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Abstract—A Bayesian filter for rotation groups in 2D and 3D
is derived. The prior, propagator, and measurement probability
densities are all assumed to be bandlimited functions on SO(2) or
SO(3), expressed as a Fourier series on these compact Lie groups.
The posterior, which has a higher bandlimit, is computed and
then low-pass filtered, resulting in a bandlimited approximation.
The benefits and drawbacks of the Fourier approach presented
here are examined in contrast to the Gaussian approach designed
for small error covariances. While the Gaussian approach is
much faster, it breaks down for large error covariances. The
point where the Gaussian approach breaks down is analyzed with
the Fourier method, indicating the range of error sizes where the
switch to Fourier methods is required.

I. INTRODUCTION

Recently in the literature, the topic of estimation on the
rotation group, SO(3), has received considerable attention
[1]–[14]. Applications include error propagation in robotic
manipulators [15]–[17], localization in mobile robotics [18]–
[20], and spacecraft attitude estimation [21]–[25]. Such topics
have a very long history, including the pioneering efforts in
the controls community in [26]–[30], and in the mathematics
community even earlier [31], [32].

This paper is concerned with developing closed-form formu-
las to propagate uncertainty (via the noncommutative convolu-
tion theorem) and to fuse priors and measurement distributions
in closed form in the case of continuous rather than discrete
time. There has been a body of work that are related to the
directional estimation of positions on the unit circle and sphere
using Fourier density functions [33]–[37]. In this paper, our
main interest lies in the estimation on the orientation, i.e.,
rotation group SO(2) and SO(3). Given a rotational system,
the posterior probability density function (pdf) is computed
as the product of prior and measurement distributions. We
present the method based on the Fourier approach to compute
this posterior distribution on the rotation group in the case of
large errors. We consider Gaussian functions as an example,
which are typical as likelihood functions of the orientation.
The remainder of the paper is structured as follows. Section II
provides a brief review of engineering-based filtering methods
on Lie groups under the assumption of small error covariances.
The main purpose of that section is to illustrate both the
convenience and limitations of the assumption of small errors.

Section III explains how propagation of large orientation
errors on the rotation group can be implemented efficiently
using noncommutative harmonic analysis. Section IV explains
how Bayesian fusion can be implemented as a Fourier calcu-
lation. Section V then illustrates these ideas with numerical
calculations.

As a matter of notational convenience, exp : so(3) →
SO(3) is the exponential map. Explicitly, if X = −XT ∈
R3×3 then we say that this is an element of so(3). The result
of exponentiating this matrix is a rotation, R = exp(X) ∈
SO(3). In other words, RRT = RTR = I3 and detR = +1,
where I3 denotes a 3 × 3 identity matrix. Going the other
way, the logarithm of any rotation matrix with rotation angle
0 ≤ θ < π can be defined as log(R). In probabilistic settings
the set of measure zero defined by θ = π is unimportant.
To distinguish between the matrix exponential and the scalar
exponential, we refer to the latter as ex. Both concepts will
appear in our formulation.

II. ALTERNATIVES: GAUSSIANS FOR SMALL ERRORS

When uncertainties are small both in the prior and measured
distributions a Gaussian, with covariance Σ = [σij ], of the
form

fΣ(R)
.
=

1

(2π)
3
2 |Σ| 12

e−
1
2 [log∨(R)]TΣ−1 log∨(R) (1)

is a convenient way to describe the distribution of possible
rotations where ∨ converts 3×3 skew symmetric matrices (or
elements of so(3)) to three-vectors. That is, if X = −XT then
Xv = x× v where x = X∨ for any v ∈ R3. Here

X =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 =

3∑
k=1

xiEi

and E∨i = ei, the ith natural basis vector for R3.
The Gaussian in (1) is centered at the identity, and one

centered at Rµ is obtained by shifting it and evaluating
fΣ(R−1

µ R).
If R = exp(X) is the exponential parameterization for

SO(3) as computed in [38], then the Haar measure for SO(3)
can be computed as dR = |J(x)|dx where dx = dx1dx2dx3

and the Jacobian determinant in this parameterization has the
property that |J(x)| = 1 +O(‖x‖2).



The significance of this is that for small values of ‖x‖,
integrating over SO(3) is very much like integrating over R3.
For example, the covariance can be defined as

Σ
.
=

∫
SO(3)

log∨(R)[log∨(R)]T fΣ(R)dR.

In exponential coordinates log∨(expX) = x ∈ Bπ (the solid
ball in R3 of radius π centered at x = 0) and

Σ =

∫
Bπ

xxT fΣ(expX)|J(x)|dx.

Here | · | and ‖ · ‖ respectively denote the determinant of a
matrix and the Euclidean norm of a vector or a matrix. For
concentrated probability density functions, ‖Σ‖ � 1, which
means that the tails of fΣ(expX) decay to negligible levels
well before |J(x)| deviates substantially from 1, and before
the tails travel outside of Bπ . As a result, for concentrated
pdfs, the changes |J(x)| → 1 and Bπ → R3 can be made
to simplify the computation of the integral. In fact, this is the
justification for the definition in (1), which breaks down as
‖Σ‖ grows to larger values.

Errors of Markovian random processes propagate by con-
volution. Also, it has been shown that, for small errors, the
mean and covariance of the convolution of fΣ1

(R−1
µ1
R) and

fΣ2
(R−1

µ2
R) are given by [15], [17], [32]

Rµ1∗2 = Rµ1
Rµ2

,

Σ1∗2 = Ad−1(Rµ2
)Σ1Ad

−T (Rµ2
) + Σ2

(2)

where Ad denotes the adjoint matrix. These equations are
general, and hold for any unimodular Lie group, as long as
errors are small. This is a broad class including SO(3). In the
special case of SO(3), which is the focus of this paper, the
adjoint matrix is defined as

Ad(R) = R. (3)

Moreover, given a noisy kinematic system of the form(
R−1dR

)∨
= a dt+B dW (4)

(where dW are increments of Wiener process which is un-
correlated white noise of unit strength), then when a and B
are constant ‖BBT ‖ � 1, the ensemble solutions with initial
conditions R(0) will have mean and covariance given by [19]

Rµ(t) = R(0) exp

(
t

3∑
i=1

Eiai

)
and

Σ(t) = Ad−1(Rµ(t)) Σ′(t)Ad−T (Rµ(t)) (5)

where

Σ′(t) =

∫ t

0

Ad−1(Rµ(τ))BBTAd−T (Rµ(τ))dτ.

And in many instances of practical interest, these integrals
can be computed in closed form both for the case of SO(3)
discussed here, and for the group of Euclidean motions,
SE(3), discussed in [39].

Moreover, Bayesian fusion methods have been developed
for expressing the product of two concentrated Gaussians on
SO(3) of the form fΣ1

(R−1
µ1
R) and fΣ2

(R−1
µ2
R) in a result

that is of the same form [40]. Therefore, all of the parts
for an effective filter on SO(3) have been put in place, as
explained in [8]. When measurement and propagation errors
are relatively small, the above framework is appealing as
an invariant filter. Perhaps this is why several groups have
independently, and nearly in parallel, developed similar ideas.
However, difficulties arise when very large errors are present.
Some authors attempt to redefine the concept of a Gaussian
on SO(3) by dividing by |J(x)| when the tails are heavy,
since this quantity can no longer be assumed to be equal
to unity. Others seek to somehow fold the Gaussian around
the ball Bπ or around a maximal torus in SO(3). While
such ideas are not without merit, particularly when Σ = σ2I,
they lead to complications such as loss of simple propagation
formulas in (2) and (5). And more importantly, form closure
cannot be assumed in the sense that a Gaussian defined by
dividing and/or folding will not be guaranteed to be closed
under convolution when ‖Σ‖ is not sufficiently small.

This paper therefore examines a completely different al-
ternative paradigm based on Fourier analysis on SO(3), as
described in the next section. In the Fourier approach, dis-
tributions with heavy tails are no problem. In fact, the more
spread out a distribution is, the easier it is to handle.

III. ERROR PROPAGATION USING FOURIER ANALYSIS

Given the estimate of a rotating system at time t is ft(R),
and if the transition probability density describing how any
R will diffuse at the next instant in time is f∆t(R) then
in the absence of any measurements, then under the Markov
assumption, the estimate at time t+ ∆t will be

(ft ∗ f∆t)(R)
.
=

∫
SO(3)

ft(A)f∆t(A
−1R)dA (6)

where f∆t(A
−1R) can be interpreted as the probability density

corresponding to R at time ∆t given A at time 0. The Fourier
coefficients for any square-integrable function on SO(3) are
defined as

f̂ lnm =

∫
SO(3)

f(R)U lmn(R)dR. (7)

The set of (2l + 1) × (2l + 1) matrices {U l | l = 0, 1, 2, ...}
are called irreducible unitary representations (IURs) which
provides the basis of the Fourier transform for a Lie group
(see [32], [41] for the detailed explanation). They have the
following important properties [32], [42]

U l(R1R2) = U l(R1)U l(R2) and U l(R−1) = (U l(R))∗

(8)
where ∗ denotes the Hermitian conjugate. Explicitly, these
matrices are given in terms of functions of mathematical
physics such as the Jacobi polynomials. These matrix functions
are smooth functions of R in the sense that

ul(X)
.
=

d

dt
U l(exp tX)

∣∣∣∣
t=0

(9)



exists, as do all higher derivatives. These matrices are rep-
resentations of the Lie algebra so(3), and are linear in their
argument:

ul(X) =

3∑
i=1

xiu
l(Ei). (10)

The function f(R) is recovered from the set of coefficients
{f̂ lnm | l = 0, 1, 2, ...} with the Fourier series

f(R) =

∞∑
l=0

(2l + 1)

l∑
m,n=−l

f̂ lnmU
l
mn(R) (11)

Fourier analysis is a natural tool for propagation of uncertainty
because of the convolution theorem, which gives

̂(ft ∗ f∆t)
l

mn =

l∑
k=−l

(̂f∆t)
l

mk (̂ft)
l

kn. (12)

Note the reversal of order of the products, which is significant
in this noncommutative setting.

In the Fourier setting, a concentrated Gaussian distribution
defined in (1) can be computed with a bandlimited series
wherein l is truncated at a high number. The Fourier coef-
ficients for this series can be computed as

(f̂Σ)l =

∫
SO(3)

fΣ(R)U l(R−1)dR

= C

∫
R3

e−
1
2x

TΣ−1x

·
(
I2l+1 + ul(−X) +

1

2
(ul(−X))2 + · · ·

)
|J(x)|dx

= C

∫
R3

e−
1
2x

TΣ−1x

·

I2l+1 +
1

2

3∑
i,j=1

xixju
l(Ei)u

l(Ej) + · · ·

 |J(x)|dx

= exp

1

2

3∑
i,j=1

σiju
l(Ei)u

l(Ej)

 .

Here ul(·) was defined in (9) and the property (10) was
used. The constant C can be computed as 1

(2π)
3
2 |Σ|

1
2

in the

concentrated Gaussian cases. Though our arguments here are
approximations, it can be shown that the final result given
above is exact [32], [41].

Similarly, if a system is governed by (4), then the Fourier
transform of the pdf describing an infinite ensemble is

(f̂t)
l = exp

(
t ·

3∑
k=1

ak u
l(Ek)

+
1

2
t ·

3∑
i,j=1

(BBT )iju
l(Ei)u

l(Ej)
)
.

(13)

And this too is exact. When the quantities in the matrix
exponential are small, then the first two terms in the Taylor
series can be used.

IV. BAYESIAN FUSION USING FOURIER ANALYSIS

A. Case I: SO(2)

Let us first, as a motivation example, consider two functions
on the circle f(θ) and g(θ), where the variable to describe the
functions is θ ∈ S1. We want to compute f(θ) g(θ) using
Fourier approach. First, let

f(θ) =

∞∑
n=−∞

f̂n e
in θ

and

g(θ) =

∞∑
m=−∞

ĝm e
imθ

where

f̂n =
1

2π

∫ 2π

0

f(θ′) e−in θ
′
dθ′

and similarly for ĝm. The convolution theorem gives
(̂f ∗ g)k = f̂k ĝk where

(f ∗ g)(θ) =

∫ 2π

0

f(ξ) g(θ − ξ) dξ.

In contrast, if we want to fuse two pdf’s on SO(2) ∼= S1 = T1,
then we seek to express the product f(θ) · g(θ) in a Fourier
series. The Fourier coefficients of this product will be

(̂f · g)k =

∞∑
m,n=−∞

f̂nĝm
1

2π

∫ 2π

0

einθ eimθ e−ikθ dθ

where the last integral term becomes δn+m,k. Hence

(̂f · g)k =

∞∑
n=−∞

f̂n ĝn−k =
(
f̂ ? ĝ

)
k

(14)

where ? denote the convolution of discrete signals. If f and g
are band limited with band limit N (so that −N ≤ m,n ≤ N )
and if 2N + 1 ≤ 2B , then (14) can be computed by FFT in
O(B log2B) time.

B. Case II: SO(3)

Now let us move the discussion onto the functions on
SO(3). Denote the prior as f(R) and the measurement dis-
tribution as g(R)

.
= f(z |R). Moreover, suppose that both

of these distributions are bandlimited Fourier expansions on
SO(3) of the form

f(R) =

N∑
l1=0

(2l1 + 1)

l1∑
m1,n1=−l1

f̂ l1n1,m1
U l1m1,n1

(R)

g(R) =

N∑
l2=0

(2l2 + 1)

l2∑
m2,n2=−l2

ĝl2n2,m2
U l2m2,n2

(R).

(15)

Note that we use the same band-limit for both f(R) and g(R).
We seek the bandlimited approximation of the posterior

distribution given by Bayes’ rule

f(R | z) =
f(z |R)f(R)∫

SO(3)
f(z |R)f(R)dR

(16)



First, let us consider the numerator. By using the Fourier
expansions of each function, we obtain

f(R) g(R) =

N∑
l1=0

N∑
l2=0

(2l1 + 1) (2l2 + 1)

·
l1∑

m1,n1=−l1

l2∑
m2,n2=−l2

f̂ l1n1,m1
U l1m1,n1

(R) ĝl2n2,m2
U l2m2,n2

(R)

(17)

Now we want to compute the Fourier transform of the product
of two density functions, which is computed as

(̂f g)
l

n,m =

∫
SO(3)

f(R) g(R)U lm,n(R) dR. (18)

If we substitute (17) into the above equation, then it follows

(̂f g)
l

n,m =

N∑
l1,l2=0

(2l1 + 1) (2l2 + 1)
∑

m1,n1,m2,n2

f̂ l1n1,m1
ĝl2n2,m2

·
∫
SO(3)

U l1m1,n1
(R)U l2m2,n2

(R)U lm,n(R) dR.

(19)

The integral term can be expressed with Clebsch Gordan
coefficients, denoted as Cl,ml1,m1;l2,m2

, which are widely used
in particle physics (see [42] for the definition), as [41]∫

SO(3)

U l1m1,n1
(R)U l2m2,n2

(R)U lm,n(R) dR

=
1

2l + 1
Cl,ml1,m1;l2,m2

Cl,nl1,n1;l2,n2

(20)

hence we obtain

(̂f g)
l

n,m =

N∑
l1=0

N∑
l2=0

(2l1 + 1)(2l2 + 1)

2l + 1

l1∑
m1,n1=−l1

l2∑
m2,n2=−l2

f̂ l1n1,m1
ĝl2n2,m2

Cl,ml1,m1;l2,m2
Cl,nl1,n1;l2,n2

.

(21)

Furthermore, noting the condition that makes Clebsch Gordan
coefficients non-zero, i.e.,

Cl,ml1,m1;l2,m2
Cl,nl1,n1;l2,n2

=

δm,m1+m2
δn,n1+n2

Cl,ml1,m1;l2,m2
Cl,nl1,n1;l2,n2

,

it can be further simplified to

(̂f g)
l

n,m =

N∑
l1=0

N∑
l2=0

(2l1 + 1)(2l2 + 1)

2l + 1

l1∑
m1,n1=−l1

f̂ l1n1,m1
ĝl2n−n1,m−m1

Cl,ml1,m1;l2,m−m1
Cl,nl1,n1;l2,n−n1

(22)

where −l2 ≤ n − n1,m − m1 ≤ l2 to make ĝl2n−n1,m−m1

nonzero.

Regarding the denominator, first noting that [42]

U l2m2,n2
= (−1)n2−m2 U l2−m2,−n2

(23)

it follows that∫
SO(3)

f(R) g(R) dR =

N∑
l1,l2=0

(2l1 + 1)(2l2 + 1)
∑

m1,n1,m2,n2

f̂ l1n1,m1
ĝl2n2,m2

(−1)n2−m2

∫
SO(3)

U l1m1,n1
(R)U l2−m2,−n2

(R) dR

=

N∑
l1=0

(2l1 + 1)

l1∑
m1,n1=−l1

(−1)m1−n1 f̂ l1n1,m1
ĝl1−n1,−m1

(24)

due to the orthogonality of IURs such that∫
SO(3)

U l1m1,n1
(R)U l2m2,n2(R) dR

=
1

2l1 + 1
δl1, l2 δm1,m2

δn1, n2
.

(25)

Note that in computing volume of the function on SO(3) in
the current case, one needs to include volume of SO(3) which
is 8π2. In other words, the denominator should be multiplied
by 8π2 for the correct normalization.

Therefore, with the same band limit N , the posterior distri-
bution function can be obtained via Fourier transforms of the
prior and the measurement distributions.

In general this will have a much higher bandlimit than the
original functions. But by computing its Fourier coefficients
and truncating at the same bandlimit, the most essential
information can be retained. This, in particular, is suitable for
the cases of large variance as shown in figure 2.

V. NUMERICAL DEMONSTRATION

A. SO(2) case

Let us try the following two Gaussians

f(θ) =
1√

2πσ1

exp

(
−1

2

θ2

σ2
1

)
g(θ) =

1√
2πσ2

exp

(
−1

2

θ2

σ2
2

)
where θ ∈ [−π, π]. Figure 1 shows the comparison between
the original and reconstruction of the product of f(θ) and
g(θ). Here we choose σ1 = 1.1 and σ2 = 1.3 which is the
case of truncated Gaussians. Also, we consider the Gaussians
of the same mean values in this and the next section, although
the cases of different means can be treated without loss of
generality by shifting the mean to non-identity values, as in
Section II. Fourier transform approach used N = 23, which is
small but already good enough to reconstruct f(θ) · g(θ). As
is well-known, FFT approach becomes more efficient when
N becomes large, which could be shown from the current
example (average time for brute force computation: 0.006 sec,
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Fig. 1. Product of two Gaussian functions (σ1 = 1.1 and σ2 = 1.3 are
used). Lower value of the bandlimit such as N = 23 is already good for
matching reconstructed function with the original one.

whereas using FFT: 3.3 × 10−5 sec, running from Matlab
R2015a on the computer CPU 1.8 GHz, Intel Core i5, OS
X 10.9.4).

B. SO(3) case
Given a rotation matrix R = exp(X), the corresponding

Lie algebra elements are simply log∨(R) = X =
∑3
i=1 xiEi

where x = [x1 x2 x3]T ∈ Bπ . With the above information,
one can define Gaussian functions with each mean being
identity as examples of f(R) and g(R), as

f(R) = C1 exp

(
−1

2
[log∨(R)]TΣ−1

1 log∨(R)

)
(26)

and

g(R) = C2 exp

(
−1

2
[log∨(R)]TΣ−1

2 log∨(R)

)
. (27)

When the Gaussians are concentrated, then Ci =
1

(2π)3/2|Σi|1/2
(i = 1, 2), whereas when Gaussians are

widely spread, then Ci can be computed using integrat-
ing exp

(
− 1

2 [log∨(R)]TΣ−1
i log∨(R)

)
. Here we assume that

Σ1 = diag(0.28, 0.55, 0.55) and Σ2 = diag(0.40, 0.63, 0.63).
Fourier transform of each function can be computed by using
Section III. IURs for the reconstruction can be computed as

U l(R) = U l(exp(X)) = exp

(
3∑
i=1

xi u
l(Ei)

)
.

Figure 2 shows the comparison between the original form of
the product of two functions (normalized so that they are pdf’s)
as in (26) and (27) (Fig. 2 A,C,E) and the reconstruction from
Fourier filtering approach (Fig. 2 B,D,F), at different values
of x3. This result shows that the Fourier filtering approach on
SO(3) retains the information on the original functions well
enough.

Under the assumption of smallness, R = exp(X) ≈ I +X
and similarly from (13)

(f̂∆t)
l ≈ I2l+1 + ∆t ·

( 3∑
k=1

ak u
l(Ek)

+
1

2

3∑
i,j=1

(BBT )iju
l(Ei)u

l(Ej)
)
.
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Fig. 2. Normalized product of two Gaussian functions (Σi’s are in the main
text) at different x3 values. (A,C,E) represent the original function plots,
whereas (B,D,F) are reconstructed ones. (A,B) when x3 = −1.10; (C,D)
when x3 = −0.052; (E,F) when x3 = 0.99. Lower value of the bandlimit
such as N = 7 is good enough for matching reconstructed function with the
original one.

An analogous expression holds for (f̂Σ)l when ‖Σ‖ is small.
This is significant from a computational perspective because
the matrices ul(Ei) are tri-diagonal, which means that the cost
of matrix multiplication in the convolution theorem (during the
propagation step) and the evaluation of summations during the
Bayesian fusion step can be computed more efficiently than
in the case when the distributions are more spread out. On the
other hand, the value of l must be taken up to a high level in
this case.

When the underlying distributions have high covariance, all
Fourier matrices are full matrices without an advantageous
zero structure. However, in this case bandlimited approxima-
tions with small values of l can be used.

VI. CONCLUSIONS

We present a filtering method on the rotation group, SO(2)
and SO(3). Both the propagation of uncertainty and the
fusion of priors with measurement distributions are performed
using Fourier analysis on the rotation group. Though Gaussian
methods in exponential coordinates are far faster than Fourier
methods when the probability density functions in the filter
are highly concentrated, those methods break down for large
covariances. In contrast, Fourier based filters such as those pre-
sented here handle the opposite extreme when distributions are



very spread out, and where the very definition of covariance
breaks down. In this case, the important issue here is about
the accuracy, rather than about computation speed, since the
tails of the distribution might not decay inside the ball of
radius π. Therefore, Fourier-based filtering on groups opens
up opportunities for the very high uncertainty case.
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