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SUMMARY
Over the past several decades, a number of O(n) methods
for forward and inverse dynamics computations have been
developed in the multibody dynamics and robotics literature.
A method was developed by Fixman in 1974 for O(n)
computation of the mass-matrix determinant for a serial
polymer chain consisting of point masses. In other of our
recent papers, we extended this method in order to compute
the inverse of the mass matrix for serial chains consisting of
point masses. In the present paper, we extend these ideas
further and address the case of serial chains composed
of rigid-bodies. This requires the use of relatively deep
mathematics associated with the rotation group, SO(3),
and the special Euclidean group, SE(3), and specifically, it
requires that one differentiates real-valued functions of Lie-
group-valued argument.

KEYWORDS: Serial manipulators; Mass-matrix inversion;
Forward dynamics; Polymer chains; Polypeptides.

Nomenclature
M = G11 the constrained mass matrix
G the unconstrained mass matrix
H = G−1 the inverted mass matrix of the

unconstrained system
q = [q1, . . . , qN ]T the vector of generalized

coordinates
Soft variables variables defining allowable

motion of chains with kinematic
constraints

Hard variables constrained variables of the chain
s = [s1, . . . , sf ]T the vector of soft variables
h = [h1, . . . , hr ]T the vector of hard variables
mi the ith point mass or the mass of

the ith rigid body
Ii the moment of inertia of the ith

rigid body in a frame attached at
the center of mass

Ti = (Ri, pi) the rigid-body transformation
from the global reference frame
to the Denavit-Hartenberg (D–H)
frame i. Ti ∈ SE(N), Ri ∈
SO(N) and p ∈ IRN for N = 2
or N = 3
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T c
i = (Rc

i , pc
i ) the transformation from the global

reference frame to the ith center
of mass

Qi the homogeneous transformation
from Ti to T c

i

T i−1
i = (Ri−1

i , pi−1
i ) the relative transformation from

the D–H frame i − 1 to the D–H
frame i

A ⊕ B = (
A 0
0 B

)
for any square matrices A and B

screw(ei, θ, x) a transformation made by the
rotation θ about the axis i and
the translational displacement,
x, along the same axis

I = I ⊕ mII 3 ∈ IR6×6 the inertia matrix in a frame at the
center of mass of a rigid body

J ∈ IR3×3 the Jacobian associated with
parameterized rotations

J ∈ IR6×6 the Jacobian associated with
parameterized rigid-body
transformations

IIk k × k identity matrix
0k k × k zero matrix
0l×k l × k zero matrix

1. Introduction
Serial chains consisting of n rigid bodies connected with
rotational or prismatic joints have been studied for many
years. The first O(n) algorithm for dynamics computation
was developed in the multibody systems literature in 1975.1

In the robotics area, the Luh–Walker–Paul recursive Newton–
Euler approach2 has been a cornerstone of manipulator
inverse dynamics for many years. Another O(n) algorithm
within a Lagrangian dynamics setting was presented in.3

In addition, recursive techniques from linear filtering and
smoothing theory for serial manipulators were introduced
for both the forward and inverse dynamics problems.5,6

In Ref. [6], two recursive factorization methods of the
mass matrix were presented for fixed-base and mobile-base
manipulators: Newton–Euler factorization and innovations
factorization. As another approach, a decomposition method
using analytical Gaussian Elimination (GE) of the inertia
matrix7 and a recursive forward dynamics algorithm for
open-loop, serial-chain robots8 were presented by Saha. His
algorithm has O(n) computational complexity and is also
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based on reverse GE applied to analytical expressions of
the elements of the inertia matrix. It builds on the Natural
Orthogonal Complement for the manipulator mass matrix
developed by Angeles and Ma.9 In a series of papers,10–14

Anderson and his colleagues presented a numerical analysis
and simulations of multi-rigid-body dynamic systems. An
O(n + m) algorithm for multibody systems with arbitrarily
many closed loops, containing n generalized coordinates
and m independent constraints, was presented in Ref. [15].
Featherstone showed a new efficient factorization of the joint
space inertia matrix (JSIM) for branched kinematic trees.16,17

A coordinate invariant algorithm for forward dynamics using
Lie groups and Lie algebras was introduced in [18]. More
recently, a recursive O(n) forward dynamic computations
was used to obtain a set of Hamiltonian equations for open-
loop and closed-loop multibody systems.19,20

Interestingly, all of these approaches appear to be unaware
of developments in the polymer physics literature in which
Fixman21 developed an O(n) method for computing the
mass-matrix determinant of a serial chain structure composed
of rigid links and point masses. In a series of recent
conference papers, we extended Fixman’s method to yield
a new method for O(n) inversion of the mass matrix for
planar serial manipulators and polymer chains consisting of
point masses.22,23 In Ref. [24], we examined chains of rigid
bodies. The inverse of the constrained mass matrix (M−1) is
obtained by computing the inverse of the unconstrained mass
matrix (H ) composed of four block matrices which appear
to be sparse and band-limited due to the special properties
of the serial chain structure. Using these properties, M−1 is
calculated by

M−1 = H11 − H12(H22)−1H21 (1)

where Hij ’s are block matrices of H . This form is known as
the Schur complement.25 The main difference of our work
and others that use the Schur compliment is that we adapt
Fixman’s method of partitioning generalized coordinates into
soft and hard variables. This partitions H into four sparse
and band-limited matrices instead of using the mathematical
manipulations in Ref. [25]. In order to do this, the serial chain
is viewed as a collection of rigid bodies, and the constraints
between them that define the joints are written as functions
on SE(3). These functions are then differentiated using the
appropriate concept from Lie theory. In contrast to other Lie-
group-based approaches where dynamical phenomena on the
groups of interest are considered, we perform operations on
the space of differentiable functions on the group.

The rest of the paper is organized as follows. In Section 2,
we briefly review Fixman’s method and our extension to
solve Mx = b for given M and b in O(n) time for n-
link serial chains consisting of n point masses. Further
extensions to rigid-body applications are described in Section
3. In Section 4, we explain how to use the algorithm in
detail, and include numerical examples for the PUMA 560
robot arm and a polypeptide chain. The Denavit–Hartenberg
(D–H) parameterization is used to describe rigid-body
motions for the examples.

2. Fixman’s Theorem and Efficient Inversion
of the Mass Matrix

2.1. Background
Given a set of n point masses {m1, . . . , mn} with a
corresponding set of absolute positions {x1, . . . , xn}, we
define the 3n-dimensional composite position vector as
x = [xT

1 , . . . , xT
n ]T . If N generalized coordinates, q1, . . . , qN ,

are used to parameterize x, then the partial derivatives of x
with respect to the N generalized coordinates can be arranged
in the 3n× N Jacobian matrix:

[
∂x
∂q

]
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂x1
∂q1

· · · ∂x1
∂qk

· · · ∂x1
∂qN

...
. . .

...
. . .

...
∂xj

∂q1
· · · ∂xj

∂qk
· · · ∂xj

∂qN

...
. . .

...
. . .

...
∂xn

∂q1
· · · ∂xn

∂qk
· · · ∂xn

∂qN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ IR3n×N. (2)

If we define, for m = (m1, . . . , mn),

[diag(m)] =

⎛
⎜⎜⎜⎜⎜⎜⎝

m1II3 0 · · · · · · 0

0
. . .

. . .
. . .

...
...

. . . miII3
. . .

...
...

. . .
. . .

. . . 0
0 · · · · · · 0 mnII3

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ IR3n×3n,

then the generalized mass matrix is given by

G =
[

∂x
∂q

]T

[diag(m)]

[
∂x
∂q

]
∈ IRN×N. (3)

In the case when no constraints are imposed, N = 3n,
and all of the matrices in Eq. (3) are square and
invertible almost everywhere.1 Therefore, it follows that, for
m̃ = (1/m1, . . . , 1/mn),

H =
[
∂q
∂x

]
[diag(m̃)]

[
∂q
∂x

]T

. (4)

Recall that the derivative of a scalar-valued function of
vector-valued argument, f (z) with z ∈ IRn, with respect to
its argument is a row vector, ∂f

∂z = [
∂f

∂z1
, . . . ,

∂f

∂zn

]
. This means

that

[
∂q
∂x

]
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂q1

∂x1
· · · ∂q1

∂xk

· · · ∂q1

∂xn
...

. . .
...

. . .
...

∂qj

∂x1
· · · ∂qj

∂xk

· · · ∂qj

∂xn
...

. . .
...

. . .
...

∂qN

∂x1
· · · ∂qN

∂xk

· · · ∂qN

∂xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where each entry in the above matrix is a 3-dimensional row
vector.

1 For general invertible matrices A and B, (AB)−1 =B−1A−1 and
(AT )−1 = (A−1)T .
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2.2. Fixman’s method and extension to solve Mx = b
We begin by introducing Fixman’s Theorem to the robotics
community and showing how extensions of Fixman’s results
can be used to efficiently invert the expression Mx = b, where
M is the mass matrix for a serial chain composed of point
masses and b is any given vector with matching dimension.

Given an n-link serial chain with point masses, the
vector of generalized coordinates is partitioned into the
vector of soft variables and the vector of hard variables,
such that q = [sT , hT ]T where s = [s1, . . . , sf ]T and h =
[h1, . . . , hr ]T when f + r = 3n.21 Then, Eqs. (3) and (4) are
also represented as partitioned matrices, such that

G =
(

G11 G12

GT
12 G22

)
; H =

(
H11 H12

HT
12 H22

)
.

Now we consider the fast inversion of G11 of the equation

x = G−1
11 b (5)

where G11(=M) is the mass matrix for a serial chain
with constraints. In general, G11 is a full matrix, and
thus, the direct numerical inversion of G11 requires O(n3)
computations. By using the fact that

G · H =
(

G11 G12

GT
12 G22

)
·
(

H11 H12

HT
12 H22

)
=

(
II 0
0 II

)
,

G−1
11 is now computed using blocks of H as

G−1
11 = H11 − H12H

−1
22 HT

12. (6)

This is known as a form of the Schur complement. Instead
of Eq. (5), our approach will be to solve

x = (
H11 − H12H

−1
22 HT

12

)
b, (7)

where each block matrix of H is calculated as follows:

H11 =
[

∂s
∂x

]
[diag(m̃)]

[
∂s
∂x

]T

;

H12 =
[

∂s
∂x

]
[diag(m̃)]

[
∂h
∂x

]T

= HT
21; (8)

H22 =
[
∂h
∂x

]
[diag(m̃)]

[
∂h
∂x

]T

.

For serial manipulators, the matrices in Eq. (8) can be
computed efficiently due to their structural properties. In the
case of the planar n-link serial chain with constrained link
lengths,22 the vector of generalized coordinates is partitioned
as q = [θ1, . . . , θn, L1, . . . , Ln]T , where θi’s are the joint
angles (soft variables) and Li’s are the link lengths (hard
variables). The analytical expressions for soft and hard
variables are written as some functions of related position
vectors, such that θi = f (xi , xi−1, xi−2) and Li = g(xi , xi−1).
Since ∂θi/∂xj = 0 except of when j = i, i − 1, i − 2 and
∂Li/∂xj = 0 except of when j = i, i − 1, there are (3n − 2)
nonzero elements in [ ∂s

∂x ] ∈ IRn×2n and (2n − 1) nonzero

entries in [ ∂h
∂x ] ∈ IRn×2n, noting that each element is a 1 × 2

row vector.
If matrices have O(n) nonzero entries, matrix multi-

plication can be made in O(n) computations by extracting
zero elements. Once all the blocks of H (which are also
sparse and band-limited) are computed, Eq. (7) can be
calculated in O(n) as well. There are O(n) algorithms to
solve H−1

22 c for some vector c with a matching dimension.26

The computational steps for an n-link spatial manipulator
composed of n point masses are summarized as follows:

I. Define a partitioning of the generalized coordinates as
q = [sT , hT ]T where s = [s1, . . . , sf ]T is the vector of
soft variables and h = [h1, . . . , hr ]T is the vector of hard
variables, such that f + r = 3n.2

II. Obtain analytical expressions for each variable in terms
of position vectors, such that si = f (x) and hj = g(x),
where si and hj denote the ith soft variable and the
j th hard variable, respectively, and f and g are some
functions of position vectors.3

III. Compute all nonzero entries of [ ∂s
∂x ] ∈ IRf ×3n and [ ∂h

∂x ] ∈
IRr×3n. There are O(n) nonzero elements for each matrix.
The elements of these matrices are:[

∂s
∂x

]
ij

= ∂si

∂xj

∈ IR1×3;

[
∂h
∂x

]
ij

= ∂hi

∂xj

∈ IR1×3.

IV. Compute H11, H12(=HT
21), and H22 using Eq. (8). Recall

that matrix multiplications for band-limited matrices
can be done in O(n) by extracting zero elements from
the matrices. (For example, the ‘sparse(·)’ command in
Matlab stores all nonzero entries of a sparse matrix as an
array.)

V. Compute Eq. (7) as follows:

c = HT
12b → d = H−1

22 c → e = H12d

f = H11b

Finally,

(G11)−1b = f − e.

Multiplication of a sparse matrix with O(n) nonzero
entries with a vector with the corresponding size requires
O(n) computations. Note that H22 is also sparse and
band-limited, and, therefore, H−1

22 c can be computed
using an O(n) algorithm, such as LU decomposition.26

3. Extension to Rigid Bodies
While Fixman’s theorem represents a clever insight into how
to directly exploit the serial nature of a chain consisting
of point masses, the mathematics required is nothing more
than multivariable calculus. This is because the positions
of point masses are quantities that belong to IR3, and

2 For spatial chains with rigid-bodies, f + r = 6n.
3 In the rigid-body case, each generalized coordinate will be
written as a function of homogeneous transformations, such that
si = f ′(Ti−1, Ti) and hj = g′(Tj−1, Tj ).
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taking gradients in this space is a common mathematical
operation. In contrast, it is not at all clear without invoking
higher mathematics how to do the same for rigid bodies. In
other words, whereas it makes sense to compute gradients
of the form ∂/∂xi where xi ∈ IR3, and the unconstrained
Jacobian [∂x/∂q] in Eq. (2) is square, when considering
rigid bodies, would it mean anything to compute ∂/∂Ri

where Ri ∈ SO(3)? Also, the dimensions of the associated
Jacobians would certainly not be square given that rotation
matrices have nine elements and only three free parameters.
Hence, in this section we address how to compute derivatives
in an appropriate way for functions of rotations and rigid-
body motions in order to extend Fixman’s approach.

3.1. Rotations and skew-symmetric matrices
To begin, recall that if R is a rotation matrix, then RT R = II 3,
and

d

dt
(RT R) = d

dt
(II3) = 03,

and so

RT Ṙ = −ṘT R = −(RT Ṙ)T .

Due to the skew-symmetry of this matrix, we can write
ω = (RT Ṙ)∨, where the operator ‘∨’ is defined by (S)∨ = s
where s = [s1, s2, s3]T and

S =
⎛
⎝ 0 −s3 s2

s3 0 −s1

−s2 s1 0

⎞
⎠ = −ST .

Any 3 × 3 skew-symmetric matrix, S, can be written as
S = ∑3

i = 1 siEi where

E1 =
⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠ ; E2 =

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠ ;

E3 =
⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠ .

These can be written in a vector form as (Ei)∨ = ei , such that

e1 =
⎛
⎝1

0
0

⎞
⎠ ; e2 =

⎛
⎝0

1
0

⎞
⎠ ; e3 =

⎛
⎝0

0
1

⎞
⎠ .

Then it follows that s = ∑3
i = 1 siei since the ∨ operation is

linear. We will use this fact later.
If the vector ω is the angular velocity as seen in a body-

fixed frame of reference, the kinetic energy of a rigid-body
is then

K = 1

2
mẋ · ẋ + 1

2
ωT Iω (9)

where I is the constant moment of inertia matrix as seen
in the specific body-fixed frame with origin at the center
of mass, and x is the position of the center of mass of the

rigid body as seen in a space-fixed frame of reference. The
following subsections develop the mathematical framework
needed to handle the rotational contribution to kinetic energy
in our extension of Fixman’s theorem.

3.2. Jacobians associated with parameterized rotations
When a time-varying rotation matrix is parameterized as4

R(t) =A(q1(t), q2(t), q3(t)) =A(q(t)),

then by the chain rule from calculus, one has

Ṙ = ∂A

∂q1
q̇1 + ∂A

∂q2
q̇2 + ∂A

∂q3
q̇3.

Multiplying on the left by RT and extracting the dual vector
from both sides, one finds that:27

ω = J (A(q))q̇ (10)

where

J (A(q)) =
[(

AT ∂A

∂q1

)∨
,

(
AT ∂A

∂q2

)∨
,

(
AT ∂A

∂q3

)∨]
(11)

which is called the ‘body’ Jacobian. When using the ZXZ
Euler angle parameterization (α, β, γ ), the Jacobian is
written explicitly as:27

J =
⎛
⎝sin β sin γ cos γ 0

sin β cos γ − sin γ 0
cos β 0 1

⎞
⎠ . (12)

3.3. Differential operators for SO(3)
Let A∈ SO(3) be an arbitrary rotation, and f (A) be a function
that assigns a real or complex number to each value of A.
In analogy with the definition of the partial derivative (or
directional derivative) of a complex-valued function of IRN -
valued argument, we can define differential operators which
act on functions of rotation-valued argument:

∂

∂ξn
f (A) = lim

ε→0

1

ε
[f (A · An(ε)) − f (A)]

= df (A · An(t))

dt

∣∣∣∣
t=0

(13)

where An(θ) denotes a counterclockwise rotation by an angle
θ around an axis defined by the unit vector n. In the above
definition, the dummy variable ξ is introduced to emphasize
that the derivative is not with respect to n, but rather the
derivative along a coordinate defined by the direction n.5

Note that for a small value of θ ,

An(θ) = exp(θN) ≈II + θN =II + θ(n1E1 + n2E2 + n3E3).

4 We use the different symbols R(t) and A(q), because these
functions have different arguments even though R(t) = A(q(t)).
5 In the Lie theory literature, the derivative ∂f/∂ξn would be
denoted Nf , which may be confusing for an engineering audience.
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We now find the explicit forms of the operators ∂
∂ξn in

any 3-parameter description of rotation A = A(q1, q2, q3).
Expanding Eq. (13) in a Taylor series in ε and using the
classical chain rule, one writes

∂f (A)

∂ξn
=

3∑
i=1

∂f (A)

∂qi

∂qr
i

∂ε

∣∣∣∣∣
ε=0

where {qr
i } are the parameters such that A(q1, q2, q3) ·

An(ε) =A(qr
1, q

r
2, q

r
3). The ‘r’ denotes the fact that each

qi is perturbed by multiplication of A(q) on the right by
An(ε). At this point, the coefficients ∂qr

i

∂ε
|ε = 0 is not known,

but can be determined by observing two different-looking,
though equivalent, ways of writing the product A · An(ε) for
infinitesimally small ε:

A · An(ε) = A + εA · N = A + ε

3∑
i=1

∂A

∂qi

∂qr
i

∂ε

∣∣∣∣
ε=0

.

The first equality results from direct multiplication of A

and An(ε) = II + θN , and the second equality results from
expanding A(qr ) in a Taylor series about ε = 0. From the
above equation, we have that

N =
3∑

i=1

AT ∂A

∂qi

∂qr
i

∂ε

∣∣∣∣
ε=0

,

or, using the linearity of the ∨ operator,

n = (N)∨ =
3∑

i=1

(
AT ∂A

∂qi

)∨
∂qr

i

∂ε

∣∣∣∣
ε=0

,

which is rewritten using the definition of the Jacobian
(Eq. (11)) as n = J

∂qr

∂ε
|ε = 0. This allows us to solve for

∂qr

∂ε

∣∣∣∣
ε = 0

= J−1n.

For example, if A is parameterized with ZXZ Euler angles,
J is the Jacobian calculated in Eq. (12), and its inverse is

J−1 =
⎛
⎝ sin γ / sin β cos γ / sin β 0

cos γ −sin γ 0
−cot β sin γ −cot β cos γ 1

⎞
⎠ .

Making the shorthand notation ∂
∂ξ ei = ∂

∂ξ i , we then write for
the ZXZ Euler angles

∂

∂ξ 1
= −cot β sin γ

∂

∂γ
+ sin γ

sin β

∂

∂α
+ cos γ

∂

∂β
;

∂

∂ξ 2
= −cot β cos γ

∂

∂γ
+ cos γ

sin β

∂

∂α
− sin γ

∂

∂β
;

∂

∂ξ 3
= ∂

∂γ
.

The exact form of the differential operators will depend
on the specific parameterization used. Each different
parameterization will result in different concrete forms of
these abstract operators.

3.4. Infinitesimal motions and associated jacobians
For “small” motions, the matrix exponential description of
a rigid-body motion is approximated well when truncated at
the first two terms:

exp

[(
� v
0T 0

)
	t

]
≈ II +

(
� v
0T 0

)
	t. (14)

Here � = −�T and ω = �∨ describe the rotational part of
the displacement. Since the second term of the right side in
Eq. (14) consists mostly of zeros, it is common to extract the
information necessary to describe the motion as

(
� v

0T 0

)∨
=

(
ω

v

)
∈ IR6×1.

This six-dimensional vector is called an infinitesimal screw
motion or infinitesimal twist. The fact that we have used
the ∨ operation to extract a six-dimensional vector from
4 × 4 “screw matrices” as well as using it to extract a three-
dimensional vector from 3 × 3 skew-symmetric matrices
should not be a source of concern, since its use will always
be clear from the context.

Given a homogeneous transform

T (q) =
(

R(q) b(q)

0T 1

)

parameterized with q = [q1, . . . , q6]T ∈ IR6, one can
express the homogeneous transform corresponding to a
slightly changed set of parameters as the truncated Taylor
series

T (q + δq) = T (q) +
6∑

i=1

δqi

∂T

∂qi

(q).

This result can be shifted to the identity transformation by
multiplying on the left by T −1 to define an equivalent relative
infinitesimal motion:(

ω

v

)
= J (q)q̇

where J (q) =
[(

T −1 ∂T

∂q1

)∨
, . . . ,

(
T −1 ∂T

∂q6

)∨]
. (15)

3.5. Differential operators for SE(3)
The differential operators ∂/∂ξ̃i for i = 1, . . . , 6 acting on
functions on SE(3) are calculated similarly with the case of
SO(3). For small translational and rotational displacements
from the identity along (or about) the ith coordinate axis, the
homogeneous transforms representing infinitesimal motions
are given by

Ti(ε)
�= exp(εẼi) ≈ II 4×4 + εẼi
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where

Ẽ1 =

⎛
⎜⎝

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎞
⎟⎠ ; Ẽ2 =

⎛
⎜⎝

0 0 1 0
0 0 0 0

−1 0 0 0
0 0 0 0

⎞
⎟⎠ ;

Ẽ3 =

⎛
⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ ; Ẽ4 =

⎛
⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ ;

Ẽ5 =

⎛
⎜⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞
⎟⎠ ; Ẽ6 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎠ .

The “tilde” symbol is used to distinguish the SE(3) basis
elements from those for SO(3). It is often convenient to write
the SE(3) basis elements in a 6 × 1 vector form as (Ẽi)∨ = ẽi ,
such that all elements are zeros except for the ith element
with 1.

Given that elements of SE(3) (viewed as homogeneous
transforms) are parameterized as T = T (q), the differential
operators take the form

∂

∂ξ̃ i
f (T ) = lim

ε→0

1

ε
[f (T · Ti(ε)) − f (T )]

= df (T · (II + tẼi))

dt

∣∣∣∣
t=0

(16)

Since T and Ti(ε) are 4 × 4 matrices, we henceforth drop the
“·” notation since it is understood as matrix multiplication.

In analogy with the SO(3) case, we define qr,i such that
T (q)Ti(ε) = T (qr,i), and we observe for the case of ∂

∂ξ̃ i that

T + εT Ẽi = T + ε

6∑
j=1

∂T

∂qj

∂q
r,i
j

∂ε

∣∣∣∣∣
ε=0

.

In analogy with the SO(3) case, these are two equivalent ways
of writing T Ti(ε). Subtracting T and multiplying T −1 on the
left of this expression, we then have that

Ẽi =
6∑

j=1

T −1 ∂T

∂qj

∂q
r,i
j

∂ε

∣∣∣∣∣
ε=0

,

or

ẽi =
6∑

j=1

(
T −1 ∂T

∂qj

)∨ ∂q
r,i
j

∂ε

∣∣∣∣∣
ε=0

,

which is written as ẽi = J (q) dqr,i

dε
|ε=0 where J is the SE(3)

Jacobian defined in Section 3.4. This allows us to solve for

dqr,i

dε

∣∣∣∣
ε=0

= J −1ẽi ,

which is used to calculate

∂f

∂ξ̃ i
=

6∑
j=1

∂f

∂qj

∂q
r,i
j

∂ε

∣∣∣∣∣
ε=0

as

∂f

∂ξ̃ i
=

(
∂f

∂q

)
· (J −1ẽi). (17)

3.6. Extension to chains of rigid bodies
Eq. (9) can be rewritten as

K = 1

2
(ωT , vT )I

(
ω

v

)
= 1

2
q̇TJ T IJ q̇.

The mass matrix is G(q) = J T IJ , and thus, the inverse of
the mass matrix for a single rigid body is

H (q) = J −1I−1J −T

where I = I ⊕ (mII3) is the 6 × 6 inertia matrix.
The inverse of the mass matrix can be rewritten using the

derivatives defined in the previous section. Particularly, if we
define the SE(3) gradient of a function to be

∂f

∂ ξ̃
=

[
∂f

∂ξ̃ 1
, . . . ,

∂f

∂ξ̃ 6

]
,

then we can apply this gradient to the parameters q =
[q1, . . . , q6]T used to parameterize a motion. Using Eq. (17)
and observing that ∂q

∂q = II , we find that

[
∂q

∂ ξ̃

]
= J −1. (18)

This means that the inverse of the mass matrix for a single
rigid-body can be written in the Fixman-like form:

H (q) =
[
∂q

∂ ξ̃

]
I−1

[
∂q

∂ ξ̃

]T

. (19)

For a collection of n rigid bodies, the configuration space
is (SE(3))n = SE(3) × SE(3) × · · · × SE(3). Each rigid body
has six degrees of freedom described by twists, the ith of
which is ξ̃i ∈ IR6, and can be described alternatively by the six

parameters qi ∈ IR6. Composite vectors ξ̃= [ξ̃
T

1 , . . . , ξ̃
T

n ]T ∈
IR6n and q = [sT , hT ]T ∈ IR6n can be formed. Then, the
inverse of the Jacobian is computed as

J −1
⊕ =

⎛
⎝

[
∂s
∂ξ

]
[

∂h
∂ξ

]
⎞
⎠ ∈ IR6n×6n.

J −1
⊕ is the inverse of the unconstrained serial chain when the

generalized coordinates are partitioned into the soft and hard
variables. Hence, it differs from the direct sum of the inverse
of Jacobian matrices, J −1

1 ⊕ · · · ⊕ J −1
n , where J −1

i denotes
the inverse Jacobian of the ith rigid-body. The inverse of the
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Fig. 1. T c
k is the homogeneous transformation from the global

reference frame {S} to the center of mass of the kth rigid body,
and Tk is the one from {S} to the frame k. Qk is the relative
transformation from Tk to T c

k .

unconstrained mass matrix for this collection of rigid bodies
is then of the form

H (q) = J −1
⊕

[
I−1

1 ⊕ · · · ⊕ I−1
n

]
J −T

⊕ . (20)

Everything then follows using the extension of Fixman’s
theorem as in the point-mass case, with Eq. (20) replacing
Eq. (4). The same partitioning into soft and hard variables
and the same O(n) performance results.

4. Examples
Examples of an n-link planar revolute manipulator and a
polymer chain composed of point masses at each joint
are presented in our earlier papers.22,23 In this section, we
describe how to use our extension of Fixman’s algorithm for
chains of rigid-bodes and demonstrate with a PUMA 560
robot arm and a polypeptide chain.

The homogeneous transformations, Tk , T c
k and Qk , are

defined as shown in Fig. 1. Using the facts that T c
k = Tk · Qk

and Tk = T 0
1 · T 1

2 · · · T k−1
k due to the serial nature, we have

that

T k−1
k = (Tk−1)−1 · Tk = Qk−1

(
T c

k−1

)−1
T c

k Q−1
k . (21)

Since T k−1
k is written as a function of T c

k−1 and T c
k , in order to

differentiate T c
k−1, we use the differential operators for SE(3)

described in Section 3.5. Then, we have the Lie derivatives
of Eq. (21) given by6

∂T k−1
k

∂ξ̃ i
j

=

⎧⎪⎨
⎪⎩

−Qk−1Ẽi

(
T c

k−1

)−1
T c

k Q−1
k , j = k − 1

Qk−1
(
T c

k−1

)−1
T c

k ẼiQ
−1
k , j = k

0, otherwise.

(22)

6 For T ∈ SE(3),

T · T −1 = II 4 ⇒ dT

dt
T −1 + T

d(T −1)

dt

= 04 ⇒ d(T −1)

dt
= −T −1 dT

dt
T −1.

In our algorithm, we compute the inverted Jacobian of an
unconstrained system to get the inverse of an unconstrained
mass matrix, i.e., G−1 = J −1

⊕ I−1J −T
⊕ . However, most

manipulators have singularities where the Jacobian matrix
is not invertible. In contrast, the mass matrix for most
manipulators is invertible at all values of the generalized
coordinates, and therefore, there always exists G−1. The
problems related with singularities can be mostly eliminated
by choosing the parameterization carefully or using more
than one method for assigning frames, because the
Jacobians computed for different parameterizations may have
singularities in different locations. We begin by describing
rigid-body motions using D–H framework in the following
section.

4.1. Denavit–Hartenberg parameterizations
A screw transformation is a combined rotation and translation
along a common axis. In particular,

screw(n, d, θ) =
(

An(θ) dn
01×3 1

)

where n ∈ IR3 is any unit vector. D–H parameterization is
a method for assigning frames of reference to a robot arm
constructed of rotational joints connected with rigid links.
The relative transformation from the D–H frame i − 1 to the
D–H frame i appear as two screw motions, such that

T i−1
i = screw(e1, bi, βi) · screw(e3, ci, γi)

=

⎛
⎜⎜⎝

cγi −sγi 0 bi

sγicβi cγicβi −sβi −cisβi

sγisβi cγisβi cβi cicβi

0 0 0 1

⎞
⎟⎟⎠ (23)

where c(·) = cos(·) and s(·) = sin(·) are used for a short-
hand writing. Here ei’s are as defined in Section 3.1. The
link parameters are defined as follows:28

• bi , the distance from Ẑi−1 to Ẑi measured along X̂i−1,
• βi , the counter clockwise measured angle between Ẑi−1

and Ẑi measured about X̂i−1,
• ci , the distance from X̂i−1 to X̂i measured along Ẑi , and
• γi , the counter clockwise measured angle between X̂i−1

and X̂i measured about Ẑi .

The above four parameters describe constrained motions in
SE(3). In other words, we need six parameters to describe
a full rigid-body motion in SE(3), but we only have four
D–H parameters. Therefore, we impose two dummy
variables (which will be set to be zeros as constraints) to the
D–H parameters as follows. Equation (23) can be obtained
by setting αi = ai = 0 from either

AT i−1
i = screw(e3, ai, αi) · screw(e1, bi, βi)

· screw(e3, ci, γi), (24)
BT i−1

i = screw(e1, bi, βi) · screw(e3, ci, γi)

· screw(e1, ai, αi), (25)
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or

CT i−1
i = screw(e1, bi, βi) · screw(e2, ai, αi)

· screw(e3, ci, γi). (26)

IfJ A,J B andJ C are the Jacobian matrices of Eq. (24), (25),
and (26) respectively, then the determinant of each Jacobian
is calculated as

det(J A) = sin2 βi ; det(J B) = sin2 γi ; det(J C) = cos2 αi.

J A becomes singular when sin βi = 0,J B becomes singular
when sin γi = 0, and J C becomes singular when cos αi = 0.
In the D–H parameterization, we set αi = 0, and therefore,
cos αi 
= 0 for all i. Hence, we choose Eq. (26) to describe
homogeneous transformations of rigid bodies in SE(3).

We first need to find analytical expressions for generalized
coordinates in terms of homogeneous transformations. If the
relative transformation from the frame k − 1 to the frame k

is represented by three screw motions as Eq. (26), it can be
written as

CT k−1
k

=

⎛
⎜⎜⎜⎜⎜⎝

cαkcγk −cαksγk sαk bk + cksαk

sβksαkcγk + cβksγk cβkcγk − sβksαksγk −sβkcαk akcβk − cksβkcαk

−cβksαkcγk + sβksγk sβkcγk + cβksαksγk cβkcαk aksβk + ckcβkcαk

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ .

(27)

Making the shorthand notation, CT k−1
k = T and denoting

the (k, l)th element of CT k−1
k by Tkl , when αk ∈ [−π

2 , π
2 ],

βk ∈ [−π, π] and γk ∈ [−π, π], the generalized coordinates
can be extracted as:7

αk = atan

⎛
⎝ T13√

T 2
11 + T 2

12

⎞
⎠ ;

βk = atan2

⎛
⎝− T23√

T 2
11 + T 2

12

,
T33√

T 2
11 + T 2

12

⎞
⎠ ;

γk = atan2

⎛
⎝− T12√

T 2
11 + T 2

12

,
T11√

T 2
11 + T 2

12

⎞
⎠ ;

ak = T24T33 − T34T23√
T 2

11 + T 2
12

;

bk = T14 − T13
T24T23 + T34T33

T 2
11 + T 2

12

;

ck = T24T23 + T34T33

T 2
11 + T 2

12

.

7 In MatlabTM, two functions compute the inverse of the tangent,
‘atan’ and ‘atan2’. atan(z) returns the inverse tangent of z. For real
z, atan(x) is in the range [−π/2, π/2]. atan2(y, x) gives the value
of θ , such that sin θ = y and cos θ = x. The value of θ lies in the
interval [−π, π]. In MathematicaTM, the same functions are defined
as ArcTan[z] and ArcTan[x, y], respectively.

If T̃kl denotes the (k, l)th element of ∂T

∂ξ̃ i
j

, the Lie derivatives

of the above equations are computed as:

∂αk

∂ξ̃ i
j

=
(
T 2

11 + T 2
12

)
T̃13 − T13(T11T̃11 + T12T̃12)√

T 2
11 + T 2

12

;

∂βk

∂ξ̃ i
j

= T23T̃33 − T33T̃23

T 2
23 + T 2

33

;

∂γk

∂ξ̃ i
j

= T12T̃11 − T11T̃12

T 2
11 + T 2

12

;

∂ak

∂ξ̃ i
j

= T24T̃33 + T33T̃24 − T34T̃23 − T23T̃34√
T 2

11 + T 2
12

− (T24T33 − T34T23)
(
T11T̃11 + T12T̃12

)
(
T 2

11 + T 2
12

)3/2 ;

∂bk

∂ξ̃ i
j

= T̃14 − (T24T23 + T34T33)

×
[(

T 2
11 + T 2

12

)
T̃13 − 2T13(T11T̃11 + T12T̃12)

(T 2
11 + T 2

12)2

]

− T13(T24T̃23 + T23T̃24 + T34T̃33 + T33T̃34)

T 2
11 + T 2

12

;

∂ck

∂ξ̃ i
j

= T24T̃23 + T23T̃24 + T34T̃33 + T33T̃34

T 2
11 + T 2

12

− 2(T23T24 + T33T34)(T11T̃11 + T12T̃12)(
T 2

11 + T 2
12

)2 . (28)

These are elements of J −1
⊕ . Soft and hard variables are

defined differently depending on each system. In the
following sections, we present specific examples of the
PUMA 560 and a polypeptide chain.

4.2. PUMA 560 robot arm
D–H parameters for the PUMA 560 arm are shown
in Table I. The vector of generalized coordinates is
defined as q = [sT ; hT ]T where s = [γ1, . . . , γ6]T and h =
[hT

1 , hT
2 , . . . , hT

5 , hT
6 ]T with hi = [αi, βi, ai, bi, ci]T for i =

1, . . . , 6. Here γi denotes the ith joint angle of the
manipulator. All necessary constants including the link mass
values, the moment of inertia about the center of mass (c.o.m)
and the location of c.o.m of each link (Qk’s) were adapted

Table I. D–H parameters of PUMA 560 Arm29.

i βi[◦] bi[m] ci[m] γi[◦]

1 90 0 0 γ1

2 0 0.4318 0 γ2

3 −90 0.0191 0.1254 γ3

4 90 0 0.4318 γ4

5 −90 0 0 γ5

6 0 0 0 γ6
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from Ref. [29]. The soft variables are arbitrarily chosen as
γk = π/3 for k = 1, . . . , 6 for the purpose of testing our
algorithm. Based on these parameters, the homogeneous
transformations from the global reference frame to the center
of mass of each link are computed as

T c
1 =

⎛
⎜⎝

0.500 −0.866 0 −0.069
0 0 −1 0

0.866 0.5 0 0.04
0 0 0 1

⎞
⎟⎠ ;

T c
2 =

⎛
⎜⎝

−0.5 −0.866 0 0.108
0 0 −1 0.026

0.866 −0.5 0 0.561
0 0 0 1

⎞
⎟⎠ ;

T c
3 =

⎛
⎜⎝

−0.25 0.433 −0.866 0.004
0.866 0.5 0 −0.108
0.433 −0.75 −0.5 0.490

0 0 0 1

⎞
⎟⎠ ;

T c
4 =

⎛
⎜⎝

−0.875 −0.217 −0.433 −0.081
0.433 −0.75 −0.5 −0.206

−0.217 −0.625 0.75 0.637
0 0 0 1

⎞
⎟⎠ ;

T c
5 =

⎛
⎜⎝

−0.063 0.974 −0.217 −0.089
0.650 −0.125 −0.75 −0.216

−0.758 −0.188 −0.625 0.652
0 0 0 1

⎞
⎟⎠ ;

T c
6 =

⎛
⎜⎝

0.813 0.541 −0.217 −0.091
0.217 −0.625 −0.75 −0.223

−0.541 0.563 −0.625 0.645
0 0 0 1

⎞
⎟⎠ .

Given the homogeneous transformations, nonzero elements
of the following matrices can be computed using in Eq. (28):

[
∂s

∂ξ̃

]
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂γ1

∂ξ̃1
01×6 · · · · · · · · · 01×6

∂γ2

∂ξ̃1

∂γ2

∂ξ̃2

. . .
. . .

. . .
...

01×6
∂γ3

∂ξ̃2

∂γ3

∂ξ̃3

. . .
. . .

...
...

. . . ∂γ4

∂ξ̃3

∂γ4

∂ξ̃4

. . .
...

...
. . .

. . . ∂γ5

∂ξ̃4

∂γ5

∂ξ̃5
01×6

01×6 · · · · · · 01×6
∂γ6

∂ξ̃5

∂γ6

∂ξ̃6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ IR6×36;

[
∂h

∂ξ̃

]
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂h1

∂ξ̃1
05×6 · · · · · · · · · 05×6

∂h2

∂ξ̃1

∂h2

∂ξ̃2

. . .
. . .

. . .
...

05×6
∂h3

∂ξ̃2

∂h3

∂ξ̃3

. . .
. . .

...
...

. . . ∂h4

∂ξ̃3

∂h4

∂ξ̃4

. . .
...

...
. . .

. . . ∂h5

∂ξ̃4

∂h5

∂ξ̃5
05×6

05×6 · · · · · · 05×6
∂h6

∂ξ̃5

∂h6

∂ξ̃6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ IR30×36

Table II. D–H parameters of a polypeptide chain30.

i βi[◦] bi[Å] ci[Å] γi[◦]

1 β1 0 0 70.5
2 β2 1.525 0 296.2
3 β3 1.329 0 58.3
4 β4 1.458 0 289.5
5 β5 1.525 0 63.8
6 β6 1.329 0 301.7
7 β7 1.458 0 70.5

where

∂γi

∂ξ̃j

=
[

∂γi

∂ξ̃ 1
j

, · · · ∂γi

∂ξ̃ 6
j

]
∈ IR1×6;

∂hi

∂ξ̃j

=

⎛
⎜⎜⎝

∂αi

∂ξ̃ 1
j

· · · ∂αi

∂ξ̃ 6
j

...
. . .

...
∂ci

∂ξ̃ 1
j

· · · ∂ci

∂ξ̃ 6
j

⎞
⎟⎟⎠ ∈ IR5×6.

As shown above, [ ∂s
∂ξ̃

] and [ ∂h
∂ξ̃

] are sparse and band-limited.
Once all nonzero entries are computed, H11, H12, and H22

can be obtained using Eq. (9). We recall that the matrix
multiplications for sparse matrices can be done in O(n) for
matrices with O(n) nonzero elements by extracting all zero
entries. Finally, we can solve Eq. (7) in O(n) by following the
steps described in Section 2.2. Numerical results of M and
M−1 of the PUMA 560 arm are provided in the Appendix
for verification of the result.

4.3. A polypeptide chain
The D–H parameters for a polypeptide chain are shown in
Table II. Frames are attached to each atom in the backbone
structure. The main chain atoms are represented as rigid
peptide units, linked through the Cα atoms. The parameters,
such as bond-length, bi’s, and bond-angle values, γi’s, for
a polypeptide chain are adapted from Ref. [30]. The offset
values, ci = 0, for all i, and torsion angles along each bond
link, denoted by βi for all i = 1, . . . , n, are viewed as only
soft variables. In fact, the torsion angles along C′−N bonds
are fixed to about 180◦ in polypeptide chains. As shown in
Fig. 2, each Cα atom is connected to four atoms, C′, N, H,
and R (= CH3 for a polyalanine chain). We assume that this
structure is a Tetrahedron with Cα at the center, and CH3 is
considered as a point mass at the location of C. The c.o.m of
l point masses at the frame k can be computed as

cpk = 1

M̃

l∑
i=1

miri

where M̃ is the sum of all point masses and ri is
the position of the ith particle seen from the origin
of the frame k. Qk is given by pure translation, cpk .
When cpk for all k = 1, . . . , n are calculated, the moment
of inertia at the c.o.m can be computed, respectively.
The atomic masses8 used for numerical examples are

8 amu = Atomic mass unit, defined to be 1/12 of the mass of a C-12
atom.
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Fig. 2. A polypeptide chain with alanine side chains.

C = 12.0107 amu, N = 14.00674 amu, H = 1.00794 amu,
and O = 15.9994 amu.

We first consider that all torsion angles, βi for
i = 1, . . . , n, are soft variables. Then, the vector of
generalized coordinates is defined to be q = [sT ; hT ]T

where sT = [β1, . . . , βn]T and hT = [α1, γ1, a1, b1, c1, . . . ,

αn, γn, an, bn, cn]T . For n = 7 (containing two rigid peptide
planes), we arbitrarily choose β1 = 0 and βi = π/3 for
i = 2, . . . , 7. Then, T c

k ’s are given by

T c
1 =

⎛
⎜⎜⎝

0.334 −0.943 0 0.285
0.943 0.334 0 −0.403

0 0 1 0.634
0 0 0 1

⎞
⎟⎟⎠ ;

T c
2 =

⎛
⎜⎜⎝

0.570 0.091 0.816 0.343
0.266 0.920 −0.289 1.875

−0.777 0.382 0.5 0.525
0 0 0 1

⎞
⎟⎟⎠ ;

T c
3 =

⎛
⎜⎜⎝

0.940 −0.090 0.329 1.241
0.318 −0.117 −0.941 1.788
0.123 0.989 −0.081 −1.095

0 0 0 1

⎞
⎟⎟⎠ ;

T c
4 =

⎛
⎜⎜⎝

−0.968 −0.065 0.242 3.093
−0.154 0.917 −0.369 1.696
−0.198 −0.395 −0.897 −1.207

0 0 0 1

⎞
⎟⎟⎠ ;

T c
5 =

⎛
⎜⎜⎝

−0.268 0.947 0.177 1.821
0.056 0.199 −0.978 2.116

−0.962 −0.253 −0.107 −0.933
0 0 0 1

⎞
⎟⎟⎠ ;

T c
6 =

⎛
⎜⎜⎝

−0.674 0.101 −0.732 0.821
0.666 −0.345 −0.662 2.094

−0.319 −0.933 0.165 −2.368
0 0 0 1

⎞
⎟⎟⎠ ;

T c
7 =

⎛
⎜⎜⎝

−0.782 0.428 −0.453 −0.415
−0.465 −0.885 −0.032 3.535
−0.415 0.186 0.891 −2.292

0 0 0 1

⎞
⎟⎟⎠ .

Given the homogeneous transformation matrices, we can
compute [ ∂s

∂ξ̃
] and [ ∂h

∂ξ̃
] using the analytical expressions of

generalized coordinates derived in Section 4.1. H11, H12 and
H22 can be obtained similarly as described for the PUMA
560 arm.

As mentioned earlier, the torsion angles along the C′−N
bonds are fixed to be about 180◦. Therefore, some of the βi’s
should not be treated as soft variables. We now set β3 = β6 =
180◦. The vectors of soft and hard variables can be redefined
as sT = [β1, β2, β4, β5, β7] and hT = [α1, . . ., α3, β3, γ3, . . .,
α6, β6, γ6, . . ., b7, c7]. H11, H12 and H22 can be computed
accordingly for given q = [sT , hT ]T . Numerical results are
shown in Section 4.4 and the Appendix.

4.4. Computational time
The computational time is highly dependent on the computer
in which the program runs, such as the memory size, the type
of processor, the operating system, etc. Therefore, one should
be careful when interpreting the result of computational times
required to run the algorithm. The program to test the running
times in different sizes of serial chains is written in Matlab
version 6.5 and runs in a 2.8GHz Pentium4 computer with
1Gb RAM. The operating system is Window XP Home
edition.

The polypeptide chain example in Section 4.3 is revisited,
while all torsion angles are considered as soft variables.
Figure 3 shows the computational time to invert the mass
matrix for n= 1, . . . , 400. The dashed line indicates the
time to solve x =M−1b by inverting the n × n mass
matrix, M , using the ‘inv(M)’ function in Matlab, and the
solid line shows one to compute the equation, x = (H11 −
H12H

−1
22 HT

12)b. H−1
22 c (in the computational step V in

Section 2.2) is calculated using the LU decomposition. The
time is counted using the ‘tic-toc’ function in Matlab. Since
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Fig. 3. Computational time (s) vs. the number of links (n): the
time required for direct inversion of M (dashed line) and the time
required when using the extended Fixman’s method (solid line), for
n= 1, . . . , 400.

the program can be optimized in many different ways, the
running time cannot be viewed as an absolute measure of
the computational speed. However, it can be used as a
measure of speed or efficiency of an algorithm with provided
specifications of the computer and software in which the
program runs.

The graph shows that the computational time linearly
increases. Instead of counting real time, we can count the
number of operations to verify the O(n) computational
complexity. We analytically proved that our algorithm
requires O(n) operations, but did not include an operation
count in this paper. The number of mathematical operations
will vary according to different systems and depends on how
to optimize the program. In,31 the actual time required to
compute the forward dynamics for an open chain using the
recursive Hamiltonian method is provided. For n = 400, the
running time is about 4.7 s. Our algorithm to solve x =M−1b
for n = 400 requires about 1.9 s as shown in the graph. We
note that these numbers are not directly comparable because
we do not compute the whole forward dynamic equations
as done in.31 Also, the specification of the computer and
software (C++) used to run the algorithm in Ref. [31] differ
from ours.

5. Conclusions
More than 30 years ago, a method for O(n) computation of
the determinant of the mass matrix for a chain of point masses
constrained with rigid bonds was developed by Professor
Marshall Fixman. Whereas this theorem apparently has
remained unknown to the multibody and robotics literature,
we have applied it to develop O(n) forward dynamics
algorithms, especially to compute the inverse of the mass
matrix, in a series of papers.22–24 The specific contribution
of this paper is the extension of Fixman’s theorem to the
case of serial chains of rigid bodies. We demonstrate it
on two examples: the 6 DOF PUMA 560 manipulator
and polypeptide chain on several lengths. The associated

mathematics required for this extension have also been
developed and presented.
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Appendix
The mass matrix of the PUMA 560 arm in Section 4.2 is
given by

Mpuma

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

7.0719 3.6036 0.3138 −0.0723 −0.0004 −0.0002
3.6036 2.8533 0.3379 0.0722 −0.0004 −0.0006
0.3138 0.3379 0.3259 0.1446 0.0002 −0.0005

−0.0723 0.0722 0.1446 0.2883 0.0003 −0.0003
−0.0004 −0.0004 0.0002 0.0003 0.0007 0.0002
−0.0002 −0.0006 −0.0005 −0.0003 0.0002 0.0004

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The inverse of the constrained mass matrix using the extended
Fixman’s algorithm in Eq. (6) is computed as

M−1
puma

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.4130 −0.5346 0.0655 0.2043 −0.0775 −0.3333

−0.5346 1.0959 −0.5659 −0.1247 0.4489 0.3780

0.0655 −0.5659 4.537 −2.1106 −2.288 4.0852

0.2043 −0.1247 −2.1106 4.6143 −2.0481 1.6933

−0.0775 0.4489 −2.288 −2.0481 1810.6 −908.69

−0.3333 0.3780 4.0852 1.6933 −908.69 2682.8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Matrix multiplication of the above two matrices yields that
Mpuma · M−1

puma = II 6. We note that Eq. (7) can be computed
in O(n), but not the matrix M−1 (while each column of M−1

can be obtained in O(n)). We provide the numerical results
of M−1 for a verification purpose.

The constrained mass matrix of 7-link polypeptide chain
(when all βi’s are viewed as soft variables) in Section 4.2 is
given by

Mpoly

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

870.7768 54.2187 161.5036 234.8087 −176.7587 16.9382 −1.8702

54.2187 434.7277 58.8923 157.5614 −93.0816 −41.1893 −10.7686

161.5036 58.8923 189.6189 103.2236 −79.4282 53.5038 20.2896

234.8087 157.5614 103.2236 163.9448 −113.3383 −13.8750 −10.3724

−176.7587 −93.0816 −79.4282 −113.3383 95.9587 13.0774 11.6638

16.9382 −41.1893 53.5038 −13.8750 13.0774 63.0571 29.1266

−1.8702 −10.7686 20.2896 −10.3724 11.6638 29.1266 23.1711

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The inverse of the constrained mass matrix for the 7-
link polypeptide chain computed from H11 − H12H

−2
22 HT

12
is given by

M−1
poly

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0025 0.0014 0.0016 −0.0047 0.0022 −0.0021 −0.0012

0.0014 0.0049 0.0010 −0.0089 −0.0021 0.0026 −0.0047

0.0016 0.0010 0.0194 −0.0078 0.0137 −0.0202 −0.0015

−0.0047 −0.0089 −0.0078 0.0536 0.0389 0.0064 −0.0013

0.0022 −0.0021 0.0137 0.0389 0.0735 −0.0127 −0.0164

−0.0021 0.0026 −0.0202 0.0064 −0.0127 0.0629 −0.0510

−0.0012 −0.0047 −0.0015 −0.0013 −0.0164 −0.0510 0.1140

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Matrix multiplication of the above matrices yields Mpoly ·
M−1

poly = II 7.


