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Abstract Understanding how errors propagate in serial revolute manipulators is
important for developing better designs and planning algorithms, as
well as understanding the practical limitations on accuracy of multi-
link arms. In this paper we provide a systematic propagation method-
ology and numerical example that illustrates how large kinematic errors
propagate by convolution on the Euclidean motion group.
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1. Introduction

Kinematic errors arising from spatial uncertainties put strong limita-
tions on the performance of serial manipulators. The accumulation of
these errors could lead to the failure of executing nominal tasks. Eval-
uating the propagation effects of kinematic errors is essential in ma-
nipulator design, failure prediction, and algorithms planning. It is also
important for understanding the practical limitations on accuracy of
multi-link arms.

In this paper, we presents a systematic methodology of propagating
large errors in revolute manipulators from the point view of Euclidean
motion group. Our approach is to treat errors using probability densi-
ties on the Euclidean group. Whereas concepts such as integration and
convolution of these densities follow in a natural way when considering



the Lie group setting [Chirikjian and Kyatkin, 2001], standard concepts
associated with the Gaussian distribution in IRN do not follow in a nat-
ural way to Lie groups. Several of the most closely related works are
reviewed below. These include the theory of Lie groups, robot kinemat-
ics, methods for describing spatial uncertainty, and state estimation.

Murray, Li and Sastry [Murray, Li and Sastry, 1994] and Selig [Selig,
1996] presented Lie-group-theoretic notation and terminology to the ro-
botics community, which has now become standard vocabulary. Park
and Brockett [Park and Brockett, 1994] showed how dexterity measures
can be viewed in a Lie group setting, and how this coordinate-free ap-
proach can be used in robot design. Wang and Chirikjian [Wang and
Chirikjian, 2004] showed that the workspace densities of manipulators
with many degrees of freedom can be generated by solving a diffusion
equation on the Euclidean group. Blackmore and Leu [Blackmore and
Leu, 1992] showed that problems in manufacturing associated with swept
volumes can be cast within a Lie group setting. Kyatkin and Chirikjian
[Chirikjian and Kyatkin, 2001] showed that many problems in robot
kinematics and motion planning can be formulated as the convolution
of functions on the Euclidean group.

Starting with the pioneering work of Brockett [Brockett, 1972], the
controls community has embraced group-theoretic problems for many
years. This includes PD control on the Euclidean group [Bullo and Mur-
ray, 1999; Leonard and Krishnaprasad 1995], tracking problems [Han and
Park, 2001; Han, 2004], and estimation [Lo and Eshleman, 1979]. The
representation and estimation of spatial uncertainty has also received
attention in the robotics and vision literature [Smith and Cheeseman,
1986; Su and Lee, 1992]. Recent work on error propagation described by
the concatenation of random variables on groups has also found promis-
ing applications in mobile robot navigation [Smith, Drummond, and
Roussopoulos, 2003]. We note that while all of these works focus on
small errors, our emphasis is a formulation that applies to large errors
as well.

2. Review of Rigid-Body Motions

2.1 Euclidean Motion Group

The Euclidean motion group, SE(N), is the semi direct product of
IRN with the special orthogonal group, SO(N). We denote elements of
SE(N) as g = (a, A) ∈ SE(N) where A ∈ SO(N) and a ∈ IRN . For
any g = (a, A) and h = (r, R) ∈ SE(N), the group law is written as
g ◦ h = (a + Ar, AR), and g−1 = (−ATa, AT ). It is often convenient
to express an element of SE(N) as an (N + 1) × (N + 1) homogeneous



transformation matrix of the form:

g =





A a

0T 1



 .

In this way, rotation and translation are combined into a single matrix.
A homogeneous transformation matrix takes the place of the pair (a, A),
and the group operation becomes the matrix multiplication

For example, each element of SE(2) parameterized using polar coor-
dinates can be written as:

g(r, φ, θ) =





cos θ − sin θ r cos φ
sin θ cos θ r sin φ

0 0 1



 , (1)

where 0 ≤ φ, θ ≤ 2π and 0 ≤ r ≤ ∞. SE(2) is a 3-dimensional manifold
much like IR3. We can integrate over SE(2) using the volume element
d(g(r, θ, φ)) = rdrdθdφ.

2.2 Motion-Group Fourier Transform

The Fourier transform of a function on G = SE(N) is defined as:

f̂(p) =

∫

G
f(g)U(g−1, p) d(g) (2)

where d(g) is a volume element at g, and U(g, p) is an infinite-dimensional
unitary matrix called an irreducible unitary representation, or IUR [
Chirikjian and Kyatkin, 2001]. It possess the important homomorphism
property, U(g1 ◦ g2, p) = U(g1, p)U(g2, p). One can show that the gener-
alization of the classical Fourier transform in (2) admits a convolution
theorem due to the homomorphism property of U(g, p), and that the
following inverse transform can be used to reconstruct the original func-
tion:

f(g) =

∫ ∞

0
trace(f̂(p)U(g, p))pN−1dp. (3)

This is because the matrix elements of the full set of IURs form an
orthonormal basis with which to expand functions on SE(N).

A number of works [Chirikjian and Kyatkin, 2001] have shown that
the matrix elements of the IURs for SE(2) can be expressed as

umn(g(r, φ, θ), p) = in−me−i[nθ+(m−n)φ]Jn−m(p r) (4)

where Jν(x) is the νth order Bessel function, and m and n take values
in the integers.



The Fourier inverse transform can be written in terms of elements as

f(g) =
∑

m,n∈ZZ

∫ ∞

0
f̂mnunm(g, p)pdp. (5)

The motion-group Fourier transform has the property that when ap-
plied to convolutions of the form

(f1 ∗ f2)(g) =

∫

G
f1(h)f2(h

−1 ◦ g)d(h),

the result is the product of Fourier transform matrices: f̂2(p)f̂1(p).

3. Propagation of Error in Serial Linkages

Suppose we are given a manipulator consisting of two concatenated
serial links connected with a revolute joint. One unit is stacked on
top of the other one. The proximal unit will be able to reach each
frame h1 ∈ SE(3) with some error when its proximal end is located at
the identity e ∈ SE(3). This error may be different for each different
frame h1. This is expressed mathematically as a real-valued function
of g1 ∈ SE(3) which has a peak in the neighborhood of h1 and decays
rapidly away from h1. If the unit could reach h1 exactly, this function
would be a delta function. Explicitly the error may be described by one
of many possible density functions depending on what error model is
used. However, it will always be the case that it is of the form ρ1(h1, g1)
for h1, g1 ∈ SE(3). That is, the error will be a function of g1 ∈ SE(3)
for each frame h1 that the top of the module tries to attain relative to its
base. Likewise, the second module will have an error function ρ2(h2, g2)
for h2, g2 ∈ SE(3) that describes the distribution of frames around h2

that might be reached when h2 is the expected end frame for module 2
relative to its base, and the base of module 2 is located at the identity
e ∈ SE(3).

The error distribution that results from the concatenation of two mod-
ules with errors ρ1(·) and ρ2(·) results from sweeping the error distrib-
ution of the second module by that of the first. This is written mathe-
matically as:

ρ(h1 ◦ h2, g)
= (ρ1 ⊗ ρ2)(h1 ◦ h2, g)
△
=

∫

SE(3) ρ1(h1, g1)ρ2(h2, g
−1
1 ◦ g)d(g1).

(6)

Here d(g) is the unique bi-invariant integration measure for SE(3) eval-
uated at g [Chirikjian and Kyatkin, 2001]. Sometimes this is simply



written as dg. In the case of no error, the multiplication of homoge-
neous transforms h1 and h2 as h1 ◦ h2 represents the composite change
in position and orientation from the base of the lower unit to the inter-
face between units, and from the interface to the top of the upper unit.
In the case of inexact kinematics, the error function for the upper unit
is shifted by the lower unit (ρ2(h2, g

−1
1 ◦g)), weighted by the error distri-

bution of the lower unit (ρ1(h1, g1)) and integrated over the support of
the error distribution of the lower unit (which is the same as integrating
over all of SE(3) since outside of the support of the error distribution
the integral is zero). The result of this integration is by definition the
error density function around the frame h1 ◦ h2, and this is denoted as
(ρ1 ⊗ ρ2)(h1 ◦ h2, g). It should be noted that (6) holds regardless of the
size of the errors or the form of the error density.

It is often convenient to suppress the explicit dependence of ρi(cot)
on hi, which can be viewed as a constant set of parameters. When this
is done, Eq. 6 reduces to a convolution on SE(N).

4. Numerical Example

Consider the three-link planar revolute manipulator shown in Figure
1. Each rigid link has length L, and each joint has some backlash that
is described by a probability distribution f(θ − θ0) centered around the
value θ0 = 30 degrees. The error density for a single link is then of the
form

ρ(g(r, φ, θ)) = f(θ − θ0)δ(φ − θ)δ(r − L)/r (7)

where δ(·) is the usual Dirac delta function in one dimension and an
arbitrary element of g(r, φ, θ) ∈ SE(2) is parametrized as in Eq. 1.
Integration over G = SE(2) is then integration over all values of r ∈ IR+

and φ, θ ∈ [0, 2π].

Figure 1. A three-link planar manipulator with joint backlash

In Equation 7, the delta functions enforce the rigidity of the links,
and division by r is due to the r in the volume element. The function



f(θ) has its mode at 0, but the backlashes can be potentially large (i.e.,
not highly concentrated). For this reason, we cannot take it to be a
Gaussian, but rather, a folded Gaussian of the form:

f(θ, σ) = 1
2π

∑∞
n=−∞ e−n2σ2

einθ

= 1√
2πσ

∑∞
n=−∞ e−(θ−2πn)2/2σ2 (8)

The error density that accumulates at the end effector due to back-
lashes in each of the joints is computed as the convolution

ρee(g) = (ρ ∗ ρ ∗ ρ)(g).

Computing this numerically by the definition of convolution is not as
convenient as using the SE(2)-convolution theorem and the correspond-
ing concept of Fourier transform, which is what we shall do here.

Computing the SE(2)-Fourier transform of the one-link backlash-
error density in Equation 7, one finds (after the delta functions kill the
integrals over r and φ) that:

ρ̂mn(p) = in−mJm−n(pL)
∫ 2π
0 f(θ − θ0)e

inθdθ

= in−mJm−n(pL)einθ0−n2σ2

.
(9)

Using the convolution theorem, we compute ρ̂ee(p) = ρ̂ ρ̂ ρ̂, where the
matrix elements of ρ̂ are given by Equation 9. Then the original error
density ρee(g(r, φ, θ)) can be reconstructed by applying the Fourier in-
version formula (3) to ρ̂ee(p). Since it is difficult to view the error density
ρ(g) graphically, the marginal density function ρ(r, φ) is computed. The
marginal density function ρ(r, φ) is found by just integrating the Fourier
reconstruction formula (3) for ρ(g) with respect to θ as

ρ(r, φ) =
1

2π

∫ 2π

0
ρ(g)dθ

=
∑

n∈z
i−ne−inφ

∫ ∞

0
f̂0n(p)J−n(pr)pdp.

To validate the results obtained from our convolution-based error
propagation method, the error distribution (8) is sampled and applied
to each joint of the manipulator directly. Then brute force enumeration
is used to obtain the error distribution directly.

The marginal error densities ρ(r, φ) obtained from both methods are
plotted in Figures 2 and 3 with the left one from the propagation method
and the right one from brute force. The variance σ2 of 0.1 is given in
Figure 2 and σ2 of 0.3 in Figure 3.
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Figure 2. The marginal error density ρ(r, φ) for σ2=0.1
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Figure 3. The marginal error density ρ(r, φ) for σ2=0.3

For the above computations, the link length L is taken as 1, and
60 samples points are generated for the distribution (8). The infinite-
dimensional matrix function U(g, p) in the SE(2) Fourier transform is
truncated at finite values of |m|, |n| ≤ 10 (i.e., the dimension of U(g, p)
is 2× 10 + 1). The band-limited approximation still gives very accurate
results because the magnitude of the Fourier transform of a sufficiently
smooth function can be ignored beyond a certain cutoff frequency. The
frequency parameter p is sampled in the interval of 300 with an inte-
gration step of 0.2. All the calculations in this example (excluding the
brute force method) took less then 3 minutes using Matlab with a 1.0
GHz, 516 MB RAM computer.

5. Conclusions

In this paper it is shown how the accumulation of large kinematic er-
rors in serial manipulators can be computed by performing convolutions



on the Euclidean motion group. This theory is demonstrated with the
example of a planar revolute manipulator with three links.

6. Acknowledgments

This work was performed under grant NSF-RHA 0098382 “Diffusion
Processes in Motion Planning and Control.”

References

Blackmore, D., Leu, M.C.(1992) “Analysis of Swept Volume via Lie Groups and Dif-
ferential Equations,” The Int. J. of Robotics Research Vol. 11, No. 6, pp.516-537.

Brockett, R.W.(1972) “System Theory on Group Manifolds and Coset Spaces,” SIAM

J. Control, Vol. 10, No. 2, pp. 265-284.

Bullo, F., Murray R. M. (1999) “Tracking for fully actuated mechanical systems: a
geometric framework,” Automatica, 35 (1): 17-34.

Chirikjian, G.S., Kyatkin, A.B. (2001), Engineering Applications of Noncommutative

Harmonic Analysis, CRC Press, Boca Raton, FL.

Han, Y. M. (2004) “Simultaneous translational and rotational tracking in dynamic,
environments: Theoretical and practical viewpoints,” IEEE Transactions on Ro-

botics and Automation, 20 (2): 309-318.

Han, Y., Park, F. C. (2001) “Least squares tracking on the Euclidean group,” IEEE
Transactions on Automatic Control, 46 (7): 1127-1132.

Leonard, N. E., Krishnaprasad, P. S. (1995) ”Motion Control on Drift-Free, Left-
Invariant Systems on Lie Groups,” IEEE Transactions on Automatic Control, Vol.
40, No. 9, pp. 1539-1554.

Lo, J. T.-H., Eshleman, L.R. (1979) “Exponential Fourier Densities on SO(3) and Op-
timal Estimation and Detection for Rotational Processes,” SIAM J. Appl. Math.,
Vol. 36, No. 1, pp. 73-82.

Murray, R. M., Li, Z., Sastry, S.S. (1994) A Mathematical Introduction to Robotic

Manipulation, CRC Press, Ann Arbor MI.

Park, F.C., Brockett, R.W. (1994) “Kinematic Dexterity of Robotic Mechanisms,”
The International Journal of Robotics Research, Vol. 13, No. 1, pp. 1-15.

Selig, J.M. (1996) Geometrical Methods in Robotics, Springer, New York.

Smith,P., Drummond, T., and Roussopoulos, K. (2003) “Computing MAP trajectories
by representing, propagating and combining PDFs over groups,” Proceedings of the

9th IEEE Int. Conf. on Computer Vision, volume II, pages 1275-1282, Nice.

Smith, R.C., Cheeseman, P. (1986) “On the Representation and Estimation of Spatial
Uncertainty,” The Int. J. of Robotics Research, Vol. 5, No. 4, pp. 56-68.

Su, S., Lee, C.S.G. (1992) “Manipulation and Propagation of Uncertainty and Ver-
ification of Applicability of Actions in assembly Tasks,” IEEE Transactions on

Systems, Man, and Cybernetics, Vol. 22, No. 6, p. 1376-1389.

Wang, Y.F., Chirikjian, G.S. (2004) “Workspace Generation of Hyper-Redundant
Manipulators as a Diffusion Process on SE(N),” IEEE Transactions on Robotics

and Automation, Vol. 20, No. 3, p.399-408.


