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Abstract— This paper presents a computation method to gener-
ate a sequence of interpolated elements between arbitrary pair on
the Special Euclidean group in three space, �
	���
�� . The necessity
of this computation can be often found in robotic applications.
The significance of the proposing method is that the uniformity of
the sequential frame distribution on �
	���
�� is guaranteed through
a metric system defined for the rigid body motion.

The computation method will be adapted to a kinematic
synthesis problem of a class of robotic manipulators, “D-ARM”
as an example application. A “Discretely Actuated Robotic
Manipulator (D-ARM)”, is any member of a class of robotic
manipulators powered by actuators that have only discrete
positional stable states such as solenoids. One of the most
significant kinematic phenomena of D-ARMs is the discreteness
of both input range and end-effector frames.

The conducted simulations demonstrate the feasibility of
the synthesis procedure with the proposed frame computation
method.

I. METRIC SYSTEM DEFINED FOR RIGID BODY MOTION

The Special Euclidean group of � dimensional space,����� ��� , is the semidirect product of ��� with the special
orthogonal group,

����� ��� . Elements of
����� ��� are denoted

as � � �"!$#&% �(' ����� ��� where
! ' ����� ��� and

% ')� � .
Any �$' ����� ��� can be considered as a rigid-body motion, a
pose, or a frame of reference in the � -dimensional Euclidean
space, �*� .

For any �+� �"!$#&% � and ,-� �".$#0/ �1' ����� ��� , the
group law is written as �324,5� �"!6.$#&%879!�/ � and �;:=<8��"!6>?#A@4!6>B% �DC Alternately, one may represent any element of����� ��� as an

� � 7$E �GF � � 7$E � homogeneous transformation
matrix of the form:H � �
�?�JIK ! %L > ENMO (1)

The action of a rigid-body motion �P� �"!$#&% � on a vectorQ 'R� � is defined by �82 Q � ! Q 7S% C (2)

Park [1] has constructed a metric (measure of distance)
between elements of

�����"T � asUWV � � < # �YXZ�?�\[[^] _a` � H � � :=<< 2b�YXZ�0� [[�c (3)

where � < # �YXd' �����"T � , and[[Ae [[ c �gf tr
� e1hie > �

is the weighted matrix two-norm withh �kjml;n LL > ESo #
and l is a user-specified length parameter that must be
introduced to reconcile the difference between the units in
translational and rotational quantities. This metric has left-
invariant properties.

Another useful and easy-computable left-invariant metrics
on the set of motions is defined by Chirikjian [2], [3] as
following: Uqp X&r � � < # �YXZ���s[[ � < @ �YX [[ c # (4)

and[[ � < @ �YXq[[ X c �ut tr �0� n @v. > < . XA� hiwyxzw � 7N{}|&| [[(~��� @ ~��� [[ X #
(5)

where n is the
T F T identity matrix, h ��j�� LL >�� o ,� �5����� � ~Q � U�� is the mass, � ���y� ~Q ~Q > � � ~Q � U�� , and � � ~Q �be a real-valued non-negative function on � w which satisfies

the properties���u����� [[ ~Q [[A� � � ~Q � Ua� < Ua� X Ua� w �u� # (6)

for any �k� � .
The properties of the metrics shown above are very con-

venient form for the computation purpose, and they are used
extensively in the sequel to guarantee the uniform distribution
of the frames.

II. FRAME INTERPOLATION METHOD

A computation method for a sequence of interpolated frames
on
�����"T � will be proposed in this section. The dealing

problem, which can be often found in robotics field, is stated
as follows:

Given two frames, say starting frame

H < and
goal frame

H X (

H < # H X�' �����"T � ), determine a



sequence of interpolated frames,

H�� p�� r for
U �Ea# CACAC #�� ��� � 7�E , between the original two, so that

every change between any adjacent two frames is
small enough, and the interpolation is “even” with
respect to some metric.

Here,
� ��� � is the number of the interpolation, and “small

enough” means that (25) holds. The generated sequence of
frames will be used for the recursive computation of

	 %
in

Section III-E as an application.

A. Interpolation Method#1: Repetition of an identical rigid
body motion

First, we examine an intuitive method of frame interpola-
tion. This method is the basis of the next method, which is
utilized in the simulation shown later, and might be more
straightforward than the next one. Let

H < and

H X be the
starting and the goal frames, respectively. We see that a
rigid-body transformation from

H < to

H X is

H :=<< H X . Let us
denote

H :=<< H X as 
H . Fig. 1 shows the geometric relationship
between the transformations.
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Fig 2.7 Frame interpolation
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Fig. 1. Geometry of Frame Interpolation

We are going to divide this transformation, 
H ' �����"T � ,
into

� ��� � small transformations,
	 H

. We see that 
H can be
written in the following form:
H �kj . QL > E�o # (7)

where
. ' �����"T � and Q ' � w . Moreover we know that.

can be written in the following form with the Rodrigues’
formula [4]:. ����
 ��� n 7���� ������ 7u�0E @�� _ ��� � �� X # (8)

where:� � � _ � :=< j tr
�". � @ Et o�� ��� �"! # ��%$ �'&( )+* E � �-, > �.� � � �Et ��� �/�103254 �".s@v. > � � otherwise � C

Let

H6� p�� r be the sequence of the interpolated frames, forU � Ea# CACAC #�� ��� � 78E . That is, there are
� ��� � 	 H s. Note that each

of

H < and

H X is now

H6� p < r and

H6� p 798;: <>= < r , respectively.
Without loss of generality, let us consider in the sequel the
interpolated frames as the relative transformations with respect
to

H < . Namely:
H6� p < r � H < :=< H6� p < r � n | x |@?
H6� p�� r � H < :=< H6� p�� r ?
H6� p 798;: <>= < r � H < :=< H6� p 798;: <>= < r �A
H C (9)

Now we assume that
	 H

is identical through the sequence,
i.e., 	 H 798;: < �A
H C (10)

Similar to (7), we see that
	 H

has the form:	 H �kj 	 . 	 QL > E o # (11)

where
	 . ' �����"T � and

	 Q ' � w . Therefore, we have:	 . ��� 
 ��CB 798;: < (12)	 Q � # � 	 . � 798;: < :=< 7EDFDFDy7 	 .�7 n $ :=< Q # (13)

where the notation
�GD � 7 means the matrix power in the contents

of the parenthesis.
Using this, we can compute every 
H6� p�� r as follows:
H6� p�� r � � 	 H � � :=<� H � 	 . � � :=< # � 	 . � � : X 7EDFDFD�7 n $ 	 QL > E I #(14)

for
U � Ea# CACAC #�� ��� � 79E .

Fig. 2-a shows an example of frame interpolation by this
method. In this example, we let:

H < � n #H X � IJJK @�E
� � E� @�E � @�E� � E E� � � E MFKKO #� ��� � � E �a�a� C

Graphics of the interpolated frames were output every 100
steps of the interpolation in the figure. A smooth interpolation
was observed as shown in the figure. It is natural that repeated
multiplication of a certain homogeneous transformation matrix
forms a helical trajectory [5]. The rotational part of (14)
expresses that it is the

U @�E
-time recursion of the same motion,	 .

. The translational part of the notation is pointing to the
end point of the helix.

This helical transition means that the sequence does not
travel “directly” from the initial frames to the desired frames
in 3D space, particularly in position. In the next subsection,
we consider an alternative method of interpolation, method
#2, in which the sequence of frames travels along the shortest
path.



B. Interpolation Method#2: Translation/Rotation decoupled
motion

In the former method, we obtained a smooth interpolated
sequence, but it formed a helix. This helical trajectory can not
be avoided as long as we only use multiplication of a certain
homogeneous transformation,

	 H
as shown above. Here, we

consider generating a sequence of interpolated frames, the
origins of which lie on a line segment between the origins
of the original two frames,

H < and

H X .
The generating procedure is as follows: For orientation, we

use the same interpolation as the former version. For positional
part, however, we use a different computation in order to let
the frames lie on a line segment. The form of the new 
H6� p�� r
is: 
H6� p�� r � j . � Q �L > E o� j 	 . � :=< � :=<798;: < QL > E o # (15)

for
U � Ea# CACAC #�� ��� � 7�E . Note that

. � ' �����"T � , Q � 'R� w , and
thus 
H6� p�� r ' �����"T � . Fig. 2-b shows an example of frame
interpolation with this new method. The given two frames
are the same as the prior example. As shown in the figure,
a smooth and direct interpolated trajectory was obtained with
method #2. This interpolation method will be employed in the
simulations shown later.

We confirm that the generated sequence of the frames is
uniformly distributed with the proposed metric system. A
distance in any metric is defined as a non-negative value.
So we can compare the square of distances to guarantee
the uniformity of the distribution. Applying this metric to
two arbitrary adjacent frames, 
H6� p�� r and 
H6� p���= < r , in the
interpolated sequence, we see that:U # 
H6� p�� r # 
H6� p���= < r $ �f t tr * * n^wyxzw @N. > � . ��= < , h , 7N{}|&| [[ Q ��= < @ Q � [[ X # (16)

for any
U
. We now see that the entities in (16) are constants

for any
U

as follows: . > � . ��= < � 	 .
(17)[[ Q ��= < @ Q � [[ � E� ��� � [[ Q [[ C (18)

Additionally, it can be shown that in method#1 the distance
between any two adjacent frames is the same. The entities in
the metric of method#1 are:. > � . ��= < � 	 .

(19)[[ Q ��= < @ Q � [[ � [[ 	 . � :=< 	 Q [[ � [[ 	 Q [[ # (20)

for any
U
, and the last equality is a result of the fact that

rotation matrices preserve the vector 2-norm.
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Fig 2.8 Result of frame interpolation (method #1)

(a) Whole view

(b) Top view (along z-axis)
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Fig 2.9 Result of frame interpolation (method #2)

(a) Whole view

(b) Top view (along z-axis)

(a) Method # 1 (b) Method # 2

Fig. 2. Result of Frame Interpolation

III. EXAMPLE APPLICATION:
MANIPULATOR DESIGN PROBLEM

A. Definition of D-ARM with Actuator Categorization

For robotic manipulation, actuators are key components. Ac-
tuators can be recognized as belonging to one of the following
two kinematic categories: the first one is continuously position
controllable and accepts a continuous range of input command
values. We denote this type of actuator as a “Continuous-
Range-of-Motion Actuator” [6], or “Continuous Actuator.”
The other kind of actuator has only a finite number of discrete
stable positions, and its input command range is discrete, as
well. We denote this type of actuator as a “Discrete-Range-
of-Motion Actuator”, or “Discrete Actuator.”

TABLE I

ACTUATOR AND MANIPULATOR CATEGORIZATION

Stable state
Actuator Example = Input Manipulator

command

Continuous Servomotor Continuous range C-ARM

Solenoid,
Discrete Pneumatic Discrete range D-ARM

cylinder

Based on the actuator categorization shown above, we
define a class of manipulators called the “Discretely Actuated
Robotic Manipulator (D-ARM)” or “Discrete Arm” which
is powered by discrete actuators. In particular, a “Binary
Actuated Robotic Manipulator (B-ARM)” or “Binary Arm”
is one with actuators that have only binary stable states. The
categorization of D-ARM should be recognized as a general-
ization of the binary arm concept presented by Chirikjian [7].



Further, in contrast to D-ARM, let us call a manipulator
a “Continuously Actuated Robotic Manipulator (C-ARM)”,
or “Continuous Arm”, if the manipulator uses continuous
actuators, as most standard robotic systems do.

B. Examples of D-ARM

One of the most fundamental examples is shown in Fig. 3.
The 2D (two dimensional) B-ARM that has three bi-stable
actuators is activated according to a three-digit binary number.
The left (right) actuator is associated with the most (least)
significant bit of the binary number, and the center actuator
corresponds to the middle one. The binary bit “1” (“0”) means
full extension (contraction) of the actuator. By changing the
binary number given to the controller, one of eight ( � t w )
possible configurations of the 3-bit B-ARM can be selected,
and this means that one of eight possible frames of the end-
effector can be reached with a certain binary number by the
B-ARM.

The discussion above is also applicable for the 3D case
in a similar manner. Fig. 4 shows a 3D B-ARM example.
Total of 68.7 billion ( � �����

) end-frames are “reachable” by
the B-ARM that consists of six stewart-type binary platforms.
General � -state (multi-state) actuator case is also the scope of
the discrete actuation paradigm as shown in [8].

One of the most significant kinematic phenomena of D-
ARMs is the discreteness of both input range and end-effector
frames as shown above.
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Fig 1.1 An example D-ARM (3-bit B-ARM)
Fig. 3. An Example D-ARM (3-bit 2D Binary Parallel Platform)

C. Advantages and Applications of D-ARM

While discrete actuators are the key components of D-
ARMs, they are also widely used as stand-alone motion
sources in various applications. The variety of those applica-
tions originates from the following significant characteristics
of discrete actuators:

Fig. 4. An Example D-ARM (6 � 6-bit 3D Binary Parallel/Serial Hybrid
Arm)

(1) Stability at each state without feedback loop
(2) High task repeatability
(3) Mechanism simplicity, including kinematic parameter

adjustment (e.g., stroke stopper for a pneumatic cylin-
der)

(4) Minimal supporting devices, especially feedback sys-
tems

(5) Low cost and small volume due to (3) and (4)

Each state of a discrete actuator is mechanically stable
because of simple internal mechanical constraints of parts, and
the range of motion of a discrete actuator is also determined
mechanically. The constraint is stable without an extensive, or
even any, feedback loop (4). This results in the fundamental
characteristics of discrete actuators: high stability (1) and
high repeatability (2) which are mainly governed by the
dimensional accuracy of the actuators parts. All of these
characteristics of discrete actuators directly result in those of
a D-ARM which is composed of discrete actuators.

Reconsidering continuous actuators from the point of view
of cost efficiency, they seem to be “overkill” [9] when a
task defines start/goal end-effector frames but the trajectory
is less important as long as it is bounded. Conversely, discrete
actuators could be a sufficient and cost effective solution for
such a playback task if they have the ability to easily change
kinematic parameters, such as stroke length for a cylinder.
One of the most recent attempts to utilize the advantages
of the discrete actuation can be found on the researches for
robotic planetary explorers [10]. The mobile robot employs
binary actuators to achieve a light weight and durable system
with a simple and thus reliable controller, which are the same
advantages of the discrete actuation system stated before.



D. kinetic synthesis problem

One of the most fundamental synthesis issues for manipu-
lator design is to determine its kinematic parameters in order
for reaching all the given desired frames.

In order to solve the design problem, several studies has
been performed for B-ARM [7], [9], [11]. Such solutions,
however, are intended to handle a positional kinematics only.
The proposing kinematic synthesis process in this section deals
with the desired end-effector orientations as well as the desired
positions as follows:

Given a D-ARM (base-line design) and finite sets of
desired positions and orientations of the D-ARM’s
end-effector (desired frames:

H
��� ' ����� ��� , where� �Jt �"T � for 2D(3D) case), determine kinematic

parameters (the vector
%

) of the manipulator.

The design parameter
%

could be the link length for prismatic
joints, or rotational angle for revolute joints of the manipulator.
Note that this set of inverse kinematics problems becomes
now on the Special Euclidean group,

����� ��� , and that it is
an extension of the previous B-ARM researches that discuss
one on the Euclidean space, ��� .

The flowchart of the proposing design process is shown in
Fig. 5. The conceptual framework of the proposing synthesis
method to solve the kinematic synthesis problem is based on
an iterative computation with a numerically obtained Jacobian
matrix of the given D-ARM and its weighted generalized
inverse matrix.

Main�Loop:�
�

Computation�of�δa�for�each�d�=�1,�...,�ndiv�
(�∆a  ==== Σ�δa�)�

Inputs:�
Baseline�Design�(D-ARM�with�Set�of�Kinematic�Parameters:�a)�

Pairs�of�Desired�End-Effector�Frame�with�Discrete�Number�

Frame�Interpolation:�

Output:�
agoal�=�a�+�∆a�that�Satisfies�the�Given�Desired�End-Effector�Frames�

Fig. 5. Flowchart of the Proposing Kinematic Synthesis Method

In the iterative computation, the end-effector frame of a D-
ARM is gradually shifted from its initial value to the given
desired one, and at each step the kinematic parameters of
the arm are updated in a computation that depends on the
manipulator Jacobian matrix.

Now, a sequence of frames,

H�� p�� r ' �����"T � for
U �Ea# CACAC #�� ��� � 7 E between the initial end frame,

H�� p < r , and the
desired frame,

H�� p 798;: <>= < r , can be obtained with the method
shown before, where

� ��� � is the number of the fixed-steps
in the interpolation. As discussed, the difference between any
adjacent two frames,

H�� p�� r and

H6� p���= < r , can be small enough

by choosing appropriate
� ��� � for the frame sequences, i.e., the

following condition holds:
H :=<� p�� r H6� p���= < r � n # (21)

for
U � Ea# CACAC #�� ��� � , where n is the identity matrix.

The vector
%

represents a set of initial kinematic parameters.
The vector

%
has the following structure for a general D-ARM

with
�����

-state actuators:% � IJK % <...% 7��
	 MFKO # (22)

where
% � 'R� 7��
��	 is the set of kinematic parameters of the

� ���
state of the discrete actuators, and

�������
denotes the number of

actuators.
In the main loop, focusing on a certain pair of initial end

frame and desired frame with an assigned discrete number, we
calculate

	 % p�� r such that the end-effector frame changes from

H6� p�� r to

H6� p���= < r for a certain
U
. In order for the renewal of% p���= < r , a method to compute

	 % p�� r from

H6� p�� r , H6� p���= < r , and% p�� r is required as following:% p���= < r�� % p�� r 7 	 % p�� r C (23)

The summation of
	 % p�� r composes � % in the flowchart. This

iterative computation can be done associated with the forward
kinematic function of the manipulator as shown below.

The forward kinematics for a D-ARM can be written in the
form:

H6� p�� r ���
� �"% p�� r �GC (24)

For simplicity, the subscripts of �
�

and
% p�� r will be omitted

in the sequel. Letting
������� � � ����� D �������

, the small change
from

H6� p�� r to

H6� p���= < r is described as following:H :=<� p�� r H6� p���= < r � n 7 7! "��#�$% � & < � �"% � :=<�' �'�( � 	 ( � C (25)

Letting
	 Q � be the small change through the sequence of

interpolated frames for the ) ��� desired frame, together with
(25), we have:	 Q � � # H :=<� p�� r H6� p���= < r @ n $+*,.-

� 	 %d#
(26)

where
-
�

is the Jacobian matrix for the ) ��� desired frame.
The set of the obtained (26) for every ) at a certain

U
, can

be combined into one big equation as following:IJJJK
	 Q <	 Q X

...	 Q 70/ #�$ MFKKKO � IJJJK
- <- X
...- 70/ #�$ MFKKKO 	 %

,.- 	 %d#
(27)

where
-

is the “concatenated” Jacobian matrix of the given D-
ARM at a certain

U
in the main loop. The rank of the system of



equations in (27) can be changed by the kinematic case of the
original manipulator, i.e., sufficient, insufficient, or redundant.

The final result of the main loop in the flowchart in Fig. 5
is the following equation from (27):	 % � -�� 	 Q # (28)

where
�

denotes the weighted generalized inverse matrix.
According to the case of manipulator kinematics, the equation
either has a unique, no, or an infinite number of exact solutions
in general. No matter which kinematic case the system belongs
to, we can solve the system of equations by utilizing the idea
of a weighted generalized inverse matrix.

E. Simulation Results

Series of simulations are performed to demonstrate the
feasibility of the algorithm discussed in the previous section.
Through these simulations, it is found that the proposed syn-
thesis algorithm is applicable to a wide variety of applications,
and that the numerical errors were small enough and the
computational time is short enough to design a real D-ARM
even with a personal computer.

A typical example of the 3D sufficient case is shown in
Fig. 6 and 7. Each link length of the manipulator is set asE�� ��� . The former figure shows the baseline design, and the
latter one shows the final result of the kinematic synthesis
process with

E � |
steps in the frame interpolation. The order

of the position and the orientation error was less than
E � :�� � ���

and
E � :�� � U �	��� , respectively with

E � � steps in the interpolation.
The order of the computation time was

E � � � � �"!
� with PC
environment. These values of errors are also small enough,
from the viewpoint of the dimensional accuracy of mechanical
parts, to apply this synthesis method for actual D-ARM design
even in the 3D case. According to the complexity analysis, the
order of

� ��� � dominates the computation time for ordinary D-
ARM system.
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Fig. 6. Baseline Design Example (3-module 3D B-ARM, Sufficient case)
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