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1. Introduction

This section presents an overview of the major results of this
paper together with a review of the literature on DNA statistical

mechanics.

1.1. Overview

ABSTRACT

A coordinate-free Lie-group formulation for generating ensembles of DNA conformations in solution is
presented. In this formulation, stochastic differential equations define sample paths on the Euclidean
motion group. The ensemble of these paths exhibits the same behavior as solutions of the Fokker-Planck
equation for the stochastically forced elastica. Longer chains for which the effects of excluded volume
become important are handled by piecing together shorter chains and modeling their interactions. It is
assumed that the final chain lengths of interest are long enough for excluded-volume effects to become
important, but not so long that the semi-flexible nature of the chain is lost. The effect of excluded
volume is then taken into account by grouping short self-avoiding conformations into “bundles” with
common end constraints and computing average interaction effects between bundles. The accuracy of
this approximation is shown to be good when using a numerically generated ensemble of self-avoiding
sample paths as the baseline for comparison.

© 2008 Published by Elsevier Ltd.

probability density function (pdf) describing the distribution of
relative position and orientation of reference frames attached to
base pairs at any two different values of arc length. For short semi-
flexible chains, excluded volume is not an important effect because
short chains cannot bend back enough to allow interpenetration.
Therefore, the Fokker-Planck approach can be used to generate
valid statistics for short segments.

e The probability densities obtained from the Fokker-Planck

This paper makes several contributions to the study of equilib-

rium fluctuations of DNA conformations:

o A model of DNA fluctuations using a stochastic differential equa-
tion (SDE) on the group of rigid-body motions is developed. This
model relates the magnitude of the stochastic forcing to the tem-
perature and stiffness of the elastic-filament model of DNA. In one
version of this model, excluded-volume effects! are taken into
account explicitly by weeding out conformations that have self-
interpenetration of sequentially distant base pairs.

o The relationship between the SDE model and the correspond-
ing Fokker-Planck equation is explained. The latter generates a

E-mail address: gregc@jhu.edu.

! The excluded-volume effect is essentially a statement of the fact that two masses
cannot occupy the same space at the same time, and this imposes a constraint
that polymer conformations must be self-avoiding.

0020-7462/$ - see front matter © 2008 Published by Elsevier Ltd.
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approach can be “pieced together” by performing a convolu-
tion operation of the probability densities corresponding to two
consecutive segments. This convolution is an integral over the
group of rigid-body motions. When the segment resulting from
the concatenation of two short segments is itself short enough
that no interactions result, the convolution approach is exact.
However, for longer segments, the convolution must be modified
to take into account interactions between segments. A model for
performing this modification is introduced in this paper.

The concept of “conformational bundles” is introduced as a way
to approximate the average effects of interaction between two
adjacent segments, each of which is described by an ensemble of
conformations that have a common end constraint in position and
orientation.

o Numerical studies are performed to evaluate the results of the

quasi-closed-form conformational bundles approach against
the SDE approach in which sample paths are generated and
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self-intersecting conformations are removed. This is done for a
variety of filament thicknesses.

In the following section a brief review of the vast literature on DNA
mechanics and statistical fluctuations is provided.

1.2. Literature review

The theory of semi-flexible/worm-like polymer chains originated
more than fifty years ago [1-3]. Since then, the statistical mechan-
ics of chains such as DNA has received substantial attention in
the literature. Now-classical polymer-theoretic references include
[4-9]. Studies devoted to ring-closure probabilities include [10,11].
Modeling works in the past 20 years include [12-21]. In particular,
Brownian dynamics is a tool that is often used to relate theory and
experimental data (see discussions in [22-24]). And semi-flexible
polymer theories based on diffusion processes can be found in
[25-28]. Excluded-volume effects in polymer solutions in general
[29,30], and for semi-flexible chains in particular [31] have been
studied. The main approaches are the use of renormalization group
concepts [32,33] and mean field potentials [29,34].

In these theories, the pdf describing the relative frequency of
occurrence of positions and orientations of the distal end of the
chain for given position and orientation of the proximal end play an
important role [29,30,32,35-37]. And a number of new theoretical
models have been developed by the author’s group for generating
this quantity from given stiffness models [38-42].

Experimental measurements of DNA stiffness parameters have
been reported in [37,43-47]. Efforts to characterize integrals of the
joint positional and orientational pdf over many of its arguments
can be found in [11,48], and the whole distribution in the case of the
helical worm-like chain can be found in [37]. DNA elastic properties
and experimental measurements of DNA elastic properties such as
twist/stretch coupling have been reported in [49-55].

Elastic models of DNA mechanics has a long history [56,57]. A
number of recent studies on chiral and uncoupled end-constrained
elastic rod models of DNA with circular cross-section have been pre-
sented [58-61]. These models use classical elasticity theory of con-
tinuum filaments with or without self-contact constraints to model
the stable conformations of DNA in plasmids, in chromosomes, and
during transcription.

In some works, Euler angles are used in parameterizing equations
of the Kirchhoff elastic rod theory to obtain equilibrium conforma-
tions of DNA and determine its stability [62-64]. Also, the worm-
like chain model has been used to model the equilibrium behavior
of DNA [65]. More recent works involve the modeling of DNA as an
anisotropic inextensible rod and also include the effect of electro-
static repulsion for describing the DNA loops bound to Lac repres-
sor, etc. [66,67]. Another recent work includes sequence-dependent
elastic properties of DNA [68]. All of these aforementioned works
are based on Kirchhoff's thin elastic rod theory [69]. This theory,
as originally formulated, deals with non-chiral elastic rods with cir-
cular cross-section. Another example is the special Cosserat theory
of rods [70], which can be viewed as an extension of Kirchhoff’s
theory in that it includes extensible and shearable rods. Several re-
searchers in elasticity have employed this rod theory to describe
the static and dynamic characteristics of rods. For example, Simo
and Vu-Quoc formulated a finite element method using rod theory
[71]. Dichmann et al. employed a Hamiltonian formulation using the
special Cosserat theory of rods for the purpose of describing DNA
[72]. Coleman et al. reviewed dynamical equations in the theories
of Kirchhoff and Clebsch [73]. Steigmann and Faulkner derived the
equations of classical rod theory using parameter-dependent vari-
ational approach [74]. Recently, Gonzalez and Maddocks devised
a method to extract sequence-dependent parameters for a rigid

base-pair DNA model from molecular dynamics simulation [75]. In
their paper, they used a force moment balance equation from Kirch-
hoff’s rod theory to extract stiffness and inertia parameters. Another
recent work includes the application of Kirchhoff rod theory to ma-
rine cable loop formation and DNA loop formation [76]. Recently,
Wiggins et al. developed a theory based on non-linear elasticity,
called kinkable worm-like chain model, for describing spontaneous
kinking of polymers including DNA [77].

The approach taken in this paper is to apply a new kind of statis-
tical treatment of semi-flexible chains that starts with the solution
of diffusion equations, yet includes the effects of excluded volume.
The key to this approach is the use of the concept of “conformational
bundles”, which were introduced in [42], and are used here for the
first time in the context of semi-flexible polymers.

1.3. Organization of the remainder of the paper

The remainder of this paper is structured as follows: Section 2 re-
views the concept of a frame distribution function for semi-flexible
chains, which was introduced by the author in previous work. Sec-
tion 3 explains how frame distribution functions can be computed
accurately using diffusion equations for chain lengths of less than
two persistence lengths. For longer chains, an ensemble of sample
paths generated from a SDE has equivalent statistics as those pro-
duced by the diffusion equations before self-intersecting conforma-
tions are removed. The obvious advantage of the SDE approach is
that self-intersecting conformations can be explicitly removed from
the ensemble thereby obtaining statistics for self-avoiding chains.
However, this comes at a high computational cost. Section 4 devel-
ops the concept of conformational bundles and derives equations
relating conformational bundles to frame distributions. The applica-
tion of the conformational bundle concept to the approximation of
excluded-volume effects is formulated in Section 5. In Section 6, an-
alytical and computational examples based on the mathematical for-
mulation of this paper are presented. Section 7 presents conclusions.
An Appendix that reviews some relevant mathematical concepts is
also included.

2. Functions of rigid-body motion

This section reviews the concept of a function of rigid-body mo-
tion and introduces the mathematical tools and notation required
to compute coordinate-free derivatives of functions of motion. To
begin, a review of rigid-body motions is provided.

2.1. Rigid-body motions

An arbitrary rigid-body motion can be viewed as the pair g=(R,r)
where R € SO(3) (i.e., R is a 3 x 3 rotation matrix), and r R3is a
translation vector in three-dimensional space. The identity (or null
motion) is e = (I,0) where [ is the 3 x 3 identity matrix. The com-
position law is g1 o gy = (R1Ry,R1ry + r1) and the inverse of each
element g is g~! = (RT, —RTr). The action of the motion g on a po-
sition vector x € R3 is g-X=Rx+r. (Note the distinction that o is
used between group elements and - is used between a group ele-
ment and a vector.) Any g describes the positional and orientational
relationship between two reference frames. It is sometimes conve-
nient to refer to the result of a rigid-body motion at a particular
time as a “pose,” and to refer to a function of motion as a pose
distribution.

The collection of all rigid-body motions is denoted in this paper
as G = SE(3). (The special Euclidean motion group in three space.)
Any g < G can be faithfully represented with a 4 x 4 homogeneous
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transformation matrix of the form:

HE)=(gr 1)

in the sense that H(gq o g») = H(g1)H(gy) (i.e., the matrix product of
H(gq) and H(gy)). Here 0T =[0,0,0] and 1 is the number one. The
structure of this bottom row is preserved under multiplication by
matrices of the same kind.

Henceforth no distinction is made between G and the set of all
4 x4 homogeneous transformation matrices with operation of matrix
multiplication. That is, g and H(g) will be used interchangeably, and
since the group operator can be viewed as matrix multiplication, it
does not need to be written explicitly as o.

2.2. Positional and orientational distribution functions

A real-valued function of rigid-body motion is denoted as f(g).
Such functions arise in a variety of applications. For example, a liq-
uid crystal is made up of many copies of the same essentially rigid
molecule. If a reference frame is attached to the center of mass of
each molecule with the axes of the frame pointing along the prin-
cipal axes of inertia, then the distribution of positions and orienta-
tions of the molecules relative to a frame that is fixed in space can
be recorded and summarized with a pdf of the form f(g). If the sit-
uation is dynamic, then the pdf will depend on time in addition to
depending on g, which can be written as f(g; t). Here the semicolon
is used to separate spatial and temporal variables.

In the context of the equilibrium statistical mechanics of DNA,
there is no time variable. Reference frames are attached to the DNA
along its length. For example, this can be done by placing the ori-
gin of each frame at the center of mass of each base pair, with
the local z (or e3) axis pointing along the tangent to the backbone
curve, and the local x (or eq) axis pointing along the largest princi-
pal axis of the base pairs. If the DNA backbone curve is parameter-
ized with curve parameter s € [0, L], then a function f(g; s1,5) with
s1 <s; denotes the relative distribution of positions and orientations
at s = sy relative to the frame fixed at s = s1. In inextensible mod-
els of DNA, s will denote the arc length. However, it can be the case
that a DNA molecule stretches, in which case s will not be the arc
length. This issue is discussed later in this section. But first, it is im-
portant to review the properties of infinitesimal rigid-body motion.
In this context it will be convenient to retain the concept of time,
though the independent variable t will be replaced with s when
discussing DNA.

2.3. Infinitesimal motions and exponential coordinates

Given a one-parameter motion g(t), we can define the six-
dimensional velocity of the rigid-body motion as observed in the
moving frame as the non-trivial entries in the matrix

. . 0 ) [0}
T T K 3 2
g lg= <I;TR R0r> where RTR = ( w3 0  —o ) .
—wy 1 0

Here t can be thought of as time, and a dot denotes differentiation
with respect to t. Elsewhere in the paper the independent variable
is not time, but rather arc length.

Since RTR is skew symmetric as a result of R being orthogonal, it
only has three independent non-zero entries. These can be extracted
and used to form the dual vector o(t) =[w1(t), wy(t), wg(t)]T, which
is the angular velocity of the moving frame as seen in the moving
frame. In some contexts it will be convenient to write this as w(t)
to distinguish it from the dual vector of RRT, which we will call ().
These are related as w)(t) = Ror(t).

The independent information in the matrix g~ ¢ can be extracted
and put in a six-dimensional vector defined as

_(o—lgyVv_ [ @
-9 = (2)-
The opposite operation of v is A:
N 6
&=g'g=>"¢&xX;
i=1

where basis elements for the Lie algebra of G (which are also called
generators of G) are

00 0 O 0 010
00 -1 0 0 000
Xi=lo1 0 of %=|-100 0]
00 0 O 0 000
0 -1 00 000 1
1 0 00 0000
B=1o 0 0ol %=|oo0o0 ol
0 0 00 0000
0000 0000
000 1 0000
X5=10 00 of *=|o o0 0 1
0000 0000

These correspond to infinitesimal rotations and translations about
the 1, 2, and 3 axes and form a basis for the Lie algebra associated
with G. Matrix exponentiation of any weighted sum of these basis
elements produces elements of G. For example,

cosf) —sind 0 O

sinf cosf® 0 O

exp(6X3 +zXg) = 0 0 1 2
0 0 01

Furthermore, for small values of 0 and z, the matrix exponential is
approximated well as

exp(6X3 +zXg) ~ [ + 0X3 + zXg.

More generally, any rigid-body motion can be parameterized in
either of the forms:

6 6 3
g=exp (Z Xixi) =exp (Zy,-x,-) exp (Zy,-xi) . (1
i=1 i=4 i=1

The matrix logarithm can be used to convert group elements to Lie
algebra elements, and it is convenient to define

x=(logg)" =[x1,....xg]".

The norm ||X|| = +/X-X is a measure of distance from the identity.
Near the identity, |X|| <1 and x; ~ y;. It can be shown that

(gg ") ~(g718) ~x~y when x| <1. (2)

This is not true when |x| is large, but this property makes these
parameterizations useful for describing small motions around the
identity.

2.4. Derivatives of functions of motion

Given a smooth function f(g) where g € G, the Lie derivatives
from the right and left are defined as

Xig) = = XX _, d Kifle)= e =0
3)
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for the motion group where g € G is described using 4 x 4 trans-
formation matrices. The “r” in the symbol 5({ is used to denote
the position of exp(tX;) on the “right side” of g inside the function
f(.), and similarly for “I". )~(lr commutes with left shifts of the form

(L(g1 )f)(g):f(gl_1 og),and 5(11 commutes with right shifts of the form
(R(g1)f)(g) =f(g o g1)- The operators defined in (3) are analogous to
partial derivatives of a function ¢(x) where x € R" that can be de-
fined as

0 d
o dt (x + te;) o

The explicit form of the Lie derivative operators in (3) in terms of
coordinate descriptions are given in Appendix A.

3. The stochastic elastica

In this section the relationship between the stochastic elastica and
diffusion equations on the group of rigid-body motions is established.
Section 3.1 introduces the stochastic elastica. Section 3.2 explains the
relationship between the strength of the noise and the stiffness of
the elastic filament. Section 3.3 formulates the problem of finding the
probability density of position and orientation of the distal end of an
elastica relative to its proximal end when it is subjected to Brownian
motion forcing from the environment. This is a “phantom” model
in which the effects of excluded volume are not considered. Section
3.4 compares and contrasts the SDE and Fokker-Planck approaches.
Modifications of these models that include excluded-volume effects
are discussed later in the paper.

3.1. A model based on SDE

The classical elastica (elastic filament) problem goes back to Euler,
and was addressed in detail by Kirchhoff and Clebsch in the 19th
century, and summarized in Love’s classical treatment of elasticity
[69]. In the current context a stochastic version of the problem is
developed as a model for the equilibrium fluctuations of DNA.

The preferred (or referential) conformation of the DNA can be de-
fined infinitesimally as &(s)= &y(s). Integrating the ODE dg/ds=g&(s)
for s € [0,L] subject to the initial conditions g(0) = e then defines a
framed curve that describes DNA conformation. In particular, &g(s)
defines the referential conformation that minimizes the elastic en-
ergy of deformation of the filament. The referential conformation is
the shape that the DNA backbone would adopt as the temperature
slowly approaches absolute zero and all thermal fluctuations vanish.
For example, if &y(s) is a constant vector, then the resulting back-
bone curve will be a helix. While this constant case corresponds to
the standard form of DNA, keeping the formulation more general al-
lows for cases in which the DNA has internal bends or kinks, such
as would be the case when transcription factors bind [78,79].

The relationship between s and arc length, I(s), is

)= [ " 2(0)+ o)+ (o) do.

In inextensible and shearless models of DNA, it is automatically true
that I(s) =s. And while the current formulation is not limited to this
case, it will be convenient to think of s as arc length. Consider an
infinitesimal segment of the backbone curve of DNA between s and
s+ds. Rather than observing the equality &(s)=&y(s), a stochastically
forced elastica would satisfy an equation of the form:

&(s)ds = &py(s)ds + B(s)dW, (4)

where W(s) is a vector of uncorrelated unit strength Wiener pro-
cesses that reflect that the infinitesimal segment of the DNA is being

forced by the Brownian motion of the surrounding solvent. Eq. (4) re-
sults from a force balance in the case when the inertia is considered
to be negligible. It is a SDE on the Lie algebra of G. Analogous equa-
tions (with s replaced by t) have been used in the non-inertial theory
of rotational and translational Brownian motion of rigid molecules
[80,81]. The exact form of the coloring matrix B(s) for the case of
DNA will be determined shortly. A

If we integrate the corresponding Stratonovich SDE dg = gé(s)ds
to find g(s) for s € [0,L], and we do this many times to obtain an
ensemble of sample paths, the recorded statistics of this ensemble
will result in the set of normalized histograms (i.e., probability den-
sities) f(g; 0,s) for s=]0, L]. The general theory of Brownian motions
on Lie groups “injected” from Lie algebras provides the mathemati-
cal machinery to obtain f(g;0,s) directly without sampling [41,82].
This will be discussed later in the paper.

3.2. Relating B(s) to the stiffness of the filament

A non-uniform extensible elastic filament with unstretched
length L has elastic energy of the form

L
Ey = /0 F(&(s), 5)ds, (5)
where

F(&(s).5) = 1[&(s) — Eo(OITK(S)[EGs) — &)

Here &g(s) defines the minimal energy conformation and K(s) =
KT(s) e R6%6 is a positive definite stiffness matrix that defines the
resistance to the backbone to bending, twisting, extension and shear
deformations. As mentioned earlier, given &y(s), it is possible to in-
tegrate the matrix differential equation

980,5) = gols)e0(s)

subject to the initial condition g(0)=e (the 4 x 4 identity matrix) for
s € [0,L] to obtain the minimal energy conformation rooted at the
identity.

Here, as in the rest of the paper, the independent variable is
the curve parameter, s, rather than time, t. The curve parameter
s is taken to be the arc length of the filament in its undeformed
(referential) conformation gp(s). This may or may not be the arc
length of the filament after a deformation, depending on whether or
not it stretches.

Consider a very short chain defined by L=As in (5). Over this very
short range K(s) is effectively constant. Furthermore, since g(0)=e, it
follows from (2) that &(s) ~ X. This means that the potential energy
in (5) resembles the kinetic energy of a body with a generalized in-
ertia matrix K, when s is viewed as time. The Boltzmann distribution
corresponding to such a quadratic energy functional is a Gaussian
distribution with covariance of the form X = (kgT)K~! where kg is
the Boltzmann constant and T is the absolute temperature.

In contrast, the mean and covariance of the ensemble of sample
paths generated from the SDE in (4) can be computed for short
segments defined by s € [0, As] as

(E(s) =Eo(s) and ([&(s) - E(SIE) — Eo(s)]T) = B(s)BT(s).

The matrix BB can be denoted as D, which is the diffusion matrix
for the system. Matching the covariances indicates that

D(s) = B(s)BY(s) = (kg T)K~1(s). (6)

In other words, the diffusion matrix, D, is proportional to both the
temperature and the inverse of the stiffness matrix. As temperature
increases, there is more diffusion for a fixed stiffness matrix. Or if
the temperature is fixed, then diffusion increases for more flexible
(less stiff) chains. While the calibration in (6) was for an infinitesimal
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segment of the backbone curve, the result impacts the positional and
orientational distribution of reference frames that are far away from
each other as measured in terms of arc length.

3.3. The Fokker-Planck approach

Corresponding to any SDE is a partial differential equation,
called the Fokker-Planck equation [83,84] (also called the forward
Kolmogorov equation [85]), that describes the evolution of prob-
ability density in the variables of the SDE. The ensemble of paths
{g(s)Is € [0, L]} generated by the SDE in the previous subsections can
be used to approximate f(g; 0,s) for s =[0, L] by generating samples
and forming a histogram. In the limit as the number of samples
approaches infinity, f(g; 0,s) generated in that way would approach
the solution of the corresponding Fokker-Planck equation, which is
a PDE in both s and the variables that parameterize g. The deriva-
tion of the Fokker-Planck equation corresponding to any SDE is
well-known, but is rather involved. See the following for derivations
[41,82,86,87]. Using that methodology, the particular Fokker-Planck
equation corresponding to the SDE in (4) with (6) is

6
J —% Z KOXIXf Z £o(s) - eXIf (7)

subject to the initial conditions

f(g:0,0)=4(g).

Note that an alternative derivation of (7) can be obtained using
path-integral techniques [37,38,88]. Here )?,r{ are the Lie derivative
operators defined in (3). Eq. (7) takes into account anisotropy and
inhomogeneity of the elasticity (which has been observed in, e.g.
[89]), as well as arbitrary minimal energy shape, and has essen-
tially the same derivation as the homogeneous case presented in
[38-40]. A single pose distribution is illustrated with level curves
in Fig. 1(a) along with several sample paths. Of course, it is really a
six-dimensional distribution that cannot be visualized, but one can
think of it as depicted in Fig. 1(a).

Under the extreme condition that T — 0, no diffusion would take
place, and f(g;,0,s) — 5(g61 (s)og). For the biologically relevant case
(T ~ 300), (7) can be solved using the harmonic analysis approach
in [38-40]. If we make the shorthand notation fs; s,(g) =f(g; 51,52),
then it will always be the case for sy <s<s, that

Fors2(8) = Uy s s, X&) = [ Joy sthYssy(h ™" o g (8)
This is the six-dimensional convolution integral of two pose dis-
tributions. Here h is a dummy variable of integration, and the ex-
plicit form of the invariant integration measure, dh, is reviewed in
Appendix A. While (8) will always hold for semi-flexible phantom
chains, for the homogenous case (where D and & are independent
of s) there are the additional convenient properties:

flg:s1,52)=f(g;0,5p —s1) and fl(g;sp,51)=f(g"L,s1.52).  (9)

The first of these says that for a uniform chain the pose distribution
only depends on the difference of arc length along the chain. The
second provides a relationship between: (a) the pose distribution
for a uniform chain resulting from taking the frame at sy to be fixed
at the identity and recording the poses visited by sy; and (b) the
distribution of frames at s = sq that results when s, is fixed at the
identity. However, neither of these nor (8) will hold when excluded-
volume interactions are taken into account. Later in the paper we
consider how the convolution in (8) must be modified when taking
into account excluded volume.

a

- ?;}l_.
4 Y

[/
4 /\/
\\’ o JFIH rd ’

Fig. 1. The functions f(g:;0,L) and m(g;,g;0,L): here g; denotes the pose of the
frame located at the end of the segment of length L. If g; is held fixed m(g;,g;0,L)
is the probability that some filament in the bundle will have a pose g where each
point on each fiber in the bundle is described by s € [0,L]. (a) The function f(g;;0,L):
the probability density function of end positions and orlentatlons of a semi-flexible
polymer defined by arclength in the range from 0 to L with base fixed at the identity
reference frame e and distal end free to visit any g; € G. (b) The function m(g;,g;0,L)
describing the distribution of all reference frames attached to all conformations of
a chain defined by arclength in the range from 0 to L with base fixed at e and distal
end fixed at g;.

As a specific example of when f(g; s1,52) =f(g; 0,59 — s1), if the
chain is uniform, inextensible and shearless, the constant diffusion
matrix will be of the form

Dip Dy D3 0 0 O
0 0 0 00O
0 0 0 00O
0 0 0 00O

The lower right block of zeros corresponds to infinite stiffness in
shear and stretch.

If the minimal energy conformation is an arc-length-
parameterized helix, the drift vector will be constant and of the form

&) = [w1, w3, 3,0,0,1]".
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In this case (7) is a degenerate diffusion on G = SE(3) with constant
coefficients. Methods for solving such equations are presented in
[38-40]. These methods use the concept of the non-commutative
Fourier transform for the Euclidean group. This builds on the work
of Miller [90].

Let the evolution of the probability density of relative pose of
reference frames attached to a stochastic elastica at values of curve
parameter 0 and s be denoted as f(g;0,s). Since it is a probability
density, by definition

fcf(g: 0,5)dg=1. (10)

3.4. Comparison of SDE and Fokker-Planck approaches

The benefit of taking an SDE approach is that one can handle
the effects of excluded volume at the level of individual conforma-
tions/sample paths (whereas the diffusion equation allows all con-
formations including self-intersecting ones). On the one hand, it is
clear that self-intersecting conformations are not desirable in a real-
istic ensemble. On the other hand, it may not be obvious a priori that
a sampling approach which simply “throws away” self-intersecting
conformations will be valid. The following argument justifies the
approach of removing sample paths that self-intersect.

Imagine that all of the infinite number of possible conformations
of the semi-flexible chain (both self-avoiding and self-intersecting)
could be enumerated. Each one can be assigned an energy that
takes into account both local deformations (which are reflected
in the structure of the stiffness matrix K(s)) and non-local con-
tacts/interpenetration of points that are distal in arc length.

The equilibrium ensemble will be described by Boltzmann
weighted statistics involving the negative of the exponential of the
energy normalized by kgT. The model used here is one in which the
energy of interaction between distal points in arc length is either
zero when there is no corporeal overlap, or very high when there
is an overlap. Therefore the contribution of all self-intersecting
conformations is effectively set to zero in the Boltzmann ensemble
because the exponential of the negative of a large number is effec-
tively zero. This has the effect of killing all sampled conformations
with overlaps, as well as those that are highly deformed from their
referential conformation.

The SDE approach is a way to generate conformations that are a
priori weighted in the correct way by local energy considerations.
But the SDE by itself does not take into account the interactions that
are non-local in sequence. Therefore, since

exP(—(Ejocar+Enon-tocal VkBT)= €XP(~Ejgcqi/kT) €XP(—Epon_jocal/kBT)

with exp(—Eyon_jocai/ksT) taking a value of 1 when E, ,,_jocqr iS Z€TO
(corresponding to no overlap) and exp(—E;y,-jocqi/kgT) is O for an
overlap (since E;;,_jocqr 1S Very large and positive when there is an
overlap), this is equivalent to modifying the Boltzmann distribution
generated with purely local effects (in this case using the SDE) by
throwing away the self-intersecting conformations.

The drawback of the SDE approach is that a very large number
of sample paths may be required due to the high dimensions of the
space (G is six dimensional) and the fact that for chains with finite
thickness, a very large percentage of the sample paths can have self-
intersections. In the next section, a method for perturbing f(g;0,L)
so as to approximate the effects of removing self-intersections from
the ensemble without sampling is formulated.

4. Statistics of conformational bundles

Let the frame density f(g;s1,5y) describe the frequency of occur-
rence of positions and orientations visited by a frame of reference

attached at arc length s = s5 along the backbone curve of a semi-
flexible polymer relative to s =s. The value 0 denotes the proximal
end of the chain, and s = L the distal end. If a chain is uniform
and short enough for excluded volume to not be important, then
f(g;51,52) =f(g;0,s5 — s1). However, for longer chains this will not
be true even if they are uniform, because the downstream statistics
are not independent of what occurs at the proximal end.

Now imagine that frames of reference are attached at every point
on the polymer backbone curve from s =0 to s, and all conforma-
tions of the polymer are visited with a frequency dictated by Boltz-
mann statistics. Let us then categorize the distribution of all of these
frames of reference according to their starting point (taken as the
identity rigid-body motion) and terminating at a particular g1 € G.
Let us call this m(gq,g;0,s1), which is illustrated in Fig. 1(b). Here
the dependence on g € G reflects the fact that for fixed g; and given
0,51, this will be a distribution of frames of reference. Now suppose
that at each frame of reference along the backbone is affixed a rigid
body (e.g., base pairs in the case of DNA). In each local reference
frame, this body will have a volume described by p(x). The corre-
sponding volume for the whole “bundle of conformations” will be

1(g1,%;0,51) = /G m(g;.g;0,51)p(g"! - x)dg. (11)

The function u(gq,x; 0,51) is the total volume of the ensemble of
all configurations which grow from the identity frame fixed to the
proximal end of the chain and terminate at the relative frame g; for
a polymer segment of length sq.

In an analogous way, it is not difficult to see that integrating the
x-dependence out of u provides the total “volume fraction”? occupied
by configurations of the chain starting at frame e (at the prox-
imal end) and terminating at frame g; (at the distal end). If
each residue (or base pair) has volume (i.e., constant volume per
unit of arc length of polymer) defined by ng p(x)dx, this means
that the frame density f(gq;0,s1) is related to m(gq,g;0,s7) and
w(g1,x;0,s1) as

1

volisy) Jw3 u(g1,x;0,s1)dx,

(12)

1
f(g1:0v51)=s—f m(g1,8:0,s1)dg =
1JG

where vol(s):s-fR3 p(x)dx is the total volume occupied by one con-
formation of the homogeneous segment of length s. In the case of a
heteropolymer where effectively p = p(x,s), this formulation can be
modified slightly, as will be shown later in this paper. Regardless of
whether p depends on s or not, when calculating vol(s) it is important
that consistent units are used. If s is measured in terms of the num-
ber of persistence lengths, the p will be the volume per persistence
lengths. If s represents the number of base pairs, then p will be the
volume of a single base pair (including the sugar backbone atoms). If
s is measured in a unit of length such as nanometers, then p will be
measured in volume of backbone per unit length. Whichever unit of
length used in the definition of s must be consistent with the units
of stiffness used in the definition of K(s). In the current context, s is
taken to be measured in units of bending persistence length. There-
fore, s =1 corresponds to approximately 150 base pairs.

4.1. Composition formulas

Suppose that s1 and s) — s1 are relatively small segment lengths.
In this case, the segments [0,s1] and [s1,s,] will have independent

2 By this we mean the volume of all conformations with these end constraints
normalized by the total number of conformations.
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statistics and so we can compute
Fg:0,52) = [ Fhi 0,51 (0" o gis1,2)d, (13)

In these expressions h € G is a dummy variable of integration.
The meaning of (13) is that the distribution of frames of refer-
ence at the terminal end of the concatenation of segments is the
group-theoretic convolution of the frame densities of the terminal
ends of each of the two segments relative to their respective bases.
With this in mind, the following shorthand notation for (13) is
useful:

f0,52 (8= (fo,sl *fs1 59 )(8)-

A more detailed explanation of why the convolution of frame densi-
ties generates the density of the concatenation of segments can be
found in the author’s previous work [38-42].

Later in the paper the effects of interaction between sequentially
distal segments of semi-flexible chains are approximated by consid-
ering how the functions u(g,x;0,s1) and u(g,X;sq,s) interact. We
first note that when the segment [0, s,] is short, there will be few or
no interactions between the subsegments [0,s1] and [s{,s;] due to
the semi-flexible nature of the chain. Therefore,

m(g1,8:0,82) = fc(m(h,g: 0.51)f(h~1 o g1:51.52)
+f(h;0,s1)m(h~! o gy, h ™1 o g;51,55)) dh. (14)

This equation says that there are two contributions to m(gq,g;0,s7).
The first comes from adding up all the contributions due to each
m(h,g;0,s1) for all h € G. This is weighted by the number of upper
segment conformations with distal ends that reach the frame g
given that their base is at frame h. The second comes from adding up
all shifted (translated and rotated) copies of m(gq,g;s1,52), where
the shifting is performed by the lower distribution, and the sum
is weighted by the number of distinct configurations of the lower
segment that terminate at h. This number is f(h; 0,s1)dh.

The veracity of this derivation may be confirmed by integrating
the resulting function m(gq,g;0,s5) over all values of g € G and
comparing with Eq. (13).

4.2. Generating m from f

In the previous subsection, formulas relating f and p and their
composition were explained. These formulas are true and useful for
phantom polymer models in general, though the initial generation
of u(g,x; 0,s1) for use in (14) by sampling methods can be a problem
for continuum models of semi-flexible chains. However, it is possible
to directly generate y(-) and m(-) if we know f(g; 0, o) for all values
of g € [0,s]. In particular

(e hi0.5)= [ f(h; 0.0)(h 1 0 g: 0,5)do, (15)

or more generally,
S

mig,his1.s2)= [ fthisy, o) (h o gi0,55)do (16)
s1

In other words, the frames of reference that f(h; 0, ¢) contributes
to m(g, h;0,s) must be weighted by the probability density of the
distal end actually reaching the frame of reference g. This weighting
is f(h=1 o g; 6,5). Integration over all values of arc length provides
contributions from the full set of frame densities. From (15) and (10)
it is clear that

f/m(g.h;o.s)dgdhzs].
GJG

Of course, knowing m, one can compute u from (11), or now
include arc length dependence of p as

,u(g,x;O,s)=/G/Osf(h;0,a)f(h_1og;a,s)p(h_1~x,a)dadh. (17)

In this general context of non-uniform chains, the volume of the
chain defined by the interval [0, s] is

N
vol(s =/ / X,0)dxdo.
(5)= | Joa PX0)
It is easy to see by direct integration that
[ (e 0.9)dx = vol() - g:0.),

which is consistent with (12).

In summary, if the function f(h; 0, ¢) is obtained for all (or finely
sampled) values in the range [0, s] by solving (7), then u(g, x; 0,s) can
be obtained in a relatively straightforward manner. This is important,
because it will be used for approximating the effects of excluded
volume in the next section.

5. Computing averaged effects of excluded volume

The volume of overlap of all conformations contained in the con-
catenation of two bundles joined at the frame gy is

g1, g2i51.52)= [ e X 01 )uley Mo g2 g s ) dx, (18)

as illustrated in Fig. 2.

It is important to note that: (1) this cannot distinguish between
multiple intersections between two conformations and single inter-
sections between multiple pairs of conformations from the two con-
catenated bundles; (2) the contribution of each partial overlap is not
weighted as heavily in (18) as full overlaps of conformations. Issue
(1) is not a concern for semi-flexible chains on the order of a couple
of persistence lengths because multiple intersections within a con-
formation are not likely. We therefore can assume that the major
contribution to (18) is due to pairs of conformations from the lower
and upper bundles that intersect each other only once. On the other

a il . \ W A\
| N \ M
/ K
* ik - \ - 2 !
N\ A . JI
i \, o ’
l/-
!
S %

-—

Fig. 2. Approximating excluded-volume interactions using u(g,X): two bundles are
concatenated and joined at an intermediate reference frame. The intersections of
conformations in the two bundles are then counted by Eq. (18). Here arrows along
each fiber denote increasing value of arc length.
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hand, issue (2) cannot be avoided. The way that it is addressed is to
normalize the result of (18) by an estimate of the average volume of
overlap that is observed for each possible way that two conforma-
tions can intersect.

Computing (18) directly would be computationally intensive, be-
cause a three-dimensional integration would have to be performed
for each value of the 14 arguments of n(-), i.e., six for each of g; and
g and one for each s;, i = 1, 2. Fortunately, the observations about
the structure of p(-) can be used to reduce the problem to something
that is manageable.

Substituting (17) into (18) results in

n(g1,£2:51,52)
S1 52 1

=/ / /{f(hl:o,al)f(hl o 815 01,51 )f(hy; 51, 03)
o Js; JoJc

x fhy'ogit ogi09,57)
x v(hy1 o g1 0 hy; 61,07)) dhy dhy doy doy, (19)

where
vgio1.02) = [ pxo1)ple ! - x,2)dx
Note that the change of variables y =g~ - x gives

v(g:01,02) = /R3 p(g-y,01)p(y. o2)dy
~ [[s pv.o2)ple-y.01)dy = viz T 02.00) (20)

Later it will be shown that the following quantity is useful in de-
scribing excluded-volume effects:

1/0(01,02):/Gv(g;61,a2)dg. (21)

5.1. The amount of excluded volume as a function of segment length

While (19) may appear to be hopelessly complicated, in some
cases of practical interest, reductions can be made. This is illustrated
in the next section. But before doing this, it is worth noting that even
while retaining generality, the expression for the quantity

N(S1-32)=/chﬂ(g1-g2:51-52)dg1 dg,

can be simplified substantially. This is useful because, for example,
plotting the function q(L) = N(L,2L) indicates the total effect that
excluded volume has on the density of end-to-end pose.

Returning to (19), if we first integrate over g, the result is

/Gn(gpgz;sbsz)dgz:/;] /S:Z/G/G{f(hﬁoﬁl)

x f(hy o g1i 01,51 )f(ha: 51, 07)

X v(hl_l 0 g1 o hy; a1,02)}dhy dhy doy doq
because f(g; g9,57) is a pdf, and integration on G is invariant under
left and right shifts (see Appendix A for further explanation).

Now integrating over g1, and switching the order of integration

over hq,hy and g7 so that the gq integral is the innermost one, the
following simplification can be made:

/G f(hy 1 o gy o1, 50)u(hy o gy 0 hyi 01, 02)dgy

=/Gf(k; 1,51 0k o hy: 0, 59) dk,

where the change of variables k = hl_l o g is employed. If we apply
the symmetry in (20) and use (31), it is clear that the above integrals
can be written as

/Gu(hz—l ok~ 15 03,01)f(k; 01,51)dk = (Vap.0 *foy.50 )5 D).

Then we have

N(s1,sz>:/os‘ /SfZ/G/Gf(hl:o,m

x f(h:51,02)(Vay.01 *foy.sy Xy 1) dhy dhy.

But these integrals are independent, and so integrating the pdf
f(hq;0,01) over dhy produces 1. Hence

S1 2
N(s1.57) = /0 f /G F(h:51,02) Vay0y +fry.sy X3 1) dhy dhy.
1

This can be written in the compact notation

51 S

N($1,52)=/0

2
(Vaz,al *fO'],S] *fS],O'z )(e) dUz dO"l
51

S1 [S2
- /0 f (o0, *fo1.0,)€)do dory. (22)
51

The above equation is easy to evaluate and provides a means to
determine how the effects of excluded volume change with segment
length.

5.2. Approximating the end-pose distribution for conformations with
excluded volume

If we desire to determine how excluded volume changes the dis-
tribution of end-to-end positions and orientations (or end-to-end
distance), then we seek to compute

n'(g2:51,52) = /Gn(glng;Slvsz)dgl

:/051 /5:2/G/Gf(h1:0.01)f(k:01.02)

x fk~ o hy1 0 g3; 02,5 )u(k; 01, 02) dk dhy do day

S1 [S2
=f0 : (fo,01% (V- flgy .6y *foy,5,)(&2)dop doy. (23)
1

Here the change of variables l<=h1*1 og1 ohy is used together with
the definition of convolution (several times). The notation (v - f)(g)
simply means point-wise multiplication, i.e., (v-f)(g)=v(g)f(g), which
is the scalar multiplication of v(g) and f(g) at each value of g € G.

In the general case, (23) does not simplify further, though even
in the general case methods developed previously by the author
in principle can be used to compute such convolutions efficiently
[40,91]. However, as will be seen in the specific examples that follow,
simplifications result from symmetries in f and the nature of v.

Assuming that n’(gy;s1,5) can be computed, the effects of ex-
cluded volume are incorporated into the pose distribution by sub-
tracting from the result that would be obtained from the phantom
model:

f(8:0,52) = f(g; 0,52) — n'(g; 51,52)/Vnn($2). (24)

f(g;0,s9) can be obtained by either solving the diffusion equation
up to length sy, or by convolving f(g;0,s1) and f(g;s1,52). Here we
normalize by Vn(sy), which is the average volume of intersection
of each chain from the lower bundle of conformations with each
chain from the upper one. We are assuming that this is independent
of g5. The average is taken over all possible ways that two chains
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can intersect. For example, they can intersect dead on at any angle,
or they can intersect very slightly due to paths that meet almost
tangentially. Then we can compute

£7(8:0.50) = f(:0.55) / /G f(g:0.5,)dg (25)

which ensures that the result is a pdf. This can be done for different
estimates of V(sy) to examine the range of effects that excluded
volume can have on the end-pose distribution. Eq. (25) can be viewed
as a perturbation of f that approximates excluded-volume effects.

6. Numerical and analytical results

In the general case, v has no symmetries and (23) cannot be
simplified further. However, there are wide classes of v's that have
symmetries compatible with those of f that will reduce (23) to a
simpler form. For example, if the cross-sectional dimensions of a
polymer are small relative to its length, and each p(x, ¢;) is axially
symmetric around the x3-axis, then effectively

2n
v(gi 01,05) = M[ 3(r3(—0) o g)d0),

where r3(0) denotes pure rotation around the x3-axis and v is de-
fined in (21). If f(g) = f(r3(0) o g) for all 6 € [0,27] (i.e., the distri-
bution at the distal end is invariant under rotations of the proximal
end) then the middle equation in (23) reduces to

S1 152
n’(g2;51,52)=/0 /S vo(01,02)51,05(€) - (fo,5; *fa,.,5,)(g2)do2 doy.
1
(26)

This follows from the definition of convolution on G, changing
the order of integrations, and the axial symmetry of f(g):

((U 'f)Gl,Uz *fO'z,Sz )(g)
— [V o0, Moy (1~ o g)

27
:M/ [/ 3(r3(=0) o Nfgy 0y ()., (h! og)dh] do

21
- Wlg1:72) 7 foraarsOnpsalrs(-0) o )0

O-] )

/ f0'1 az(e)faz 52(8) do
= 1/0(0'] ’ aZ)fO'] ,Gz(e)fo'z,SZ (&)

Substituting this in (23) results in (26).

Similarly, if the cross-sectional density is assumed to be
concentrated in position, but isotropic in orientation, such as
V(R 1); 01,09) = (vg(oq,02)/812)5(r), and if f is assumed to be
isotropic in orientation, then the same simplified expression for
n'(gy;1,5y) results.

If the chain is uniform fs, s, =fos, s+ Yo(01,02) =V is constant,
and (26) reduces to

51 (52
n’(g2:31.52)=v0/0 /51 fosy-a,(€)-fos,—6,+0,(82)doz day

S
=1p /0 ’ w(s;s1,82) - fos(€) - fos,—s(&2)ds,

where w(s; s1,5y) is a factor resulting from integration by parts (see
Appendix A). The benefit of writing it in this way is a reduction in the
number of arithmetic operations that need to be performed when

computing the integral numerically. In the uniform case, (22) can be
written immediately by integrating n’ over gy as

52
N(sq,82) = UO/O w(s; s1,52) - fos(e)ds
Similarly, in the uniform case, vg=&Vn for some ¢ € [0, 1], and so

S
oy @ =losy (@ = ¢ [ wlsis1.52)-fos(e)-fos,-s(e)ds

If we view the positional part of g =(R,r) as being parameterized
in spherical coordinates so that r = ru(¢, 0), then the end-to-end
distance distribution corresponding to f’ will be

/ _ .2 /
fos 0= [0y [ oy (@du R

where §2 is the unit sphere and du=sin 6 d¢ d6. Since these integrals
commute with the integral over s, it means that

Sy 1) =Tosy ()= [ wisis1.52) fole) Sos, s(1)ds.

In other words, if we only want to compute f (r ), then we can do
so by using the end-to-end distance dlstrlbutlons f0,52 _s(r) and the
J factor, fy5(e), to compute f(’) Sz(r), and then normalize the result to
be a pdf in the radial variable, r.

For the Kratky-Porod worm-like chain, D11 =Dy3 =2L where L is
the number of persistence lengths of the chain. The functions fq (1)
and fy 1 (e) can be computed for various values of L using the second-
order Daniels approximation [1,37]:

3/2
D _ 2 3 3r
fO'L(r)_47rr (15(r,L)<—2n_L> ex p( ZL) and

3/2
Buer=(5) o0.L)

where
5 2r2 3314 79 32912 67994
dr,l)=1- =+ - —— — -
8L " [2 4013 64002 24013 ' 1600L%
- 344115 108918
140015 ~ 3200L6°

This is an asymptotic expansion of a phantom semi-flexible chain
that becomes more accurate as L becomes large (i.e.,, when the
chain consists of multiple persistence lengths, L>1). When L<1,
the Daniels approximation can become negative at some values of r.
When L <1, the J factor becomes zero, and the distribution of end-
to-end distances becomes a Dirac delta function. Combining these
facts, we have

fD (1) for L>2,
for(n)= max{fOL O}// max({f; ( ),0}dr’ for L €[1/2,2],
or—1L) for L €[0,1/2]
and
_[fB.(e) forL>0.7827,
folle)=1 4 for L<0.7827.

Note that L = 0.7827 is the crossing point where ®(0,L) becomes
zero, and for values of L smaller than this, (0, L) is always negative.
As an alternative, it is possible to solve (7) for the KP model using
techniques from Noncommutative Harmonic Analysis as was done
in [38,40].
Fig. 3 compares end-to-end probability density estimates ob-
tained from sample paths of the stochastic elastica for the KP chain
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Fig. 3. Comparison of the clipped second-order Daniels approximation (blue) with
density estimate constructed from 1000 sample paths of the stochastic elastica
(red) for different values of diffusion parameter. Red density is reconstructed using
Gaussian Kernels with optimal smoothing parameter. Recall that the strength of the
noise term in the SDE has a standard deviation of +/D;; when the bending persistence
length is L=D;. (a) Diffusion parameter /Dy, =2. (b) Diffusion parameter +/D;; =4.
(c) Diffusion parameter /D;; = 8. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article).

with the clipped and normalized Daniels approximation, fo(r),
where L is the number of persistence lengths. In the plot, lengths
are normalized to the length of the polymer. As can be seen, the
Daniels approximation breaks down for small values of L.

Sample paths of the stochastic elastica are generated using the
Euler-Maruyama algorithm described in [92] applied to (4). In this

a
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0 0.2 0.4 0.6 0.8 1
Normalized End-to—End Distance

(o
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Fig. 4. The significance of excluded volume as a function of chain length. In each plot,
end-to-end distances are shown for self-avoiding conformations with radii (measured
in units of persistence length) ranging over a factor of five. Even for very thick
chains and many persistence lengths the effects are small. (a) Persistence length=1,
chain radius ranging from 0.02 to 0.1. (b) Persistence length=4, chain radius ranging
from 0.02 to 0.1. (c) Persistence length = 10, chain radius ranging from 0.02 to 0.1.

method each dW; is independently sampled at each time step from
a Gaussian distribution with unit variance. The author of [92] has
posted such code on the web. The resulting £(kAs) for k=1, ...,L/As is
then “injected” from the Lie algebra to the Lie group G by computing
the following product of exponentials [93]:

g(nAs) = exp(As&(As)) exp(AsE(2As)) - - - exp(Asé(nAs)), (27)
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Fig. 5. End-to-end distance distribution for a semi-flexible chain with excluded
volume computed using the conformational bundle approach. Daniels in red. Ex-
cluded-volume perturbations to Daniels in blue (a) Input persistence length L=2.5,
parameter ¢ ranging from 0.05 to 0.25. (b) Input persistence length L=5, parameter
¢ ranging from 0.05 to 0.25. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article).

which approximates the product integral described in [82]. Each
sample path is then tested to determine whether or not any two po-
sitions along the path are too close to each other (i.e., within 2r of
each other, where r is the radius of the cross-section). Those that are
close are removed. Fig. 4 illustrates the relative importance of ex-
cluded volume as a function of persistence length. If the persistence
length is less than 1, the end-to-end distributions are not influenced
by excluded-volume effects. As the persistence length increases, so
too do the excluded-volume effects. However, their influence on the
end-to-end distance distribution are quite modest. In Fig. 4(a), a thick
chain one persistence-length long has only one self-intersection out
of 500 sample paths when the radius is 0.1 persistence lengths. DNA
has a thickness far less than this. In Fig. 4(b), 1000 sample paths of a
chain consisting of four persistence lengths are generated for chain
radii ranging from 0.02 to 0.1 persistence lengths. Of these, 990, 977,
959, 920, and 886 survive without self-interpenetration. In Fig. 4(c),
500 sample paths of a chain of length 10 persistence lengths are gen-
erated for chain radii ranging from 0.02 to 0.1. Of these, 496, 476,
436, 411, and 385 survive without self-interpenetration.

Fig. 5 shows the pdf of end-to-end distance with excluded-volume
effects incorporated for chains of different values of ¢ for each L
using the conformational-bundle approach in Eq. (25) when using
the clipped and normalized Daniels approximation as the input. As
can be seen, the effects of excluded volume become more impor-
tant as the chain length and ¢ increase, but again, they are quite

modest. Furthermore, the results are similar in that excluded-volume
effect has a tendency to push the mode of the pdf towards the right
side. This becomes more pronounced as the radius of the chain is
increased.

7. Conclusions

A new model for computing the effects of excluded volume in
semi-flexible polymer statistical mechanics has been presented. This
models take as its input the probability densities describing the fre-
quency of occurrence of frames of reference attached at points on the
backbone curve of short phantom polymer segments. For short uni-
form segments, this pose distribution can be obtained by solving a
diffusion equation. The SDE corresponding to this diffusion equation
is used to generate longer chains, where the excluded-volume effect
cannot be ignored. Self-intersecting conformations are removed from
the ensemble and statistical quantities of interest are calculated. A
theory for obtaining the density corresponding to a bundle of con-
formations is presented. The overlap of conformational bundles be-
tween adjacent segments is used to estimate the effects of excluded
volume between them. Numerical results quantify the magnitude of
the excluded-volume effect and show that this method generates
comparable results as the brute-force SDE approach, but at a lower
computational cost.
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Appendix A

A.1. Explicit form of Lie derivatives for the Euclidean motion group

It can be shown that for G = E(3), [38-40]

. Xi fori=1,2,3,
X = . (28)

(R™Vp);_3 fori=4,5,6
and

3 0

X1!+ >(rx e,-)-eka— fori=1,2,3,

M=l ke 'k (29)
N
—_ fori=4,5,6.
ori_3

Here Vq4f=[0f/0q,0f/0q3, 6f/6q3]T and Xirf:(qu)-Ur‘lei) is the SO(3)
differential operator with Jr being the Jacobian that relates angular
velocity as seen in the moving frame to the rate of change of the
rotational parameterization q as wr =Jrq. An analogous relationship
holds for the left operators and angular velocity as observed from
the inertial reference frame.

For example, if R is parameterized with ZXZ Euler angles so that
R=R(o, B,7), then the X] are defined as

.0 siny O
T __ A
Xi= cotﬁsmy—ay+Sinﬁa“—i-cosyaﬁ,
0 cosy O .

T _ A _
X5 = cotﬁcosyay+sinﬁacc smyaﬁ,

)
r_
X3_ay' (30)

When rotations are parameterized using the ZXZ Euler angles (c, f3, 7).
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A.2. Integration and convolution on the Euclidean motion group

Any element of G=E(3) can be parameterized as g=(R(c., f3,7),1)
where R(o, f,7)=R3(c)R1($)R3(y) are the ZXZ Euler angles, and rT =
[rq,19,13 ]T are Cartesian coordinates of the translational part of g. The
range of the Euler angles is 0<«, y<2n and 0< < 7. The volume
element for G is given by
dg= 1 sin fdadfdydry drydrs,

872

which is the product of the volume elements for R> (dr=drq dry dr3),
and for SO(3) (dR = (1/87n2)sin fdadf dy). The normalization factor

in the definition of dR is so that [g53) dR=1.
We note the following shorthands used throughout the paper:

21 M P27
/50(3) _/o /o /o '
fRa - /ﬁ =—00 /rzz—w /r =—00

and
/G:/R3 /50(3)'

Integration on G = E(3) is invariant under left and right shifts by
arbitrary h € G, and inversions i.e.,

/G f(g)dg = /G f(h1 o g)dg = /G f(goh)dg = /G fg1)dg.

This is well known in certain communities (see e.g. [40,90,94]).
A convolution integral of the form

(h=f£)eg)= /Gf1(h)fz(’f1 og)dh
can be written in the following equivalent ways:

(fy +F2)(g) = /G Az Nh(zog)dz= /G filg ok )k dk, (31)

where the substitutions z=h=! and k=h~1 o g have been made, and
the invariance of integration under shifts and inversions is used.

A.3. Derivation of w(s;s1,52)

Here we prove that for an arbitrary continuous, integrable and
bounded function x(s), the following identity holds:

S1 52 52
/ / (o5 — 01)doy doq = / W(s; 51,5 )X(s) ds, (32)
0 S1 0
where w(s; s1,s,) is a function to be determined. Define
N
X(s)= /O x() do.

Then, by the change of variables ¢ = gy — o1, the inner integral on
the left side of Eq. (32) becomes

52
/S X(o3 —o1)doy =X(s2 — 01) = X(s1 — 01).
1

Now we integrate each of these by parts. The first term becomes

S1 51
/0 X(Sz—O’])dG] =X(52—O'1)O']|€)1 +‘/(; O']X(Sz—O'])dG]

_ s /0 27 o) dot /s 2 (s2=oX(o)do.  (33)
2721

Now performing the following integration by parts:
S1 1 1
[ X1~ 0o =x(s1 — o)l + [ o1y — o1)doy

S1
- /0 (s1 — o)x(0)do (34)

and subtracting (34) from (33), we see that
51 S2
/ / X(Gz—O’])dUde’1
0 $1

=5 /052751 x(a)da+/sszs (sy — o)(0)do — /;1 (51 — 0)x(0)do.
2721

This can be written in the form of (32) when
W(s;s1,82) = — (51 = S)W(s,0,51) + (s2 — s)W(s,$2 — 51,52)
+51W(s,0,59 —s1), (35)

where W(s,a,b) is the window function that takes the value of 1 on
the interval (a, b], and zero otherwise. As a special case, when s; =L
and sy = 2L, things simplify to

w(s; L,2L) =sW(s,0,L) + (2L — s)W(s, L, 2L),

which is simply a triangular function with peak value of L at s =1L
and a value of zero at s=0 and s = 2L.
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