ar,AR), and g7! = (—ATa, AT). Tt is of-
ten convenient to think of an element of SE(N) as an
(N +1) x (N + 1) homogeneous transformation matrix of

the form:
[ Aa
9= 10T 1

Each element of SE(2) is parameterized in polar coor-
dinates as:

cosf —sinf acos¢
sinf cosf asing
0 0 1

g(a,9,8) =

where a is the magnitude of translation.
The Fourier transform of a function of motion, f(g), is
an infinite-dimensional matrix defined as (4):

1 = o) /f p) d(g)

where U(g, p) is an infinite dimensional matrix function of g
and a frequency parameter p with the property that U(g; o
92,2) = U{g1,p)U(g2,p). This kind of matrix is called a
matriz representation of SE(2). It has the property that it
converts convolutions on SFE(2) into matrix products:

F(fi* f2) = F(f2)F(fr),

and the original function can be reconstructed as

h=sw=[ "~ trace(F(p)U (g, p))pdp.

Explicitly, the matrix elements of U(g,p) are expressed as

(4):

Umn(9(a, ¢,8),p) = " eI, (pa) (1)

1The notation SE(N) comes from the terminology Special Eu-
clidean group of N dimensional space.

where J,(z) is the v*" order Bessel function.
From this expression, and the fact that U(g, p) is a uni-
tary representation, we have that:

Umn (97" (a,$,0),P) = upmh(9(a, 4,6),p) =

Unm(g(a, §,0),p) = i""mellmIt(nmmil g (ha).  (2)

Using the basis for the Lie algebra se(2):

001 000 0-10
X1=1000]; Xo=(001]; Xz=[100];

0600 000 000
one finds

10t
g1(t) =exp(tX1)=[ 010 );
001

100
g2(t) = exp(tXa)=| 01 ¢ |;
001

cost —sint 0
g3(t) = exp(tXs) = | sint cost O | .
0 0 1

Many rigid-body motion in the plane can be expressed as

an appropriate combination of these three basic motions.
The way to take partial derivatives of a function of mo-

tion (such as a workspace density function) is to evaluate

2 £(g 0 exp(tX )]0

SRy

Explicitly, we can define differential operators X',-R (in
polar coordinates) as:

sin(@ — ¢) 9

< o}
X1R=cos(9—¢)5-&+ - 9
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DIFFUSION ON THE MOTION GROUP WITH CLOSED-
FORM SOLUTION
Consider the diffusion-type equation

o = (HF+ oL +akf) £ @

Equation (3) describes a process that evolves on the
group of rigid-body motions. The parameter 8 describes
how flexible the manipulator is in the sense of how much a
segment of the manipulator can bend per unit length. If the
manipulator can bend a lot, then 8 will have a large value.
If the range of motion is very small, the value of 8 will be
small. The parameter a describes the asymmetry in how
the manipulator bends. when a = 0, the manipulator can
reach left and right with equal ease. When « < 0, there is
a preference for bending to the right, and when a > 0 there
is a preference for bending to the left.

This simple two-parameter model qualitatively cap-
tures the behavior that has been observed in numerical
simulations of workspace densities of discretely-actuated
variable-geometry truss manipulators (7).

In analogy with the classical Fourier transform, which
converts derivatives of functions of position into algebraic
operations in Fourier space, there are operational properties
for the motion-group Fourier transform.

By the definition of the S E(2)-Fourier Transform F and
operator X[, we can have

FIXEf] = uw(Xs,p) f(p)

where

uXiup) = 5 (Uexnx.p)

t=0

Explicitly,

umn(exp(tXl)vp) = in_me—n(pt)'

We know that

d 1
%Jm(m) = 2[Jm 1(2) ~ Jmy1 ()]
and
_Jlform—-n=0
m-n(0) = {0 form —n #0.
Hence,

d )
_'Umn(exp(tXl)ap) = _E'p(‘sm,n-i-l + 6m,n-—1)-

dt

t=0
Likewise,
Umn(exp(tX2),p) = in_me—i(n_m)ﬂ/z‘] —n(pt) = Jm—n(pt),
and so
d
_Umn(exp(tXQ)ap) (Jm n— 1(0) Jm— n+1(0))

at t=0

it g(ém,n-{-l + 5m,n—-1)-

Similarly, we find

Umn (exp(th) ) p) = e—imté‘

and

d
Eumn (exp(tX3), p)

= —iMdm p.
t=0

Hence, given an equation of the form of (3), we can con-
vert this to an infinite system of linear ordinary differential
equations:

af _
dL ~

'\h.)

where the elements of the matrix

B = u(X,,p) + Bu(Xs,p))* + au(Xs,p)
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are written explicitly as
_p 2
Bmn = 5(6m,n+1 - 6m,n—1) - (ﬂm + 7'0"’71)(577‘1,,11,-

In principle, since f(g;0) = 6(g), and f(p;0) is the identity,
we have for L = 1 the solution

f(p; 1) = exp(B),

which is substituted in the Fourier inversion formula to re-
cover f(g;1) (which we denote simply as f(g)).

In practice, the numerical solution requires the trun-
cation of this infinite system so that we consider a band-
limited approximation. The result is then substituted into
the Fourier inversion formula for the motion group.

NUMERICAL RESULTS

In numerical implementations, the infinite-dimensional
matrix function U(g, p) is truncated. The result is a band-
limited approximation. We chose the upper bound of the
frequency parameter p to be 250. The matrix U(g,p) is
truncated at ~Lp < m,n < Lp where Lg = 12. Since the
numerical results of the Fourier transform of this diffusion
equation are approximated by a band-limited version, the
outer elements (values of f = exp(B) with |m|,|n| = Lp)
can have larger errors. We therefore impose a second cutoff
frequency of Lp = 3 after the exponentiation when substi-
tuting into the Fourier inverse formula.

The effects of the two parameters a and [ on the
workspace are shown in Figure 1 and Figure 2 respectively.
In Figure 1, « is fixed to 0 and S varies from 2 to 4.
The function f(g) at different values of rotation angle 6
(0,7/4,7/2,3n/4, and 7) are given. We see that for larger
B, i.e, a more flexible manipulator, the workspace (support
of the density function f(g)) is larger. In Figure 2, we set
B =3, a=1, 3, and -3. Slices of f(g) for several values of
the rotation angle 8 are given. The positional workspace
densities (integral of f(g) over all values of §) for these six
kinds of conditions are illustrated in Figure 3. Figures 3.e
and 3.f show the fact the o affects how the workspace of the
manipulator bends to the left and right.

B=2 =3 p=4

RORGLS
~ O
QRO
O

Figure 1 (o = 0)

6=3w4:

o=m

Figure 2 (8 =0)
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fa) =l f=2 {h} =0, =3 (¢l o=l fi=4

(o) o=3; f=3

Figure 3

CONCLUSION

In this work, it is shown how the workspace density of
frames reachable by a highly articulated manipulator can
be generated as the solution to a partial differential equa-
tion. This diffusion-type equation describes a process that
evolves on the group of rigid-body motions. The support
of this function is the workspace. We presented numerical
solutions for different kinematic parameters.
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