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Abstract. An increasing number of real-world problems involve the measurement of data, and
the computation of estimates, on Lie groups. Moreover, establishing confidence in the resulting
estimates is important. This paper therefore seeks to contribute to a larger theoretical framework
that generalizes classical multivariate statistical analysis from Euclidean space to the setting of Lie
groups. The particular focus here is on extending Bayesian fusion, based on exponential families
of probability densities, from the Euclidean setting to Lie groups. The definition and properties of
a new kind of Gaussian distribution for connected unimodular Lie groups are articulated, and ex-
plicit formulas and algorithms are given for finding the mean and covariance of the fusion model
based on the means and covariances of the constituent probability densities. The Lie groups that
find the most applications in engineering are rotation groups and groups of rigid-body motions.
Orientational (rotation-group) data and associated algorithms for estimation arise in problems
including satellite attitude, molecular spectroscopy, and global geological studies. In robotics and
manufacturing, quantifying errors in the position and orientation of tools and parts are impor-
tant for task performance and quality control. Developing a general way to handle problems
on Lie groups can be applied to all of these problems. In particular, we study the issue of how
to ‘fuse’ two such Gaussians and how to obtain a new Gaussian of the same form that is ‘close
to’ the fused density.This is done at two levels of approximation that result from truncating the
Baker-Campbell-Hausdorff formula with different numbers of terms. Algorithms are developed
and numerical results are presented that are shown to generate the equivalent fused density with
good accuracy.
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1. Introduction

In this paper we extend concepts and computations from Bayesian belief propagation
to the case when the belief state is an element of a Lie group, and all corresponding
probability densities are functions on that group. In particular, we focus on connected
unimodular matrix Lie groups. Henceforth, when referring to Lie groups, these are the Lie
groups being addressed.
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1.1. Literature Review

The concept of probability densities on Lie groups arise in practical settings such as
rotational Brownian motion of rigid molecules in solution [20, 16, 28, 8], and this has
led to more theoretical studies of Brownian motion and heat flow on the rotation group
and other Lie groups [5, 6, 17]. The discussion that follows is concerned with a general
connected unimodular Lie group, G, with rotations and rigid-body motions serving as
important examples.

Given two probability densities, f; and f that take their arguments in G, there are
several natural operations that result in new probability densities. One such operation is
the convolution,

(f1x f2)(g /fl ) fa(h™ "o g)dh

Another is fusion

f1(g )f2( )
[ fi(h) fo(R)dh

Various concepts of mean and covariance of probablhty densities on Lie groups have been
defined in the literature over the past half century, as described in [4, 9, 10, 7, 1]. A natural
question to ask within a given definition of mean and covariance of f; and f5, is: “what
are the means and covariances of f * fo and f; 2 ?” The former is answered in [26, 27]
in the context of the concept of mean and covariance defined there, and used later in
this paper. Such “propagation” formulas have been used (either explicitly or implicitly)
in applications ranging from mobile robotics [23, 25, 11] and robot arms [24, 18, 19] to
biomolecular conformational motions [2, 22]. Our goal here is to do the same for f 7 in
the context of a particular kind of exponential family on G.

In the literature, a number of exponential families on compact Lie groups have been
defined [13, 12, 14, 15, 21]. These are defined so as to have nice properties under condi-
tioning, and are typically of the form

p(g: {B(N)}) = a({B(A)}) - exp (Z tr[5 ])

where U(g; A) is an irreducible unitary representation, which has the property

fi2(9) =

U(g1og2;A) = U(g1; \)U(g2; A),

and {8()\)} is a set of weighting functions enumerated by A € G, which is the space of
all such X values, and is called the unitary dual of G. When considering noncompact
Lie groups, the additional condition that the probability density functions (pdfs) decay
in spatial dimensions that extend to infinity is required. This can be problematic to incor-
porate into the above form.

Moreover, these forms do not provide intuitive properties under convolution. An ex-
ponential family introduced in [26, 27] that behaves well under convolution is reviewed
later in the paper. Though this does not have the exact form closure under conditioning
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or fusion, it is shown how very good approximations of the fusion can be obtained which
do have the same form as the original distributions.

1.2. Overview of Paper

Section 2 reviews Bayesian fusion of belief states described in terms of probability
densities, one of which represents a prior, and the other of which is a corrector based
on observations, in the case where the domain of the probability densities is a Euclidean
space. Section 3 formulates the general problem of Bayesian fusion when the domain of
the probability densities of interest is a Lie group. Section 4 focuses on a particular ver-
sion of the problem in which the probability densities of interest are parametric in nature.
Numerical validation of the approach proposed in Section 4 is presented in Section 5 for
SO(3). Nomenclature used throughout the paper can found in Appendix C.

2. Review of Bayesian Fusion in R¢

Given a conditional probability density f(y | x) and a marginal f(x), Bayes rule states

that
1

fxly) = mf(Y\X)f(X)- M

If y is a fixed value (e.g., an observation) then f(y) can be treated as a constant. This
result is nonparametric (i.e., it is true for all kinds of probability densities).

For so-called exponential families such as Gaussians, computations are greatly facili-
tated. Recall that a Gaussian distribution on R ¢ has the form

fxp,X) = (27r)_d/2]2\_% exp —%(X —pw)Ie i x—p)|. (2)

A well-known property of Gaussians is that they are closed under convolution:

J(x5 1, 1) * f(x5 p2, X2) = f(x5 p1 + p2, X1+ X2),

where the notation f;(x) * f2(x) means the same thing as

(1% fo)(x) = / A ) fa(x — y) dy.

yeERd

Whereas convolution, and its extension to the context of Lie groups, is a central operation
in works such as [26, 27, 18, 1, 2], the properties of convolution are not the focus of the
current discussion.

If f1(x) = f(x) is Gaussian and f(y | x) is Gaussian (to within a constant scale factor),
then their product will also be Gaussian to within a scale factor. Let

[y %)

RO = Ty Ty



K. Wolfe, M. Mashner, G. Chirikjian / J. Alg. Stat., 2 (2011), 75-97 78

Then at the core of (parametric) Baysian calculations following from (1) is the generation
of the new Gaussian L0 fa(x)
. b'e X
fr2(x) L

~ [ AR fa(x)dx

The denominator is just a constant. If the mean and covariance of the numerator are ex-
tracted from the exponential in the numerator, it is easy to obtain f; 2(x) = f(x; p1,2, X1,2).
More generally, if f;(x) = f(x; p1,%;), we can find (12, n, X1,2,..n) Where

®)

fi2,..n(x) =« H fi(x) 4)
i=1

(here o is a normalizing constant), by simply observing that

[Texp [_;(X — i) 2 (x - Hi)] = exp [—; D (= )8 (x — )
=1

=1

and recollecting terms in the sum in the form (x — u1,27._,,n)T21_é7m7n(x — M1,2,...n). This

gives
n
2 = 25 )
i=1

and
n
H12..n =212, .n <Z E;lm> . (6)
i=1

These equations lend themselves to recursive implementation, as

13 =%12,..n1t 0 7)

ghiganey ghigenny

and
K120 = X120 (21_,5,...,71_1“1,2 ..... n—1+ Eﬁlun) : ®)
In what follows, we will examine how to formulate similar formulas for data in Lie

groups.

3. Bayesian Fusion of Observations in Connected Unimodular Lie Groups

In this section, Lie groups are viewed as a domain in which data is measured and on
which probability densities are defined. Our goal is to extend formulas such as (5)—(8)
from the Euclidean setting to this Lie-group setting.
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3.1. Notation and Terminology

Let G be a connected Lie group, let G be the corresponding Lie algebra, and let d denote
their dimension. In many applications, the Lie groups of interest are SO(N), the special
orthogonal group of N x N matrices, and SE(N), the special Euclidean group consisting
of (N 4+ 1) x (N + 1) homogeneous transformation matrices of the form

| R p
s=|or ¥

where g € SE(N), R € SO(N),p € R? and 0 is the zero vector in R?. Both are connected
for all N > 1. The dimensions of these groups are d = N(N — 1)/2 for SO(N) and
d= N(N +1)/2for SE(N). For matrix Lie groups, the exponential map

exp: G — G )

is simply the matrix exponential. For elements of G' for which this map can be uniquely
inverted, the logarithm map is defined. Let G’ denote this set. Then

log: G — G

and (9) holds for G’ and G’ as well.

The exponential map for SO(N) applied to an open ball of radius 7 centered at the
origin of the Lie algebra so(/V) produces all of SO(N) minus a set of measure zero. This
slightly depleted subset of SO(N), SO(N)', maps bijectively back to the open ball in
s0(N), so(N)', under the logarithm map. A similar result follows for SE(N). Since all
of our results are robust to changes on sets of measure zero, we will make no distinction
between the whole groups, G, and their depleted subsets, G’, that map bijectively with a
region in the corresponding Lie algebras.

Given a basis { E;} for the Lie algebra G, it is possible to identify an arbitrary element
X € G with a vector x € R? by defining the “vee” operator V : G — R? by making the
identification (E;)V = e;, the i*" natural unit basis vector. It will happen frequently that
we will apply the V to log g. This will be written in shorthand as

v(g) = (logg)”. (10)
For example, if X € so(3) such that
0 —xX3 T2
X = T3 0 —X1
—T9 I 0

then (X)Y = [z1, 72, 73]T. The “vee” operators for SE(3) and SE(2) can be found in Ap-
pendix A. Similarly, a “hat” operator A : RY — G can be defined as the inverse of the
“vee” operator such that (e;)" = E;.



K. Wolfe, M. Mashner, G. Chirikjian / J. Alg. Stat., 2 (2011), 75-97 80

A unimodular Lie group, (G, o), consisting of a continuum of elements, G, is one that
possesses a bi-invariant integration measure, dg, such that the concept of probability den-
sities f(g) make sense in that the the integral

/Gf(g)dgz/c;f(goog)dgz/Gf(gogo)dgz

for any fixed go € G, where o is the group operation. Our discussion will be restricted
to matrix Lie groups that are both connected and unimodular, with SO(N) and SE(N)
being of particular interest from the standpoint of applications.

3.2. Problem Formulation

Given two probability densities fi(g) and f2(g), the goal of fusion in this context is
simply the calculation of a third probability density function f; 2(g) that minimizes a cost

such as (o )f ( )
B 1 2(9
¢= /G fG fl )dh - (11)

Ideally, one would like the cost to be zero, as in the case of Gaussians in R4 but there
is no a priori reason to believe that this should be possible.

In previous works [27, 18], the mean and covariance of a pdf on a connected unimod-
ular Lie group for which the exponential map is surjective (depleted by the set of measure
zero on which the logarithm map becomes singular) were respectively defined as i € G
and ¥ = X7 € R%*4 such that

f12(9) —

/G V(i o g)f(g)dg =0 (12)

and

5= /G V(i o g)lv(i o 9)]7 f(g)dg (13)

This nonparametric definition is most useful when the probability density function
is concentrated (in the sense that ||X| is small), and symmetric around the mean (in the
sense that f(uog) = f(g-tof™ )) The problem of interest is then to solve (11) in terms
of the resulting (i, ) given (ji1, ¥1) and (jiz, ¥2) corresponding to f1(g) and fa(g). In the
following section, a concept of a Gaussian distribution that satisfies these properties is
defined and used.

4. Parametric Bayesian Fusion of Observations in Connected Unimodular
Matrix Lie Groups

A Gaussian distribution on R? can be defined equivalently in terms of its parametric
form, or as the solution to a diffusion equation evaluated at a specific value of time. This
is not true in more general settings, including the case of connected unimodular matrix
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Lie groups. Moreover, the mean and covariance defined in (12) and (13) may not be the
most natural ways to parameterize a concept of Gaussians on Lie groups. In this section
an exponential family is defined and an algorithm for fusion is presented that mimics
the Euclidean case. The Baker-Campbell-Hausdorff formula is used at different levels
of truncation to obtain approximate results that are accurate under different ranges of
conditions.

4.1. Concentrated Gaussians on Lie Groups
A Gaussian distribution on G can be defined as [26, 27]

) =a oxp {54 0 OIS (o). 19
Here « is a normalizing constant to ensure that the distribution is a pdf, and g = exp(X)
is defined for all values in the Lie algebra that map to the depleted version of G. For the
set of measure zero in G that is outside of this depleted version of G, the function f(-) is
defined to have a value of zero. It should be noted that the ;2 and ¥ found in (14) may not
be the same as the mean and covariance defined in (12) and (13), respectively. However,
when ||| is small, then so too will be ||2||, and it can be shown that in this case ¥ — ¥,
and likewise i = pu.
The exponential family in (14) by design has the property that

11 /(g5 0 %0) (Ha> exp{—lz[ (Milog)]T&lV(uilog)}- (15)

=1 =1

However, due to the nonlinearity of the exponential and logarithm maps, there is no hope

to obtain an exact closed-from for f(g; pt1,2,....n, 21,2,....n) thatis proportional to [ [\, f(g; i, %s).
Yet, if the 1;’s are sufficiently clustered in the sense that §(u1;, 1;) = O(¢)', and the ¥;’s are
sufficiently concentrated in the sense that ||3;]| = O(e*) where € € Rx is a sufficiently
small positive number, then various levels of approximation can be made.

At the core of these approximations will be the realization that 12, = fi12,..n ©
€12,..n and each y; = fi1 2., 0 € Where fi1 2 n,€12. . n,6 € G, fl1,2,.. i an initial esti-
mate of p12 ., and €12, and ¢; are small in the sense that they can be approximated
accurately taking linear or quadratic terms in the Taylor series defining the exponen-
tial map. When they are so small that linear terms are sufficient, this will result in a
“first-order theory.” When quadratic terms are required, this will lead to a “second-order
theory.”

There are many ways to define /i1 5 .., such that it is an initial estimate of the “mean
of the means”. For this work, an initial estimate inspired by (5)—(6) for the product of

1§(-, -) is a metric such as those found in [3]. For SO(N), a natural metric is §(ui, ;) = || log(u;* o ;)|
where || - || is the Frobenius norm of the resulting skew-symmetric matrix.
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Gaussians on R? is used
A

n -1 n
fi12,...n = €Xp <Z Zil) <Z Eilv(m)) : (16)
i=1 i=1

Since
log(pi; " 0 g) =log(e; " o fiys ., 09),
the Baker-Campbell-Hausdorff (BCH) formula
1

log(eXe¥) = X 4V + %[X, Y] (D6 X V] [V, Y X)) + %[x, Y[, X 4. (17)

can be used to expand this out with ¢; * = X and ,al_%n o g = €Y. Or, put another way,
X =—logegand Y = log(,&i%mn 0g).

After expansion, recollecting terms in the exponent of (15), and matching them with
the analogous expansion of

1 _
_i[v(ulé

ISy

Tv—1 -1
n OQ)] E1,27...7nv(/’L1 2,...m Og)
under the assumption that

H1,2,..n = 11.2,..n © €1,2,...n

where again €12, , is a small motion, provides a way to fuse Gaussians that are not
too far away from each other and not too spread out. The results of these expansions
using different approximation levels are provided in the following subsections. A more
detailed derivation is provided in Appendix B.

The results that follow do not provide j1,2,.., or 312, , (Which are the values that

minimize (11)), rather they provide approximations of these values. Therefore, let ,ugk%n

and X(*) be the kth-order approximations of y1 2., and X2, . ,, respectively. This will
allow eng) ,, to be defined such that ugk‘gn =[12,..n0 6512) e

----------

4.1.1. First-Order Theory

By “first-order theory” we are referring to terms in the BCH expansion of
Y vig ops o) S V(g o fiy ,00) (18)

that are at most linear in ¢; and at most quadratic in (ﬂf%n o g). Using this criteria

: s 1 1 . iy
provides conditions for eg % _pand Zg % __ngiven ¢;’s and X;’s. These conditions are

)

1 n
(200.) VS0 =D = v(e) (19)
=1
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and

(5.) 7 (5 s = D0 (57 - S ave) . @)

El )
i=1

A review of the ad(-) operator used here can be found in Appendix A. It is important
to note that because of the quadratic nature of the equation that leads to (20) and the
presumed symmetry of Egn, we are only concerned with the symmetric part of the
resulting matrices in (20). These constraints can then be recast as

-1 n
(Eg}),,n> V(Gggw"n) - Z Ei_lV(Gi) =0 (21)
i=1
and
T n
M1(12)n + <M1(12)n) - Z (M;+ M) =0 (22)
i=1
where

— - 1 1 -1 1 -1 1
My =37 = yad(vie) and MY L= (1) - (B..)  adv(edd ).

Simultaneously solving these constraints analytically may be possible, however due

to the nonlinear nature of the equations, numerical methods for obtaining eg _nand

ZB ,, are used in the examples given in Section 5.

------

4.1.2. Second-Order Theory

The criteria for the retaining terms in the “second-order” BCH approximation of (18) is
that they be at most quadratic in ¢; and at most quadratic in ﬂf%n o g. This results in
two constraint equations that are analogous to (21) and (22),

1
3
Z ( [(M; + MZT]]]C + ;v(ei)TEilad(ej)ad(ek)v(ei)> (24)
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for 1 < j,k < n where

Here [-];; refers to the element in the jth row and the Ath column of the matrix in the
brackets.
Again, we recast (23) and (24) as

ad (v 0)] (58.) w0 -2(33 L) v )

777777

( [M; +MT ]k+ zl))v(ez)TZ ad(e;)ad(eg)v (e )> =0. (26)
1

As in the first-order case, an analytical solution to these constraints may be possible.
However, for the examples provided in Section 5 they are solved numerically.

5. Numerical Approximations for Fusion on SO(3)

Given pu1, p2, 31, and X, the constraints for obtaining first-order and second-order
approximations of ;2 and ¥; » have been established in Section 4. However, the effec-
tiveness of these approximations is still uncertain. One way to quantify their effectiveness
is to look at C'in (11).

The integral in (11) is not easily computed analytically. Nevertheless, we can numeri-
cally evaluate the costs using a discretized version. For C' the discretized version is given

by

N 1(,Xi. (k) / i / i
o=y e 72,2»21,2)_f<exvm721g (5 12, ) [T ((X)V) | A (27)
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such that v
G= (e, Si2) |7 (Y)Y) ] A(Y)Y
=1
and N
G =Y f(m, 20 f (€ 12, 2) |J((V)Y)| AY)Y,
i=1

where |J ((X;)Y)| is the determinant of the Jacobian relating the group element to its
associated exponential coordinates, AX ) is the volume of the voxel at (X;)", and N is
the number of voxels considered. If (27) is evaluated on a regularly spaced Cartesian
grid in exponential coordinates, then A(X;)Y is a constant. Note that f'(-) is not f(-) as
defined in (14); rather, f'(-) = f(-)/a.

We can explore the values over which the first-order and second-order constraints are
valid by using them to determine ugkg and Egkz) given various f;’s and X;’s. Two examples
are given below for SO(3). In these examples, the first-order constraint equations (21)
and (22) were simultaneously solved by minimizing the sum of the squares of all of the
elements on the left-hand side of these equations. If this minimization reaches a value of
zero, we consider the constraints to have been solved.

Using the fi1 2 .., from (16) and

n —1
f14 .= (z z) 08)
=1

as initial values for the minimization procedure helps to ensure that the minimization
reaches zero. A similar procedure was used to solve (25) and (26) for the second-order
approximations.

For the first example

1 \" 1"
v gl
=ex — 1 and =ex — -1
221 P V3 . M2 P V2 0
1 0 0] 05 0 0
$1=¢( R |0 075 0 |Rf and Sp=¢ Rl 0 1 0 |R]
0 0 05| 0 0 075

where R; and R; are arbitrary rotation matrices (i.e., R1, R2 € SO(3)). Two scale factors ~y
and £ are used vary the 1;'s and X;’s, respectively. v is used to “separate” the two means;
€ is used to “spread out” the distributions. Figures 1, 2, and 3 show the value of C’ for
a range of values of v and ¢ for the first example at different orders of approximation.

Figure 1 presents C’ using a so called “zeroth-order” approximation where ,ug(g =

fi1,2,....n and Zgo%n = 35, from (16) and (28). Figures 2 and 3 demonstrate C” for the
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Example 1: Zeroth-Order Approximation

o
o

©
o

I
IS

C' (Normalized Error)
o o
o W

o
-

o

& (£, Factor) bl

¥ (u; Factor)

Figure 1: Normalized error, C’, plotted versus v and ¢ for the first example using a zeroth-order approxima-
tion.

first-order and second-order approximations, respectively. C’ represents a normalized
error; a percent error can be obtained by multiplying C’ by 100.
For the second example

1 \" 1 \"
i 1 Y 1
1 =exp{ — | —3 and o = exXp —= 2
V2| v V2|
2 2
1 0 0 05 0 0
Y1=¢-R |0 075 0 |RT and ¥p=¢-Ry| 0 1 0 |RY
0 0 05 0 0 0.75

where the R;’s are not those used in the first example. Using these p;’s and %;’s, values
of C’ are given for various values of v and ¢ in Figures 4, 5, and 6.

6. Conclusions

A method for approximating Bayesian fusion on connected unimodular matrix Lie
groups has been presented for the case when the means are clustered sufficiently closely
and covariances are sufficiently small. This work relies on the Baker-Campbell-Hausdorff
expansion of the product of exponentials of Lie algebra elements. Conditions for both
tirst-order and second-order approximations were developed. As expected, of the three
approximations used, the second-order approximations resulted in the lowest error over
the largest range of scale factors for both of the examples explored in Section 5. It is also
important to note that both the first and second-order approximations result in lower
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Example 1: First-Order Approximation

o o
[

I
IS

C' (Normalized Error)
o o
o W

o
-

0.1
£ (£, Factor) 0.1 ¥ (u, Factor)

Figure 2: Normalized error, C’, plotted versus ~ and ¢ for the first example using a first-order approximation.

error than the zeroth-order approximation which was based on the product of Gaussians
taken on R¢.

The means of the two numerical examples used were chosen in an attempt to char-
acterize very different scenarios. In the first example, the vectors used to define the two
means were taken so that they were perpendicular or (v(m))T v(ue2) = 0. For the second
example, the vectors used to define the two means were taken so they had opposite sense
or v(ui) = —v(u1). The fact that these approximations perform well in each of these two
cases provides a reasonable expectation that they will perform well over all of SO(3).

While the numerical examples presented focused on SO(3), the results in Section 4
generalized to any connected unimodular Lie group. In particular, these methods could
easily be used with other motion groups such as SE(2) and SE(3).
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Example 1: Second-Order Approximation

o
o

©
o

I
IS

C' (Normalized Error)
o o
o W

o
-

& (2, Factor) oo v (u, Factor)

Figure 3: Normalized error, C’, plotted versus v and ¢ for the first example using a second-order approxima-
tion.

A. Appendix: The Lie Bracket and Adjoint Matrix, ad(X)

For two elements of a Lie algebra, G, the quantity
[X,Y]=XY -YX (29)

is known as the Lie bracket of X,Y € G. Based on its definition in (29), it is clear that the
Lie bracket is linear in both arguments:

[CLXl +bX2,Y] :a[Xl,Y] +b[X2,Y] and [X,aYl +bY2] :a[X, Yl] —i—b[X, YQ]
It is also easily verified that the Lie bracket is antisymmetric:
(X, Y] = —[¥, X].

Based on the definition of the “vee” operator discussed in Section 3.1, we can define
an adjoint function ad(-) : R4 — R%*¢ where d is the dimension of the Lie algebra so

that?
(X, Y]V =ad(XV)YV. (30)

From the definitions given in (10) and (30) it follows that
(X, Y] = ad(v(2))v(y)

where 7 = e* and y = ¢¥. The use of vV and ad(:) for different Lie algebras should not
be a source of confusion as their meaning can be obtained through their arguments and

#Note that often the adjoint is defined such that its arguments are elements of a Lie algebra (i.e., X as opposed
to X) however the definition given in (30) is used here to simplify expressions.
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Example 2: Zeroth-Order Approximation

o
o

©
o

C' (Normalized Error)
o o
[ w

o

& (2, Factor) oo v (u, Factor)

Figure 4: Normalized error, C’, plotted versus v and ¢ for the second example using a zeroth-order approxi-
mation.

usage. This allows the Baker-Campbell-Hausdorff formula given in (17) to be rewritten
as

(1o8(eX¢"))” =v() + v(y) + gad(v(z))v(y) + 13 (ad(v())ad (v(x))v(y)
+ad(v(y)ad(v(y))v(@) + 57ad(v(e))ad(v(y))ad(v(y))v(a) + ... G

We note that due to the linearity of the Lie bracket and the ad(-) operator, one is able

to write
n

ad(v(z)) = Z[v(g;)],- ad ((E)Y),
i=1
where E; is the ith basis element of the associated Lie algebra and [v(z)]; is the ith entry
in the vector v(z). It is often convenient to distinguish the basis elements of different
Lie algebras from one another. Therefore, let {E;}, {E;}, and {E;} represent the basis
elements of so(3), se(3), and se(2), respectively.

A.1. The Adjoint Matrix for so(3)

The Lie algebra, so(3), consists of skew-symmetric matrices of the form:

0 —w3 w2 3 B
Q=1 w3 0 -w | = ZwiEi
i=1

—Ww9 w1 0

where w; = [QV];.
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Example 2: First-Order Approximation
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Figure 5: Normalized error, C’, plotted versus v and ¢ for the second example using a first-order approxima-
tion.

If X,Y € s0(3), then
(X, Y] = XVxYyV

where x : R? — R3 is the traditional cross product. This leads to the fact that

ad(XV) = X.

A.2. The Adjoint Matrix for se(3)

The Lie algebra, se(3), consists of “screw” matrices of the form

0 —XI3 i) Ty 6

T 0 —r T ~

X = 3 ! > = E szz
-T2 I 0 g —
1=

0 0 0 0

where XV = [21, 72, 23, 24, T5, 26) -
The adjoint matrix for se(3) is given by

0 —XI3 T 0 0 0
T3 0 —x 0 0 0
— 0o 0 0 0 S (i Ey) 0
ad(XV)=| " = | L= Wil _
(%) 0 -2 x5 0 —x3 2 Sia(@iBy) S0 (wiE)
Tg 0 —xz4 x3 0 —-x
| —T5 T4 0 —z2 = 0 |
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Example 2: Second-Order Approximation
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Figure 6: Normalized error, C’, plotted versus v and ¢ for the second example using a second-order approx-
imation.

A.3. The Adjoint Matrix for se(2)

Matrices of the form

0 —x 9 3
X =

T 0 =x3 | = Z :C’LEl
0 0 0 i=1
comprise se(2) where XV = [z1, x, x3]T. From this, it is easily verified that the adjoint

matrix for se(2) is given by
0 0 0
ad(Xv) = T3 0 —X1 .

—X9 I 0

B. Appendix: Derivation of the First-Order and Second-Order Constraints

Consider the definition of a Gaussian distribution given in (14). This combined with
the version of the Baker-Campbell-Hausdorff given in (31) can be used to generate the
first-order constraints (19) and (20) and the second-order constraints (23) and (24). This
is done by allowing X = —loge; and ¥V = log(ﬂl’éwn o g). To simplify some of the
derivation below, we will substitute h for (ﬂf%n o g); therefore Y = log(h).

B.1. First-Order Constraints

Since we are only concerned with terms that are at most linear in ¢; and at most
quadratic in » we can remove a number of higher order terms in the BCH formula. This
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leaves
(108 (expl~los(e)] expllos()])) ~ ~vi(e) +v(h) — sad(v(e)v(h).  (32)

The terms of (18) can then be approximated as:

(2 (2

V(e o )TS V(e o h) ~ <—v(e¢)T +v(h)T - ;v(h)Tad(v(ei))T> 1

<—V(ei) +v(h) — ;ad(v(ei))v(h))
:V(ei)TEi_lv(ei) — 2v(ei)TEi_1V(h) + v(ei)TZi_lad(v(ei))v(h)
+v(R)TS v (R) — v(R) TS tad(v(e))v(R)
1

+ ZV(h)Tad(V(Ei))Tzflad(V(ez'))V(h) (33)

Removing the higher order terms of (33) leaves

V(e P o ) S V(e o h) = —2v(e)) T2 v (h) + v(h) TS v (R)
— v(h)TEi_lad(v(ei))v(h)

If one now considers (15) it should be clear that
-1 -1
v (2 .) v = v (31 ,)  ad (vl L)) vin)
T -1
—2(vie. ) (B.) v =

< —2v(e) TS v (h) +v(R) TS v (k) — v(h)TZi_lad(v(ei))v(h)) (34)
i=1

In (34), equating the terms linear in h gives rise to (19). Similarly, equating terms quadratic
in h yields (20).

B.2. Second-Order Constraints

Analogous to the first-order derivation, terms of cubic order and higher in either ¢; or
h can be disregarded in the BCH formula when establishing constraints for the second-
order theory. This allows one to write

(108 (expl~ tog(eo)] expllog())) ) ~ — vier) + v(h) ~ Lad(v(e))v(h)
+ % (ad(v(ei))ad(v(ei))v(h) - ad(v(h))ad(v(h))v(ei))). (35)
The expansion of (18) is then taken as

V(e P o )8 V(e o h) mv(e) T v(e) — 2v(e) T2 V() + v(e) D tad(v(e)) v ()

(3
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1 Tx—1 1 Tx—1
— év(ei) Y rad(v(e))ad(v(e))v(h) + 6v(67;) Y ad(v(h))ad(v(h))v(e;)
+v() T2 v (h) — v(h)TS  ad(v(e))v(h)

1 _ 1
+ év(h)TEi Lad(v(e;))ad(v(e))v(h) — G

+ fv(h)Tad(v(ei))TE;lad(v(ei))v(h)
— —v(h)Tad(v(q))TZZ»_1ad(v(e,~))ad(v(ei))v(h)
+ —v(h)Tad(v(e;)) T2 tad(v(h))ad(v(h))v(e;)

+ 7v(h)Tad(v(ei))Tad(v(ei))TEi_lad(V(ei))ad(v(ei))v(h)
1

— mv(h)Tad(v(ei))Tad(v(ei))TEi_lad(v(h))ad(v(h))v(ei)

+ V() Tad(v () ad (v ()57 Tad (v () Jad (v (R))v (). (36)

If the higher order terms are removed from (36), one is left with

V(e b o R)TS V(e o h) mv(e) TR v (e) — 2v(e) TR v(R) 4+ vie) D tad(v(e))v(h)

)

v(h)IS tad(v(R))ad(v(h))v(e)

)T ad (v (R))ad(v (1) v (&) + v ()T v ()

6
—v(h)IS ad(v(e))v(h) + év(h)TE;lad(v(ei))ad(v(ei))v(h)
4 %v(h)Tad(v(ei))Tz;lad(v(ei))v(h). (37)

For fixed values of ¢; and %;, v(e;)" % v(¢;) is a constant and does not need to be in-

cluded in the constraints as the resulting Gaussian can be normalized after eg ..... and

Z% 7777 ,, are determined. Now equating linear terms in & for (37) yields

(-2(vtel0) (50) "+ vleran) (58,) " ad (vl ) ) vl =

> (=2v(e) S+ v(e) S ad(v(e))) v(R). (38)
i=1
The constraint in (23) is then obtained by using (38) with the understanding that (38)
must hold for all h € G.
Now consider the terms of (37) that are quadratic in h. Using the linearity of the
adjoint operator and letting h; = [v(h)];, it is easily verified that these terms can be
expressed as

d d
> hyhuv(e)S; ad(e;)ad(er)v(e)+

J=1k=1

| =
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V(7 (271 = 2 () + 3 ad(v@)ad(v(e) + ad(v(e) TS ad(v(e) ) i)

6

where d is the dimension of the Lie algebra. Now let

Mi =57 = S ad(v(en)) + 5 ad(v(e))ad(v(en) + jad(v(e) S5 ad(v(e)

and

M= (58) 7 (58) e (v )

yyeeeyTl

-----

These terms quadratic in h can then be expressed as

d d
ZZhJ ( v(e;) TZ ad(ej)ad(eg)v(e;) + [Mz]jk)

Jj=1k=1

Then considering (15) with the approximation given by (37) it should be apparent that
we can equate the symmetric portion of the quadratic terms in % such that:

1 2 T 2 -1 2 1 2 2 T
g (vh) (S0) adte e+ 5 [ MO (M) | =

Z; ((13v(ei)Tzi—lad(ej)ad(ek)v(ei) + % [M; + M%T]ch)

for 1 < j,k < d. This is equivalent to (24).

C. Appendix: Nomenclature

R¢  d-dimensional Euclidean space
x avector in R4
e; the ith natural unit basis vector for R¢
|-| the determinant if the argument is a matrix or the magnitude
if the argument is a scalar
|| -|| the Euclidean norm if the argument is a vector or the Frobe-
nius norm if the argument is a matrix
G aconnected unimodular Lie group
g € G ageneric element of G
G the Lie algebra corresponding to G



REFERENCES

Xeg

wh . €G
19, € RIXE
fi2..n€G
21,2,...,71 € Rdxd
€ €G

€1,2,..m € G
EglfQ),...,n eG
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a generic element of G

the dimension of G and G

the ith basis element of the Lie algebra G

a linear function Vv : G — R% such that (E;)V = e;

a linear function (-)" : R? — G such that (e;)" = E;

a probability density function (on R¢ or G)

the Jacobian relating exponential coordinates to the associated
group element, J(-) : R% — Rd*d

the mean of f(x; u, )

the mean of f(-) given by (12)

the covariance of f(-) given by (13)

the first set of parameters that define f;(g) = f(g; i, Xi)

the second set of parameters that define f;(g) = f(g; pi, Xi)
the first set of parametersin f(-; pt1,2,....n, 21,2,...,n) to best match
with [T, f(*; s, X;) in the sense of (11)

the second set of parameters in f(-;u12,..n,212,..n) to best
match with [, f(-; s, 2;) in the sense of (11)

the kth-order approximation of p1 2. »

the kth-order approximation of 15

the initial estimate of 111 2,... », given by (16)
the initial estimate of X 5 ., given by (28)
defined such that y; = fi12,..n 0 €

defined such that p11 2. = fl12,. . n0€12,..n
defined such that ,ugkz)n =[12,..n0€12, . .n
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