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Abstract— A “Discretely Actuated Robotic Manipulator”, or
“D-ARM”, is any member of a class of robotic manipulators
powered by actuators that have only discrete positional stable
states such as solenoids. One of the most significant kinematic
phenomena of D-ARMs is the discreteness of both input range
and end-effector frames. The main characteristics of D-ARMs
are: stability at each state without feedback loop; high task
repeatability; mechanism simplicity; minimal supporting devices;
low cost. These are strong advantages for manufacturing automa-
tion; mobile robot; space structure; micro/nano mechanism.

The proposing design method is based on an incremental
kinematic synthesis with a numerically obtained Jacobian matrix
of a base-line manipulator and its generalized inverse matrix.
The significance of this method is that it deals with a set of
inverse kinematic problems on the Special Euclidean group in
three space,

����� � �
, instead of one on the Euclidean space, �	� .

The conducted simulations demonstrate the feasibility of the
synthesis method.

I. INTRODUCTION

A. Definition of D-ARM with Actuator Categorization

For robotic manipulation, actuators are key components. Ac-
tuators can be recognized as belonging to one of the following
two kinematic categories: the first one is continuously position
controllable and the other has only a finite number of discrete
stable positions. The former actuator accepts a continuous
range of input command values, but not the latter. Table I
summarizes this categorization.

TABLE I

ACTUATOR AND MANIPULATOR CATEGORIZATION

Stable state
Actuator Example = Input Manipulator

command

Continuous Servomotor Continuous range C-ARM

Solenoid,
Discrete Pneumatic Discrete range D-ARM

cylinder

We denote the former actuator as a “Continuous-Range-of-
Motion Actuator” [1], or “Continuous Actuator”, and the latter
one as a “Discrete-Range-of-Motion Actuator”, or “Discrete
Actuator.” We define a class of manipulators called the “Dis-
cretely Actuated Robotic Manipulator (D-ARM)” or “Discrete

Arm” which is powered by discrete actuators. In particular, a
“Binary Actuated Robotic Manipulator (B-ARM)” or “Binary
Arm” is one with actuators that have only binary stable
states. The categorization of D-ARM should be recognized
as a generalization of the binary arm concept presented by
Chirikjian [2]. Further, in contrast to D-ARM, let us call a
manipulator a “Continuously Actuated Robotic Manipulator
(C-ARM)”, or “Continuous Arm”, if the manipulator uses
continuous actuators, as most standard robotic systems do.

B. Examples of D-ARM

Several examples of D-ARM are shown in Fig. ??. In these
examples, each actuator of a D-ARM is activated according to
each digit of the assigned number which is an input command
to the controller of the manipulator.

One of the most fundamental examples is shown in Fig. 1.
The 2D (two dimensional) B-ARM that has three bi-stable
actuators is activated according to a three-digit binary number.
The left (right) actuator is associated with the most (least)
significant bit of the binary number, and the center actuator
corresponds to the middle one. The binary bit “1” (“0”) means
full extension (contraction) of the actuator. By changing the
binary number given to the controller, one of eight ( 
�� 
 )
possible configurations of the 3-bit B-ARM can be selected,
and this means that one of eight possible frames (elements of����� � �

: pairs of position and orientation) of the end-effector
can be reached with a certain binary number by the B-ARM.

In the � -state (multi-state) actuator case, the end-effector
frame assignment is done by a discrete number, which is an
element of a general type of a discrete number system with
the base of � . In the case of three-state actuators, the base
of this discrete number system is three, e.g., “0”, “1”, or “2”
will be used for each digit, instead of a binary digit (0 or 1) in
the B-ARM case. One of the principle examples of the three-
state D-ARM is shown in Fig. 2. This D-ARM can reach nine
( 

� �

) frames by its end-effector. The discussion above is also
applicable for the 3D case in a similar manner. In Fig. 3, 68.7
billion ( 
�� � � ) end-frames are “reachable” by the 3D B-ARM
example that consists of six stewart-type binary platforms.

One of the most significant kinematic phenomena of D-
ARMs is the discreteness of both input range and end-effector



frames as shown above.
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Fig 1.1 An example D-ARM (3-bit B-ARM)
Fig. 1. An Example D-ARM (3-bit 2D Binary Parallel Platform)
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Fig. 2. An Example D-ARM (2-bit 2D Serial Arm with Three-state
Actuators)

C. Advantages and Applications of D-ARM

While discrete actuators are the key components of D-
ARMs, they are also widely used as stand-alone motion
sources in various applications. The variety of those applica-
tions originates from the following significant characteristics
of discrete actuators:

(1) Stability at each state without feedback loop
(2) High task repeatability

Fig. 3. An Example D-ARM (6 Z 6-bit 3D Binary Parallel/Serial Hybrid
Arm)

(3) Mechanism simplicity, including kinematic parameter
adjustment (e.g., stroke stopper for a pneumatic cylin-
der)

(4) Minimal supporting devices, especially feedback sys-
tems

(5) Low cost and small volume due to (3) and (4)

Each state of a discrete actuator is mechanically stable
because of simple internal mechanical constraints of parts, and
the range of motion of a discrete actuator is also determined
mechanically. The constraint is stable without an extensive, or
even any, feedback loop (4). This results in the fundamental
characteristics of discrete actuators: high stability (1) and
high repeatability (2) which are mainly governed by the
dimensional accuracy of the actuators parts. All of these
characteristics of discrete actuators directly result in those of
a D-ARM which is composed of discrete actuators.

To control robot motion continuously, such as a trajectory
constrained task, continuous actuators are essential devices
for the manipulator system. It should be noticed, however,
that continuous actuation is not so essential for the teaching-
playback work especially if the task is an ordinary pick-and-
place one, since continuity of input range is not necessary
for the playback phase. The key issue is the fact that, after
each teaching process, the robot’s actuators only go back and
forth between several memorized “discrete” positions. Namely,
continuous actuators are used as the robot’s hardware in order
to adapt a task by software programming for such a teaching
phase.

Reconsidering continuous actuators from the point of view
of cost efficiency, they seem to be “overkill” [3] when a
task defines start/goal end-effector frames but the trajectory
is less important as long as it is bounded. Conversely, discrete



actuators could be a sufficient and cost effective solution for
such a playback task if they have the ability to easily change
kinematic parameters, such as stroke length for a cylinder.

The studies on “Sensor-less Manipulation” [4]show us that
we do not have to use complicated systems whenever we
encounter a technical problem. The approach in D-ARM
research has commonality with the studies: we can design a
robot without expensive continuous actuators if the desired
task is not continuous motion control.

D. Scope of this paper

One of the most fundamental synthesis issues for manipu-
lator design is to determine its kinematic parameters in order
for reaching all the given desired frames.

Considering the kinematic synthesis of mechanical system
with discrete actuation, it seems possible to design “intu-
itively” a system that can reach the desired end-frames if the
number of the frames is small. In contrast, such a heuristic de-
signing approach might not be feasible for the mechanism that
has higher degrees of freedom (DOF) as “Hyper-redundant”
manipulator [5].

In order to solve the latter design problem, several studies
has been performed for B-ARM [2], [3], [6]. Such solutions,
however, are intended to handle a positional kinematics only.
The proposing kinematic synthesis process in this paper deals
with the desired end-effector orientations as well as the desired
positions, i.e., this paper is to propose the solution for the
important synthesis problem of a D-ARM as follows:

Given a D-ARM (base-line design) and finite sets of
desired positions and orientations of the D-ARM’s
end-effector (desired frames:

��� ��� ����� � �
, where� 
 � � � � for 2D(3D) case), determine kinematic

parameters (the vector � ) of the manipulator.

The design parameter � could be the link length for prismatic
joints, or rotational angle for revolute joints of the manipulator.
Note that this set of inverse kinematics problems becomes
now on the Special Euclidean group,

����� � �
, and that it is

an extension of the previous B-ARM researches that discuss
one on the Euclidean space, �	� .

E. Related Works

The concept to use discrete actuators for robotic manipula-
tors was, to the best of the author’s knowledge, conceived in
the 1960’s [7], [8]

In the 1990’s, the concrete concept of a binary manipulator
as a new paradigm in robotics based on binary actuation was
presented by Chirikjian [2]. Positional kinematic synthesis
method for a binary manipulator in the 2D case has been
presented [3]. The concept of workspace density in the context
of efficient workspace generation was introduced [6], and the
concept was applied to obtain a near optimal solution for the
(positional) inverse kinematics problem [9].

A “Variable Geometry Truss”, or VGT [10] is another
example of a D-ARM if it employs discrete actuation concept.
Particularly in the astronautical sciences [11], the VGT has

been examined as a mechanism for manipulators and physical
structures.

Some researchers in the Micro Electro Mechanical Systems,
or MEMS, community have studied binary mechanisms [12],
[13]. Applications differ from researcher to researcher in
MEMS field; however, we see that those researchers take
advantage of feasibility, reliability, and stability with binary
actuation’s simple mechanisms.

One of the most recent attempts to utilize the advantages
of the discrete actuation can be found on the researches for
robotic planetary explorers [14]. The mobile robot employs
binary actuators to achieve a light weight and durable system
with a simple and thus reliable controller.

II. FORMULATION

The flowchart of the proposing design process is shown in
Fig. 4. The conceptual framework of the proposing synthesis
method to solve the kinematic synthesis problem is based on
an iterative computation with a numerically obtained Jacobian
matrix of the given D-ARM and its weighted generalized
inverse matrix.

Main�Loop:�
�

Computation�of�δa�for�each�d�=�1,�...,�ndiv�
(�∆a  ==== Σ�δa�)�

Inputs:�
Baseline�Design�(D-ARM�with�Set�of�Kinematic�Parameters:�a)�

Pairs�of�Desired�End-Effector�Frame�with�Discrete�Number�

Frame�Interpolation:�

Output:�
agoal�=�a�+�∆a�that�Satisfies�the�Given�Desired�End-Effector�Frames�

Fig. 4. Flowchart of the Proposing Kinematic Synthesis Method

In the iterative computation, the end-effector frame of a D-
ARM is gradually shifted from its initial value to the given
desired one, and at each step the kinematic parameters of
the arm are updated in a computation that depends on the
manipulator Jacobian matrix.

By using the forward kinematics of the manipulator, we can
obtain a current end-effector frame of this manipulator with
respect to any given joint vector at each iterative step. This
frame can be denoted

�
� � �
� ����� � �
for � 
�
 � � � � � ��� � � ,

where ��� � � denotes both the number of initial end frames
and that of the desired frames. There is a one-to-one mapping
between the frames through the assigned discrete number.
��� � � also determines the kinematic conditions: sufficient,
insufficient, or redundant. The computation for the sufficient
number of the frames can be derived with the concept of the
Configuration Tree “CT” [1]. In short, the sufficient number of
frames is linear in the DOF of a D-ARM, despite the fact that
the number of reachable frames is exponential in the DOF.



A sequence of frames,
� � � � � � ����� � �

for � 


 � � � � � � � � ��� 
 between the initial end frame,

� � � � �
, and the

desired frame,
� � � 	 
 � � 
�� �

, can be obtained with the Rodrigues
formula [15], where � � � � is the number of the fixed-steps in
the interpolation. The uniform distribution of the interpolated
frames is guaranteed with a metric concept on rigid-body
displacement [16]. The difference between any adjacent two
frames,

� � � � �
and

� � � � 
�� �
, can be small enough by choosing

appropriate � � � � for the frame sequences, i.e., the following
condition holds:

��� �� � � � � � � � 
�� ����� � (1)

for � 
 
 � � � � � � � � � , where
�

is the identity matrix.
The vector � represents a set of initial kinematic parameters.

The vector � has the following structure for a general D-ARM
with ��� � -state actuators:

� 

��� � �...
� 	 � �
� �� � (2)

where � � � � 	  ! � is the set of kinematic parameters of the " � #
state of the discrete actuators, and ��$ % � denotes the number
of actuators. For instance, � has the following structure for a
B-ARM:

� 
'& � �($ )� � � 	+* � (3)

where � ��$ ) and � � � 	 are the set of kinematic parameters
with maximum and minimum values of the binary actuators,
respectively.

In the main loop, focusing on a certain pair of initial end
frame and desired frame with an assigned discrete number, we
calculate , � � � � such that the end-effector frame changes from� � � � �

to
� � � � 
�� �

for a certain � . In order for the renewal of
� � � 
�� � , a method to compute , � � � � from

� � � � �
,
� � � � 
�� �

, and
� � � � is required as following:

� � � 
�� ��- � � � � � , � � � � � (4)

The summation of , � � � � composes . � in the flowchart. This
iterative computation can be done associated with the forward
kinematic function of the manipulator as shown below.

The forward kinematics for a D-ARM can be written in the
form: � � � � � 
�/ � � � � � � � � (5)

For simplicity, the subscripts of / � and � � � � will be omitted
in the sequel. Letting �+0 $ � � 
 ��� �(1 ��$ % � , the small change
from

� � � � �
to
� � � � 
�� �

is described as following:

� � �� � � � � � � � 
�� � 
 � � 	 2  3 45 � 6�� / � � � � ��7 /7+8 � , 8 � � (6)

Letting:
� 
 &:9<;=?> 
 * � (7)

where 9 � ��@�� � � and ; � �	
 , we have in general:

��� � 7 �7+8 � 


��� 9 > 7 97?8 � 9 > 7 ;7+8 �=?> A
� �� � (8)

Applying
� 1 � B operation on the screw matrix,

� � � 7 �7+8 � �
� C � � � , and the skew-symmetric matrix, 9 > 7 97+8 � � � D � � � , we

obtain:

& ��� � 7 �7+8 � * B 


����� 9 > 7 ;7+8 �& 9 > 7 97+8 � * B
� ����E &�F �G � * � (9)

Using this, we obtain the following for the latter term of
Equation (6):H 	 2  3 45 � 6�� / � � � � �:7 /7?8 � , 8 � I B 
J&�F � F � � � � F 	 2  3 4G � G � � � � G 	 2  3 4�* , ���

(10)
Letting , K � be the small change through the sequence of

interpolated frames for the � � # desired frame, together with
Equation (6), we have:, K � 
ML �N� �� � � � � � � � 
�� ��O�� P BERQ � , ��� (11)

where
Q �

is the Jacobian matrix for the � � # desired frame.
Note that inside of the first parentheses is a screw matrix again.

The set of the obtained Equation (11) for every � at a certain� , can be combined into one big equation as following:����� , K
�, K �

..., K 	 S 3 4
� ���� 


�����
Q �Q �

...Q 	 S 3 4
� ���� , �ERQ , ��� (12)

where
Q

is the “concatenated” Jacobian matrix of the given D-
ARM at a certain � in the main loop. The rank of the system of
equations in (12) can be changed by the kinematic case of the
original manipulator, i.e., sufficient, insufficient, or redundant.

The final result of the main loop in the flowchart in Fig. 4
is the following equation from Equation (12):, � 


QUT , K � (13)

where
T

denotes the weighted generalized inverse matrix.
According to the case of manipulator kinematics, the equation
either has a unique, no, or an infinite number of exact solutions
in general. No matter which kinematic case the system belongs
to, we can solve the system of equations by utilizing the idea
of a weighted generalized inverse matrix.



The further expansion of this concept to the general multi-
state D-ARM can be done in a same manner. Applying all
the discussions above, similar but different size of the system
equation would be obtained.

III. SIMULATION RESULTS

Several simulations are performed to demonstrate the fea-
sibility of the algorithm discussed in the previous section.
Through these simulations, it is found that the proposed syn-
thesis algorithm is applicable to a wide variety of applications,
and that the numerical errors were small enough and the
computational time is short enough to design a real D-ARM
even with a personal computer.

A typical example of the 2D sufficient case is shown in
Fig. 5, and Fig. 6. Each link length of the manipulator is set
as 
 � ��� .
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Fig 3.2 Baseline design for simulation (2-D sufficient case)

(b) Desired frame #1
(011,011,011,011)

(a) Initial configulation
(000,000,000,000)

(c) Desired frame #2
(011,100,011,011)

(e) Desired frame #4
(100,100,011,011)

(d) Desired frame #3
(111,111,111,111)

(f) Desired frame #5
(100,100,100,100)

Fig. 5. Baseline Design Example (4-module 2D B-ARM, Sufficient case)

Fig. 5 shows the baseline design prior to synthesize. In par-
ticular, Sub-figure (a) shows the configuration with the binary
number=“000,000,000,000” as a reference configuration of the
baseline design. Other sub-figures, (b)-(f), show both the given
desired frames and arm configurations which corresponds to
the assigned binary numbers.

Fig. 6 shows the final results of the kinematic synthesis
process. The order of the position error was 
 A ��� � ��� and that
of the orientation error was 
 A ��� � � C � � with 
 A 
 steps in the
frame interpolation. The whole process was executed in the
order of 
 A � � � C � � for this 2D case.

In the 3D sufficient case (no figures), the order of the
position and the orientation error was less than 
 A ��	 � �
� and

 A ��	 � � C � � , respectively with 
 A 	 steps in the interpolation.
The order of the computation time was 
 A 	 � � C � � .

According to the complexity analysis, the order of � � � �
dominates the computation time for ordinary D-ARM system.
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Fig 3.4 Result of simulation (2-D sufficient case, n_div = 10000)

(b) Desired frame #1
(011,011,011,011)

(a) Initial configulation
(000,000,000,000)

(c) Desired frame #2
(011,100,011,011)

(e) Desired frame #4
(100,100,011,011)

(d) Desired frame #3
(111,111,111,111)

(f) Desired frame #5
(100,100,100,100)

Fig. 6. Synthesis Result Example (4-module 2D B-ARM, Sufficient case)
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Fig. 7. Synthesis Result Example (3-module 3D B-ARM, Insufficient case)



Fig. 7 shows the synthesis procedure result for an example
case of the 3D insufficient kinematic condition. The regular-
ization method [17] was applied for this example in order to
cope with the instability of the numerical computation that is
unavoidable due to machine � . In this case, the “least squares
solution” that minimizes the error vector can be obtained. The
relationship between the stability and exactness of the solu-
tion is a trade-off, and finding an appropriate regularization
parameter is required to design a well-balanced manipulator.
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Fig. 8. Synthesis Result Example (3-module 3D B-ARM, Redundant case)

Fig. 8 shows the synthesis procedure result for 3D examples
of redundant kinematic condition. In this kinematic condition,
the evaluation function,

�
� , � �

� , which is the norm of kinematic
parameter alteration, is minimized.The physical meaning of
this is that the kinematic parameters of the designed D-ARM
has a minimum alteration from the baseline design.

Another example application for a serial B-ARM with
sufficient kinematic condition in the 3D case is shown in
Fig. 9. The figure shows that the synthesis procedure has
successfully designed this snake-like manipulator to reach the
desired frames, as well.
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