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ABSTRACT
Many sensing modalities used in robotics collect informa-

tion in polar coordinates. For mobile robots and autonomous
vehicles these modalities include radar, sonar, and laser range
finders. In the context of medical robotics, ultrasound imaging
and CT both collect information in polar coordinates. Moreover,
every sensing modality has associated noise. Therefore when the
position of a point in space is estimated in the reference frame
of the sensor, that position is replaced by a probability density
expressed in polar coordinates. If the sensor moves from one
location to another and the same point is sensed, then the two
associated probabilities can be “fused” together to obtain a bet-
ter estimate than either one individually. Here we derive the e-
quations for this fusion process in polar coordinates. The result
involves the computation of integrals of three Bessel function.
We derive new recurrence relations for the efficient computation
of these Bessel-functon integrals to aid in the information-fusion
process.

INTRODUCTION
The definition of information fusion is proposed as: “In-

formation fusion is the study of efficient methods for automat-
ically or semi-automatically transforming information from dif-
ferent sources and different points in time into a representation
that provides effective support for human or automated decision
making [1]. The information provided by sensors is always im-

∗Address all correspondence to this author.

preciseness that is affected by associated noise in the measure-
ments. Information fusion algorithms should be able to exploit
the redundancy and imprecise information to reduce effects of
noise.

Let 0, 1, 2 denote three points in the plane and let xi j denote
the relative position vector from point i to point j. The length
of this vector is ri j = ∥xi j∥

.
=

√xi j ·xi j. Relative to the x-axis of
a world coordinate system, the vector xi j makes a counterclock-
wise measured angle ϕi j as shown in Figure 1. Suppose that point
2 is observed by a sensor at point 0 and at point 1. The sensors
at locations 0 and 1 may be different sensors that are fixed at
these locations, or they may be the same sensor that has moved
between these locations. Associated with these sensors are mea-
surement probability densities f02(x02) and f12(x12) of the point
at position 2.

Recall that in general probability densities f : X →R satisfy
the conditions

f (x) ≥ 0 and
∫

X
f (x)dx = 1

and in our case X =R2 and dx is the Lebesgue measure in Carte-
sian coordinates.

Our goal is to fuse the probability densities f02(x02) and
f12(x12) in order to obtain the best estimate of the position of
point 2 relative to point 0. The true position of this point is de-
noted as x̃02, whereas x02 can be any hypothetical value of it.
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Since

x12 = x02 −x01, (1)

the fused density will be of the form

f3(x02)
.
= α · f1(x02) · f2(x02) (2)

where for fixed x01 = x̃01

f1(x02)
.
= f02(x02) and f2(x02)

.
= f12(x02 − x̃01) (3)

and α is a scaling parameter that ensures that f3(x02) is a proba-
bility density.

If the measurement device is accurate, we would expect ei-
ther the mean or the mode (or both) of fi2(xi2) to be at or near
the true value x̃i2.

Eq. (2) can be viewed as a form of Bayesian fusion wherein
one of the measurement probability densities is considered as
the prior, and the other is a likelihood, and their product results
in a posterior probability density. That is, in general Bayes’ rule
states that

f (θ ,x) = f (θ |x) f (x) = f (x |θ) f (θ).

Therefore,

f (θ |x) = f (x |θ) f (θ)
f (x)

.

In our case θ = x02, f (θ |x) = f3(x02), f (θ) = f1(x02), and
f (θ |x)/ f (x) = α f2(x02).

Our problem has slightly more structure than the general
Bayesian fusion scenario, since α can be computed explicitly
as

α−1 = ( f02 ∗ f̄12)(x̃01)

where ∗ denotes the convolution

( f1 ∗ f2)(x)
.
=
∫
R2

f1(y) f2(x−y)dy

and f̄ (x) .
= f (−x).

For sensing modalities that collect position data in polar co-
ordinates,

x = [r cosϕ ,r sinϕ ]T ,

FIGURE 1. Description of Variables

a natural representation of measurement probabilities is the
Fourier-Bessel description

f (x) = f (r,ϕ) =
∞

∑
n=−∞

einϕ
∫ ∞

0
f̂n(p)Jn(pr)pd p. (4)

This consists of a Fourier series in the ϕ direction and a Han-
kel transform in the r direction, and the functions { f̂n(p) |n ∈
Z, p ∈ R≥0} define f (x), and can be recovered from f (x) using
the formula of measurement probabilities is the Fourier-Bessel
description1

f̂n′′(p′′) =
1

2π

∫ 2π

0

∫ ∞

0
f (r,ϕ)e−in′′ϕ Jn′′(p′′r)rdrdϕ (5)

In polar coordinates (2) and (3) give

f3(r02,ϕ02) = α · f02(r02,ϕ02) · f12(r12,ϕ12). (6)

By manipulating expressions in Watson’s classic work on
Bessel functions [5], it can be shown that

ein′ϕ12Jn′(p′r12) =

ein′ϕ02 ·
∞

∑
m=−∞

Jn′+m(p′r02)Jm(p′r01)e−imϕ02 (7)

where in the context of our problem, r01 = r̃01 is the true fixed
distance between the sensor positions, and ϕ01 = 0 since both
sensors lie on the x axis. Here Jn′(p′r12) denotes Bessel functions
of the first kind.

1The reason for using n′′ and p′′ here rather than n and p will become clear
later.
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Therefore, if we know the sensor measurements of point 2
taken from location 1, i.e., f12(r12,ϕ12), then we can convert this
to a representation at point 0 using (7) to fuse the two measure-
ments.

To do this, we use (4) and

f02(r02,ϕ02) =
∞

∑
n=−∞

einϕ02

∫ ∞

0
f̂ (02)
n (p)Jn(pr02)pd p

and

f12(r12,ϕ12) =
∞

∑
n′=−∞

ein′ϕ12

∫ ∞

0
f̂ (12)
n′ (p′)Jn′(p′ r12)p′d p′

Substituting (7) into the second of these and using (6) expresses
f3(r02,ϕ02) as

f3(r02,ϕ02) =

α ·
∞

∑
n=−∞

einϕ02

∫ ∞

0
f̂ (02)
n (p)Jn(pr02)pd p

∞

∑
n′=−∞

ein′ϕ02

·
∫ ∞

0
f̂ (12)
n′ (p′)

∞

∑
m=−∞

Jn′+m(p′ r02)Jm(p′ r01)e−imϕ02 p′d p′

(8)

We compute f̂ (3)n′′ (p′′) with (5), where f (r,ϕ) = f3(r02,ϕ02). The
result is

f̂ (3)n′′ (p′′) =

1
2π

∫ 2π

0

∫ ∞

0
f3(r02,ϕ02)e−in′′ϕ02Jn′′(p′′r02)r02dr02dϕ02

= αδn+n′,n′′+m

∞

∑
n=−∞

∞

∑
n′=−∞

∞

∑
m=−∞

∫ ∞

0

∫ ∞

0
f̂ (02)
n (p) f̂ (12)

n′ (p′)·

Jm(p′ r01)
∫ ∞

0
Jn(pr02)Jn′′(p′′r02)Jn′+m(p′ r02)r02dr02 pp′d pd p′

= α ·
∞

∑
n=−∞

∞

∑
n′=−∞

∫ ∞

0

∫ ∞

0
f̂ (02)
n (p) f̂ (12)

n′ (p′)Jn+n′−n′′(p′ r01)·∫ ∞

0
Jn(pr02)Jn′′(p′′r02)Jn+2n′−n′′(p′ r02)r02dr02 pp′d pd p′

(9)
This can be simplified as

f̂ (3)n′′ (p′′) =

α ·
∞

∑
n=−∞

∞

∑
n′=−∞

∫ ∞

0

∫ ∞

0
f̂ (02)
n (p) f̂ (12)

n′ (p′)Jn+n′−n′′(p′ r01)·(
n n′′ n+2n′−n′′

p p′′ p′

)
pp′d pd p′

(10)

where we denote the three-term Bessel integral as

(
m n l
a b c

)
.
=
∫ ∞

0
Jm(ar)Jn(br)Jl(cr)r dr . (11)

Remarkably, such integrals appear not to have been studied in
much detail in the classical literature, and only recently have
been investigated [3]. In order to facilitate the computation of
f̂ (3)n′′ (p′′), and hence the resulting posterior density f3(r02,ϕ02),
we investigate efficient ways to compute these integrals.

There are some obvious symmetries and redundancies in the
integral in (11). For example, columns can be permutated sim-
ply because changing the order of the scalar multiplication of the
Bessel functions in the integral will not change the resulting val-
ue. Moreover, since a,b,c > 0 we can change the variables of in-
tegration as follows. Let r′ = cr, we can get dr′ = cdr, r = c−1r′

and dr = c−1dr′. Substituting into (11) then gives

(
m n l
a b c

)
=

1
c2

∫ ∞

0
Jm

(a
c

r′
)

Jn

(
b
c

r′
)

Jl
(
r′
)

r′ dr′

=
1
c2

(
m n l
a
c

b
c

1

) (12)

when c = 0 and m = n(
m n l
a b 0

)
=
∫ ∞

0
Jm(ar)Jn(br)Jl(0)rdr

= δl,0
δ (a−b)

a
,

(13)

where δl,0 denotes Kronecker delta function and δ (a−b) is Dirac
delta function.

In the following sections we will make use of the classical
relations [5]

J′m(x) =
1
2
[Jm−1(x)− Jm+1(x)] (14)

Jm(x) =
x

2m
[Jm+1(x)+ Jm−1(x)] (15)

J−m(x) = (−1)mJm(x) (16)

(xmJm(x))′ = xmJm−1(x) (17)
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and the related fact

d[(ax)mJm(ax)]
da

= m(ax)m−1xJm(ax)+(ax)mJ′(ax)x

= m(ax)m−1x
ax
2m

[Jm+1(ax)+ Jm−1(ax)]

+(ax)m 1
2
[Jm−1(ax)− Jm+1(ax)]x

= amxm+1Jm−1(ax) .

These will allow us to develop recurrence relations for the three-
Bessel-function integrals based on the classical recurrence rela-
tions for the Bessel functions themselves. To start the recurrence
relations we seek closed-form expressions for some special cas-
es, which is the subject of the following section.

STARTING VALUES FOR RECURSIONS
In special cases the three-Bessel-function integral in (11)

have closed-form solutions which can be used to initiate recur-
sions for computing the other values. In this section we focus on
these special cases, and then in Section we develop recurrence
relations.

We begin by observing the known closed-form integral [2]

f (a,b,c,α)
.
=
∫ ∞

0
Jα(ar)Jα(br)Jα(cr)r1−α dr (18)

=
[c2 − (a−b)2]α− 1

2 [(a+b)2 − c2]α− 1
2

23α−1
√

πΓ(α + 1
2 )(abc)α

.

If we set α = 0 in (18) then

f (a,b,c,0) =
(

0 0 0
a b c

)
=
∫ ∞

0
J0(ar)J0(r)J0(cr)rdr

=
[c2 − (a−b)2]−

1
2 [(a+b)2 − c2]−

1
2

2−1
√

πΓ( 1
2 )

,

(19)

which is a closed-form expression for a particular three-Bessel-
function integral. Moreover, if we set α = 1, then

f (a,b,c,1) .
=
∫ ∞

0
J1(ar)J1(br)J1(cr)dr

=
∫ ∞

0

ar
2
[J2(ar)+ J0(ar)]J1(br)J1(cr)dr

=
a
2

(
2 1 1
a b c

)
+

a
2

(
0 1 1
a b c

)
.

(20)

If we take the partial derivative of this with respect to a, and use
the properties of Bessel functions listed earlier, then

∂ f (a,b,c,1)
∂a

=
1
2

∫ ∞

0
[J0(ar)− J2(ar)]J1(br)J1(cr)rdr

=
1
2

(
0 1 1
a b c

)
− 1

2

(
2 1 1
a b c

) (21)

By combining the above equations as (20)+(21)∗a, we get the
closed-form expression

f +a
∂ f
∂a

a
=

(
0 1 1
a b c

)
=

a3 +bc2 −ab2

2
√

πΓ( 3
2 )(abc)

√
a4 −2a2b2 +4abc2 − c4 +b4

.

(22)
And similarly, by combining the above equations as (20)−(21)∗
a, we get the closed-form expression

f −a
∂ f
∂a

a
=

(
2 1 1
a b c

)
=

6abc2 −2c4 +2b4 −2a2b2

22
√

πΓ( 3
2 )(a

2bc)
√

a4 −2a2b2 +4abc2 − c4 +b4
.

(23)
Now we set α = 2, and evaluate

f (a,b,c,2) =
∫ ∞

0
J2(ar)J2(br)J2(cr)r−1dr , (24)

which is also a special case of the closed-form expression in (18).
Multiplied by a2 on both sides of the equation (24) gives

a2 f (a,b,c,2) =
∫ ∞

0
(ar)2J2(ar)J2(br)J2(cr)r−3dr . (25)

We then take the partial derivative with respect to a for both sides
to give

2a f +a2 f ′ =
∫ ∞

0
a2r3J1(ar)J2(br)J2(cr)r−3dr (26)

where ′ denotes ∂/∂a. Then dividing by a on both sides of the
equation (26) gives

2 f +a f ′ =
∫ ∞

0
arJ1(ar)J2(br)J2(cr)r−1dr . (27)
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Then taking the partial derivation with respect to a on both sides
of the Equation(27) again, we can get

2 f ′+ f ′+a f ′′ =
∫ ∞

0
ar2J0(ar)J2(br)J2(cr)r−1dr (28)

3 f ′+a f ′′

a
=

(
0 2 2
a b c

)

More generally, if we let f be defined as f (a,b,c,α)
.
=∫ ∞

0 Jα(ar)Jα(br)Jα(cr)r1−α dr, and we multiply by aα then we
get

aα f (a,b,c,α) =
∫ ∞

0
(ar)α Jα(ar)Jα(br)Jα(cr)r1−2α dr . (29)

Taking the partial of (29) with respect to a, and letting A0 =
aα f (a,b,c,α) the result is

∂A0

∂a
=
∫ ∞

0
aα rα+1Jα−1(ar)Jα(br)Jα(cr)r1−2α dr . (30)

Dividing by a on both sides of (30) and letting A1
.
=

∂A0

∂a
a−1, we

get

A1 =
∫ ∞

0
(ar)α−1Jα−1(ar)Jα(br)Jα(cr)r1−2α+2dr . (31)

Moreover, taking the partial derivative with respect to a and di-
viding (29) α times, we can get

(
0 α α
a b c

)
= Aα =

∂Aα−1

∂a
a−1 . (32)

Doing the same calculations on both a and b in (24),

ab f =
∫ ∞

0
(ar)J2(ar)(br)J2(br)J2(cr)r−3dr (33)

then taking the derivative of a for both sides of (33),

b f +ab
∂ f
∂a

=
∫ ∞

0
ar2J1(ar)(br)J2(br)J2(cr)r−3dr . (34)

Dividing by a on both sides of the equation (34),

b f
a

+b
∂ f
∂a

=
∫ ∞

0
J1(ar)(br)J2(br)J2(cr)r−1dr . (35)

Then taking the derivative of b for both sides of the Equation(35),

f
a
+

b
a

∂ f
∂b

+
∂ f
∂a

+b
∂ f

∂a∂b
=
∫ ∞

0
J1(ar)br2J1(br)J2(cr)r−1dr .

(36)
Dividing by b on both sides of the equation (36),

f
ab

+
1
a

∂ f
∂b

+
1
b

∂ f
∂a

+
∂ f

∂a∂b

=
∫ ∞

0
J1(ar)J1(br)J2(cr)rdr =

(
1 1 2
a b c

)
.

(37)

We want
∫ ∞

0 Jα(ar)Jα(br)Jα(cr)r1−α dr to change to∫ ∞
0 Jm(ar)Jn(br)Jl(cr)rdr by taking derivatives.

(abc)α f =
∫ ∞

0
(ar)α Jα(ar)(br)α Jα(br)(cr)α Jα(cr)r1−4α dr

(38)

let B0 =
∂ [(abc)α f ]

∂a
, m = α −α1, n = α −α2, l = α −α3

B1 =
∂B0

∂a
a−1

...

Bα1 =
∂Bα1−1

∂a
a−1

=
∫ ∞

0
rα+α1 Jm(ar)(br)α Jα(br)(cr)α Jα(cr)r1−4α dr

Bα1+1 =
∂Bα1

∂b
b−1

...

Bα1+α2 =
∂Bα1+α2−1

∂b
b−1

=
∫ ∞

0
rα+α1 Jm(ar)rα+α2Jn(br)(cr)α Jα(cr)r1−4α dr

Bα1+α2+1 =
∂Bα1+α2

∂c
c−1

...

Bα1+α2+α3 =
∂Bα1+α2+α3−1

∂c
c−1

=
∫ ∞

0
rα+α1 Jm(ar)rα+α2 Jn(br)rα+α3 Jl(cr)r1−4α dr

if α +α1 +α +α2 +α +α3 = 4α , m+n+ l = 2α , we can get

Bα1+α2+α3 =

(
m n l
a b c

)
(39)
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The closed-form expressions for special three-Bessel-
function integrals computed in this section can be used as the
initial values in the recursive computation of other integrals of
this form. The recurrence relations used in these recursive com-
putations are derived in the following section.

RECURRENCE RELATIONS

We define

g(a,b,c,m,n, l) .
=
∫ ∞

0
Jm(ar)Jn(r)Jl(cr)dr . (40)

Then

g(a,b,c,m,n, l)

=
∫ ∞

0

ar
2m

[Jm+1(ar)+ Jm−1(ar)]Jn(br)Jl(cr)dr

=
a

2m

[(
m+1 n l

a b c

)
+

(
m−1 n l

a b c

)]
,

(41)

and if we do the same with b instead of a, we can get

g(a,b,c,m,n, l)

=
∫ ∞

0

br
2n

Jm(ar)[Jn+1(br)+ Jn−1(br)]Jl(cr)dr

=
b
2n

[(
m n+1 l
a b c

)
+

(
m n−1 l
a b c

)]
,

(42)

and with c,

g(a,b,c,m,n, l)

=
∫ ∞

0

cr
2l

Jm(ar)Jn(br)[Jl+1(cr)+ Jl−1]dr

=
c
2l

[(
m n l +1
a b c

)
+

(
m n l −1
a b c

)]
.

(43)

We use integration by parts to compute

∫ ∞

0
Jm(ar)Jn(br)Jl(cr)dr

= Jm(ar)Jn(br)Jl(cr)r
∣∣∣∞
0

−
∫ ∞

0

∂
∂ r

[Jm(ar)Jn(br)Jl(cr)]rdr

= 0−
∫ ∞

0
[aJ′m(ar)Jn(br)Jl(cr)

+bJm(ar)J′n(br)Jl(cr)+ cJm(ar)Jn(br)J′l (cr)]rdr

=−1
2

[
a
(

m−1 n l
a b c

)
−a
(

m+1 n l
a b c

)
+b
(

m n−1 l
a b c

)
−b
(

m n+1 l
a b c

)
+ c
(

m n l −1
a b c

)
− c
(

m n l +1
a b c

)]

(44)

the right side of (41) equal the right side of (44), then

(
a

2m
− a

2
)

(
m+1 n l

a b c

)
+(

a
2m

+
a
2
)

(
m−1 n l

a b c

)
=

b
2

(
m n+1 l
a b c

)
− b

2

(
m n−1 l
a b c

)
+

c
2

(
m n l +1
a b c

)
− c

2

(
m n l −1
a b c

) (45)

We can get the similar result by computing the b and c.

(
b
2n

− b
2
)

(
m n+1 l
a b c

)
+(

b
2n

+
b
2
)

(
m n−1 l
a b c

)
=

a
2

(
m+1 n l

a b c

)
− a

2

(
m−1 n l

a b c

)
+

c
2

(
m n l +1
a b c

)
− c

2

(
m n l −1
a b c

) (46)

(
c
2l

− c
2
)

(
m n l +1
a b c

)
+(

c
2l

+
c
2
)

(
m n l −1
a b c

)
=

a
2

(
m+1 n l

a b c

)
− a

2

(
m−1 n l

a b c

)
+

b
2

(
m n+1 l
a b c

)
− b

2

(
m n−1 l
a b c

) (47)
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Rewriting (45), (46) and (47) together in matrix form.


a
2
− a

2m
b
2

c
2

a
2

b
2
− b

2n
c
2

a
2

b
2

c
2
− c

2l





(
m+1 n l

a b c

)
(
m n+1 l
a b c

)
(
m n l +1
a b c

)



=


a

2m
+

a
2

b
2

c
2

a
2

b
2n

+
b
2

c
2

a
2

b
2

c
2l

+
c
2





(
m−1 n l

a b c

)
(
m n−1 l
a b c

)
(
m n l −1
a b c

)



(48)

we compute the determinant of matrix, let

M =


a
2
− a

2m
b
2

c
2

a
2

b
2
− b

2n
c
2

a
2

b
2

c
2
− c

2l



det(M) =
abcl +abcm+abcn−abc

8lmn
(49)

we want det(M) ̸= 0. abcl+abcm+abcn−abc ̸= 0 and mln ̸= 0.
From the functions we know, if l +m+ n ̸= 1 and m ̸= 0,n ̸=
0, l ̸= 0,must has M−1 make M−1M = I.

let N =


a

2m
+

a
2

b
2

c
2

a
2

b
2n

+
b
2

c
2

a
2

b
2

c
2l

+
c
2


Multiplying M−1 on both sides of (48),



(
m+1 n l

a b c

)
(
m n+1 l
a b c

)
(
m n l +1
a b c

)

= M−1N



(
m−1 n l

a b c

)
(
m n−1 l
a b c

)
(
m n l −1
a b c

)

 . (50)

Let D = M−1N, then

D11 =
2m

l +m+n−1
−1 D12 =

2bm
a(l +m+n−1)

D13 =
2cm

a(l +m+n−1)
D21 =

2an
b(l +m+n−1)

D22 =
2n

l +m+n−1
−1 D23 =

2cn
b(l +m+n−1)

D31 =
2al

c(l +m+n−1)
D32 =

2bl
c(l +m+n−1)

D33 =
2l

l +m+n−1
−1

MODELS FOR POLAR MEASUREMENT PROBABILI-
TIES

For ideal sensors, the measurement probability density mod-
els in Cartesian coordinates would be

fk 2(xk 2) = δ (xk 2 − x̃k 2)

for k = 0,1 where δ (·) is the Dirac delta function for R2. We can
convert these to polar coordinates as

fk 2(rk 2,ϕk 2) =
1

rk 2
δ (rk 2 − r̃k 2)δ (ϕk 2 − ϕ̃k 2).

This can be expressed in a Fourier-Bessel expansion by substi-
tuting into (5) to get

f̂ (k 2)
n′′ (p′′) =

1
2π

e−in′′ϕ̃k 2 Jn′′(p′′ r̃k 2). (51)

Of course, if the sensors made exact measurements, there
would be no need to perform fusion. As an opposite extreme,
consider the case where a range sensor has absolutely no bear-
ing information. This would correspond to the Figure 2 where
the location of the observed object could equally be located at
the two intersection points. This sort of range-only information
corresponds to the pdf in real space with Fourier-Bessel coeffi-
cients (51) with only n′′ = 0 and all other terms absent. As a

0
1

2

FIGURE 2. Fusion of Two Range-Only Measurements
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more realistic model for the detection probability for the point
x̃02 in the plane described in polar coordinates, (r02,ϕ02), we use
a bandlimited approximation of the ideal Dirac delta. In other
words, we set all of the coefficients in (51) to zero except for
{ f̂ (k 2)

n′′ (p′′) |n′′ = −1,0,1}. This has the effect of smearing out
the delta function in the ϕ direction.

We set { f̂ (k 2)
n′′ (p′′) |n′′ =−1,0,1} for the sensor information.

The probability distribution function (PDF) of information when
sensor at point 0 is shown in Figure 3, here the monitoring posi-
tion is at point (r̃, ϕ̃) = (2,0). The PDF of sensor information at
point 1 is shown in Figure 4, where the distance between point
0 and point 1 r01 = 3. we can see PDF of direct multiplication
of f02(x) and f12(x) in Figure 5. The PDF is computed by our
information fusion algorithm that is shown in Figure 6. Compar-
ing with the results of information fusion in Figure 5 and 6, the
location of monitoring point is more accurate and clear in Figure
6. It proofs the useful and effective of Our information fusion
algorithm.
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FIGURE 3. PDF of f02(x) when the sensor at point 0, the model for
detection probability for the point (r̃, ϕ̃) = (2,0).

CONCLUSIONS AND FUTURE WORK
We present a method to fuse probabilities corresponding to

noisy measurement models in polar coordinates. At the core of
this approach is the observation that integrals of products of three
Bessel functions arise. We derive recurrence relations for these
integrals in order to efficiently evaluate the fused distributions.
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FIGURE 4. PDF of f12(x) when the sensor at point 1, the model for
detection probability for the point (r̃, ϕ̃) = (2,0), the distance between
point 0 and point 1 r01 = 3.
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FIGURE 5. Fused PDF by direct multiplication of f02(x) and f12(x).
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