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Abstract. In this paper we study two forms of blurring effects that
may appear in the reconstruction of 3D Electron Microscopy (EM),
specifically in single particle reconstruction from random orientations of
large multi-unit biomolecular complexes. We model the blurring effects
as being due to independent contributions from: (1) variations in the
conformation of the biomolecular complex; and (2) errors accumulated
in the reconstruction process. Under the assumption that these effects
can be separated and treated independently, we show that the overall
blurring effect can be expressed as a special form of a convolution oper-
ation of the 3D density with a kernel defined on SE(3), the Lie group
of rigid body motions in 3D. We call this form of convolution mixed
spatial-motional convolution. We discuss the ill-conditioned nature of the
deconvolution needed to deblur the reconstructed 3D density in terms of
parameters associated with the unknown probability in SE(3). We pro-
vide an algorithm for recovering the conformational information of large
multi-unit biomolecular complexes (essentially deblurring) under certain
biologically plausible prior structural knowledge about the subunits of
the complex in the case the blurring kernel has a special form.

1 Introduction

Reconstructing three dimensional densities associated with large biomolecular
complexes using single particle 3D Electron Microscopy (EM) has proved very
promising in structural biology and other biological applications. The reader is
referred to [4] for general introduction and extensive references.

At the core of single particle reconstruction lies the problem of reconstruction
of a 3D volume from thousands of very noisy 2D projections of the volume formed
along random (unknown) projection directions relative to the body-fixed frame
of the biomolecular complex. What makes this problem different from standard
tomography is exactly the fact that the projection directions are unknown and
need to be determined before one can apply a standard 3D reconstruction such as
weighted back-projection. In addition, due to certain biological restrictions the
signal to noise ratio in a single projection image is extremely low (e.g., typically
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at the order of 1/100). The reason one has to deal with such random projections
is that in single particle EM imaging (specifically cryo-EM) one essentially takes
a 2D image of a layer of a frozen sample containing a large number of copies or
instances of a biomolecular complex lying at random positions and orientations
within the sample. The output of a reconstruction algorithm is a blurred 3D
(so-called) density map representing the Coulomb potentials of the atoms of the
biomolecular complex under experiment improve our algorithm [4].

In this paper (in Sect. 2) we study two sources of blurring: the first one is
due to variations in the structure or conformational states of the biomolecular
complex in the sample (i.e., not all instances of the biomolecular complex are
exactly the same). The second source of blurring is due to errors introduced in
the process of reconstructing the 3D density from the collected images. We first
show that each of these blurring effects can be modeled as a specific form of
averaging or convolution of the ground truth 3D volume with probability den-
sity (kernel) defined on SE(3), the group of rigid body motions. The associated
blind deblurring or deconvolution is severely ill-posed and requires prior informa-
tion or information (fusion) from other imaging modalities to yield a well-posed
problem. In certain cases of dealing with large multi-unit complexes, however,
one may have information about the shape of the subunits and the problem
recovering the shape of the complex basically boils down to recovering the rela-
tive positions of the subunits. In Sect. 3 we derive a set of equations describing
blurring of a rigid body model under a SE(3) kernel in terms of the body para-
meters and the parameters of the kernel (in particular its Lie-algebraic SE(3)
mean and covariance). We also derive a simple algorithm for recovering confor-
mational information under the assumption of isotropic blurring and we show
the application of this algorithm to simulated data; and we conclude the paper in
Sect. 4. We mention that closely related works include [6] and [7], where, respec-
tively, Eculidean convolution and spherical convolution have been employed to
model the blurring effects.

2 Blurring as Mixed Spatial-Motional Convolution

In this section we study two sources of blurring effects in 3D single particle EM,
both of which can be modeled using probability densities on SE(3). The first
effect is conformational blurring within a biomolecular complex due to internal
motions. The second is blurring during the process of reconstructing 3D densities
from an ensemble of noisy 2D projections. As an idealization, we assume that
these effects can be treated independently.

The preparation of the sample for single particle EM usually starts with
a solution containing the designated biomolecular complex, each consisting of
multiple macromolecules, and freezing the solution in the form of a very thin
layer. For various reasons the instances of the biomolecular complex in the sample
may not have exactly the same shape. For example, they may be at different
conformational states (e.g., open or close) or their subunits might have been
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displaced in the freezing process. Let us consider a biomolecular complex with
3D density ρ consisting of N macromolecular subunits

ρ(r) =
N∑

i=1

ρi(r), (1)

where ρi : R3 → R is the 3D density of subunit i. Often in large biomolecular
complexes we may model ρi as a rigid body. In this case, we model the effect
of conformational states or motions as the ensemble or average of the action of
SE(3) on the rigid bodies. Specifically, let · denote the standard SE(3) action
in R

3

r �→ g · r = R r + t, (2)

where each g ∈ SE(3) is represented with the rotation-translation pair (R, t) ∈
SO(3) × R

3, and the group operation for SE(3) is g1 ◦ g2 = (R1R2, g1 · t2).
Then a copy (or instance) of subunit i ≥ 2 with density ρi might be under
transformation g relative to the subunit i = 1, which can be described in the
global (lab) coordinates as ρi(g−1 ·r). Throughout the sample the copies might go
through different transformations which we model by a SE(3) probability density
fi : SE(3) → R and the ensemble average of such motional or conformational
variations can be modeled as

ρ̃i(r) = (fi � ρi)(r) :=
∫

SE(3)

fi(g)ρi(g−1 · r)dg (3)

where dg is the Haar measure for SE(3). The above operation may be called
mixed spatial-motional convolution. The operation resembles convolution on
SE(3),

(k ∗ fi)(g) :=
∫

SE(3)

k(h)fi(h−1 ◦ g)dh,

which we denote with an asterisk ∗ rather than a �, but fi�ρi is not a convolution
since the functions under operation have different domains.

The total conformationally blurred 3D density with body 1 fixed can then
can be expressed as

ρ̃(r) =
N∑

i=1

ρ̃i(r) =
N∑

i=1

(fi � ρi)(r). (4)

In the above f1 is assumed to be the Dirac delta function at the identity of
SE(3), denoted by δ(g). As far as cryo-EM imaging is concerned, (3) and hence
(4) show non-physical ensemble averages, since they are not directly measured.
This is in contrast to Small-Angle-X-ray-Scattering (SAXS) measurements in
which the ensemble average is measured directly [3]. Here, the actual averaging
or superposition of the different (continuum of) conformational states is to hap-
pen in the reconstruction process (algorithm). Specifically, in the imaging step,
many copies of the biomolecular complex in each conformational state, posi-
tioned and oriented randomly throughout the sample, are imaged separately.
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Then, these 2D images are fed to a 3D reconstruction algorithm to reconstruct a
3D density. Therefore, one expects that the ensemble averaging should happen
in the reconstruction process. However, this also means that what a specific algo-
rithm does may matter. We first consider an idealized algorithm (meaning that
the algorithm introduces no errors). We also assume that we have an algorithm
designed to deal with homogeneous samples. Most commonly used algorithms
are such and they assume a single conformational state of the biomolecular com-
plex in the sample. To be compatible with this assumption we also assume that
the probability densities associated with conformational state variation (fi’s) are
unimodal and concentrated enough (i.e., small conformational variations within
the sample). Before proceeding further, we mention that the problem of hetero-
geneity of data is a challenging problem in single particle reconstruction, which
in reality limits the accuracy of these methods [4, p. 266], [5]. Source of het-
erogeneity could range from impurity in the sample to presence of ligands and
different conformational states. The latter is our main focus here. Here, we have
distinguished between large and small variation in conformational states. The
presence of large deviations in conformational states essentially is equivalent to
a multi-modal or non-concentrated distribution fi. The existence of such modes
or classes makes the 3D reconstruction problem much more difficult. Specifically,
the step of classification of the images will be very hard for heterogeneous data
due to the intermingling between variation in pose and conformational state
as portrayed on the 2D projections ([5], and see below). Nevertheless, specific
algorithms for heterogeneous data have been developed (see e.g., [11]), but the
subject is still in its fancy [5].

In the rest of discussion for convenience we consider a biomolecular com-
plex comprised of only two subunits ρ(r) = ρ1(r) + ρ2(r), and we assume
that its conformational states are determined only by a single copy of SE(3),
i.e., the total density under a conformational state change g ∈ SE(3) is
ρg(r) = ρ1(r) + ρ2(g−1 · r). We assume that g has the SE(3) probability density
f . A typical biomolecular complex in the frozen sample will be ρg(h−1 ·r), where
h = (Rh, th) ∈ SE(3) denotes a random orientation (pose) and position of the
biomolecular complex in the sample. Henceforth we use the following notation:

ρh
g (r) := ρg(h−1 · r) = ρ(g−1 · (h−1 · r)) = ρ((h ◦ g)−1 · r).

In the imaging process an image from each copy of ρh
g (r) is formed by the pro-

jection operation (along the z axis)

ph
g (x, y) =

∫
ρh

g (r)dz (5)

where r = [x, y, z]�. A typical (homogeneous) 3D reconstruction algorithm first
brings all the 2D images to a common origin, which we assume is the origin of
the lab frame. Due to the large amount of noise in these images, they are class
averaged. This process can be described as an in-plane SE(2) blurring [8,9].
A class is meant to correspond to the biomolecular complex being imaged along
similar directions (ideally exactly the same direction). This means that a class
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roughly corresponds to images from the copies of the biomolecular complex in
the sample that are at the same orientation, i.e., a full 3D rotation modulo an
in-plane rotation in the x − y plane.

The next step is finding the actual projection direction for each class relative
to the body-fixed frame of the biomolecular complex. This is known as angular
reconstitution (see [12,14] and references therein for related methods). Assuming
the angles are found correctly, the actual 3D reconstruction is the standard
tomographic reconstruction. Often the weighted backprojection algorithm is used,
which given enough number of sampled projection directions can reconstruct the
3D volume without any aliasing [4]. In our case this means that the ensemble
average ρ̃(r) is reconstructed. Hence, although, as mentioned before, ρ̃(r) in (4)
is a non-physical ensemble average, it can be realized in the 3D reconstruct
due to the fact that the 2D images are averaged from many of copies of the
biomolecular complex at different conformational states and also the fact that
the steps involved in the reconstruction are linear operations. Notice, however,
that this is under the assumption of the steps of centering the 2D projection,
classification, and angular reconstitution are error free. In reality, all these steps
are highly prone to error due to the extremely high level noise in the image
formation process. Additionally, notice that a possible interplay between g and
h can result in complications in the classification step. However, also note that
whether such an interplay (and the ensued misclassification) necessarily results
in reconstruction errors also depends on the structure of the complex (e.g., if
certain symmetries exist then the misclassification won’t be harmful).

We postulate that the output of the 3D reconstruction is a version of the
conformationally blurred density ρ̃, where an additional SE(3) blurring kernel
includes both motional blurring due to class averaging and reconstruction errors.
That is, the contribution to the blurred density of the biomolecular complex from
the ith macromolecular subunit will be of the form

˜̃ρi(r) = (k � ρ̃i)(r) = (k � (fi � ρi))(r) = ((k ∗ fi) � ρi)(r).

Here k : SE(3) → R is the reconstruction blurring kernel that contains contri-
butions from both class averaging effects and 3D reconstruction.

Of course, we state this under certain assumptions most notably that con-
formational states and projections orientations do not interplay and that error
kernels are independent of the poses. Both assumptions are plausible under small
conformational variation and if many different poses are available. We also add
that in many image processing applications modeling blurring using a convolu-
tion is a viable and common approach (independent of the source and mechanism
of the blurring which could be highly nonlinear). However, the more challenging
part is the fact that the kernel is unknown and hence one has to resort to blind
de-convolution methods.
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3 Recovering Conformational Information Based
on Moment Matching

Blind deconvolution or deblurring, in general, without prior information is ill-
posed and difficult. In certain biological applications the goal is to understand
the conformational state of a large biomolecular complex comprised of subunits,
while the structure of each of subunit is a-priori known, and the goal is to
find the relative position (pose) of the subunits with respect to each other.
For example, given a complex comprised of two subunits the goal might be to
decide whether it is in close or open configuration or to find the relative position
of the two subunits. We assume that each subunit can be modeled by a rigid
body, in particular, an ellipsoid itself modeled by a Gaussian in R

3. This, in
particular, means that in (1) ρi’s are assumed to be known up to a rotation and
translation. Furthermore, we assume that upon reconstruction we can separate
the reconstructed subunits ρ̃i from each other. This may be done through a 3D
segmentation algorithm, manually, or using a clustering algorithm such k-means.
The extent to which this assumption is practical or valid depends on the problem
and needs further verification. Assuming these simplifications, in the following
we will consider blurring a 3D Gaussian distribution with an SE(3) kernel and
find the mean and covariance of the blurred density in terms of the parameters
(mean and covariance) of the kernel and the density.

Parameterization of SE(3) Kernel. Let se(3) denote the Lie algebra of
SE(3). Also let exp : se(3) → SE(3) denote the matrix exponential and
log : SE(3) → se(3) its inverse. Recall that an element Ω ∈ se(3) can be repre-

sented as Ω =
[

ΩR ωt

0 0

]
, where ΩR is a 3×3 skew-symemtri matrix and ωt ∈ R

3.

We will need the following well-known fact which gives a closed form expression
for the logarithm map (see e.g., [10] for a proof):

Proposition 1. Let Ω =
[

ΩR ωt

0 0

]
∈ se(3). Then eΩ =

[
eΩR eu−1

u |u=ΩR
ωt

0 1

]
.

Conversely if g =
[

R t
0 1

]
∈ SE(3), then log(g) =

[
log(R) u

eu−1

∣∣
u=log(R) t

0 0

]
∈

se(3). This result holds if all the eigenvalues of Ω are less than π in absolute
value or equivalently g has no eigenvalue of −1.

We now define the notion of Lie-algebraic mean [13] (also known as bi-invariant
mean [1,10]) and covariance [2] for SE(3)-valued random variables:

Definition 1. Let g be an SE(3)-valued random variable with probability den-
sity f : SE(3) → R. Then we define a mean μg of g as a solution to1

E{log(μ−1
g g)} =

∫

SE(3)

log(μ−1
g g)f(g)dg = 0 (6)

1 Here μg and Σg are not functions of g, but are properties of the random variable g
that has distribution f(g).
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and the associated covariance Σg

Σg := E{vec(Ωg)vec(Ωg)�} =
∫

SE(3)

vec(Ωg)vec(Ωg)�f(g)dg (7)

where vec : se(n) → R
6 is an isomorphism between se(3) and R

6 and Ωg =
log(gμ−1

g ).

Due to topological constraints the Eq. (6) for mean has always at least two
solutions on SE(3). However, it can be shown that if f is concentrated in a
small enough region, then there exists a unique mean in that region [10]. To our
knowledge stronger results are not known. The covariance Σg depends on the
isomorphism used. We use the standard isomorphism induced by the basis

E1 =

⎡

⎢⎢⎣

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎤

⎥⎥⎦, E2 =

⎡

⎢⎢⎣

0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

⎤

⎥⎥⎦, E3 =

⎡

⎢⎢⎣

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦, (8a)

E4 =

⎡

⎢⎢⎣

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦, E5 =

⎡

⎢⎢⎣

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦, E6 =

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤

⎥⎥⎦. (8b)

Thus, if Ω =
∑N

i=1 ωiEi, then we have vec(Ω) = (ω1, · · · , ω6)� ∈ R
6.

Mean and Covariance of the Blurred 3D Density. Consider the model:

y = Rr + t, r ∈ R
3, E{r} = 0,E{rr�} = Cr, g =

[
R t
0 1

]
∈ SE(3), (9)

with g and r being statistically independent. This model corresponds to the
mixed spatial-motional convolution (3). The goal is to express the Euclidean
mean and covariance matrix of y (which we assumed can be estimated from
blurry 3D reconstruction) in terms of covariance Cr (which we assumed is given)
and SE(3) mean and covariance of g which are to be estimated. Denote the
SE(3)-mean of g by μg, where μg =

[
μR μt

0 1

]
. Note that

∫
log(μ−1

g g)f(g)dg = 0

implies that
∫

μ−1
g log(gμ−1

g )μgf(g)dg = 0 and
∫

log(gμ−1
g )f(g)dg = 0, hence

g = elog(gμ−1
g )μg = eΩgμg, E{Ωg} = 0, where Ωg = log(gμ−1

g ) =

[
ΩR ωt

0 0

]
∈se(3).

(10)
The following proposition gives the first two moments of y up to 2nd order terms
in terms of those of r and g. The proof is straightforward using Proposition 1
and some algebraic manipulation.
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Proposition 2. Under statistical independence of rotation and translation at
the Lie algebra (i.e., independence of ΩR and ωt in (10)) and statistical inde-
pendence of g and r the forward equations for the mean and covariance of y in
(9) up to second order are:

E{y} = E{t} 2nd= (I +
1
2
E{Ω2

R})μt (11a)

Cy = E{RCrR
�} + Ct

2nd= C̃r + E{ΩRC̃rΩ
�
R} +

1
2
E{Ω2

R}C̃r +
1
2
C̃rE{Ω2

R}
+ E{ΩRμtμ

�
t Ω�

R} + E{ωtω
�
t } (11b)

where C̃r = μRCrμ
�
R and the expectations of quantities quadratic in ΩR and ωt

can be expressed in terms of the SE(3) covariance of g, i.e., Σg in (7).

Simplified Equations Under Isotropic Blurring. The unknowns in (11) are
the 6×6 covariance matrix Σg and the 6×1 vector μg, which in general amounts
to 27 unknowns, whereas the number of independent equations is 9. However,
if we assume that blurring is isotropic in translational and rotational directions,
i.e., Σg is diagonal and variances along E1, E2 and E3 are equal to σ2

R and along
E4, E5 and E6 are σ2

t , then the number of unknowns will be 8. Thus, we have

E{y} = E{t} 2nd= (1 − σ2
R)μt (12a)

Cy
2nd= μRCrμ

�
R + σ2

R

(
tr(Cr)I3 − 3μRCrμ

�
R

)
+ σ2

R

(‖μt‖2I3 − μtμ
�
t

)
+ σ2

tI3,
(12b)

where I3 is the 3 × 3 identity matrix. The interesting point here is that if μt is
large (even for small rotational noise σ2

R) Cy can become large merely due to
large translational mean. Considering our argument about blurring due to 3D
reconstruction errors the assumption of isotropic blurring might not be justified,
nevertheless, as a starting point to solve the inverse problem in Proposition 2 we
choose this assumption. Figure 1a shows the blurring effect of an istropic SE(3)
kernel with mean μg = I4, σR = π/10 and σt = 1

10 applied to a unit vector
along the z-direction in R

3.

(a) Example of blurring by an
isotropic SE(3) kernel.

(b) The right panel shows the blurred version of
right configuration in our numerical simulation.

Fig. 1. Examples of blurring under SE(3) kernels.

Algorithm. The two equations in (12) are coupled and nonlinear in the
unknowns; however, by fixing σ2

R in (12a) and μt in (12b) they decouple. Thus,
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in the first step, we find μt from (12a) (fixing σ2
R) and in the next step μR, σ2

R, σ2
t

from (12b) using min-square fitting, and iterate these steps. Specifically, based
on (12b) we consider the cost function

F (μR, σ
2
R, σ

2
t )

= ‖μRCrμ
�
R + σ

2
R

(
tr(Cr)I3 − 3μRCrμ

�
R

)
+ σ

2
R

(‖μt‖2
I3 − μtμ

�
t

)
+ σ

2
t I3 − Cy‖2

F , (13)

where ‖ · ‖F is the Frobenius norm. We solve the regularized minimization

min
μR∈SO(3),σ2

R,σ2
t

Fr(μR, σ2
R, σ2

t ;λR, λt) (14)

where Fr(μR, σ2
R, σ2

t ;λR, λt) = F (μR, σ2
R, σ2

t )+λR(σ2
R)2+λt(σ2

t )2 and λR, λt > 0
are small regularization weights. Our experiments show that although the num-
ber of unknowns is more than the number of equations in (12a) and (12b),
still sensitivity can be high; thus we add the regularization terms in this mini-
mization. Solving (14) in an alternative minimization fashion results in simple
(closed-form) eigendecomposition-based solution for μR and scalar min-square
solution with thresholding to enforce σ2

R, σ2
t ≥ 0.

Numerical Simulations. We simulate a complex with two subunits ρ1 and ρ2
modeled with two Gaussians r1 and r2 with covariances Cr1 = diag(3, 2, 1) and
Cr2 = diag(4, 3, 5), respectively. We consider two SE(3) blurring kernels with

μg1 =

⎡
⎢⎣

0.6063 0.3861 −0.6952 5.0000
−0.7453 −0.5807 0.3275 5.0000
−0.2773 0.7167 0.6399 5.0000

0 0 0 1.0000

⎤
⎥⎦, μg2 =

⎡
⎢⎣

−0.6196 −0.3585 −0.6983 −1.0000
−0.3601 −0.6607 0.6587 −3.0000
−0.6975 0.6595 0.2802 −2.0000

0 0 0 1.0000

⎤
⎥⎦ (15)

and with variances (σ2
R1

, σ2
t1) = (0.2, .02) and (σ2

R2
, σ2

t2) = (.1, .01). We generate
T = 2000 i.i.d. samples of ri,gi (i = 1, 2) and then yi according to (9). The
left panel in Fig. 1b shows the original configuartion and the right panel shows
the blurred configuration, in which the subunits appear bloated (blue (or ·) and
black (or *) correpond to r1 and r2, respectively). We run a k-means algorithm to
separate the two clouds (subunits). Using the above algorithm with λR = λt = 1
to get the estimates:

μ̂g1 =

⎡
⎢⎣

−0.7361 0.4145 −0.5351 4.7676
−0.3606 −0.9092 −0.2082 4.8539
−0.5728 0.0397 0.8187 4.7737

0 0 0 1.0000

⎤
⎥⎦, μ̂g2 =

⎡
⎢⎣

−0.6596 −0.5253 −0.5375 −0.9976
−0.2048 −0.5625 0.8010 −3.0366
−0.7232 0.6384 0.2635 −2.0821

0 0 0 1.0000

⎤
⎥⎦ (16)

and σ̂2
R1

= 0.15, σ̂2
t1 = 0.89, σ̂2

R2
= 0.11, and σ̂2

t2 = 0.09. There is an inde-
terminacy in estimating μg in the form of a rotation by π, i.e., a factor of the
form Π =

[
−1 0 0
0 −1 0
0 0 1

]
and its permutations. After fixing the indeterminacy, we get

d(μR1 , μ̂R1) = 0.2491π and d(μR2 , μ̂R2) = 0.0751π, where d(·, ·) is the standard
Riemannian distance on SO(3). Thus, the error in estimating μg is low; however,
estimating σ2

R and σ2
t is more difficult. Nevertheless, note that μg is the more

important or informative variable in determining relative configurations.
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4 Conclusions

In this paper we reproted preliminary studies for the modeling of blurring effects
in 3D reconstruction of densities in single particle EM using SE(3) blurring ker-
nels. We derived a set of blurring equations relating the parameters of the original
3D density and the blurring kernel to quantities which can be calculated from the
reconstructed density. The equations are highly ill-posed to invert. However, in
the case of a multi-unit complex one might have prior knowledge about the shape
of the subunits. We examined this in the case of isotropic blurring and derived
a simple regularized minimization algorithm to find conformational information
of the complex (i.e., the relative positions of subunits). We plan to improve our
algorithm e.g., by using more prior information and better regularizations.
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