Generation of Binary Manipulator Workspaces and Work Envelopes

Imme Ebert-Uphoff* Gregory S. Chirikjian'
Department of Mechanical Engineering

Johns Hopkins University
Baltimore, MD 21218

Abstract

A binary manipulator is a discrete manipulator whose ac-
tuators have only two states. We present an efficient algo-
rithm for the approximation of workspaces and work en-
velopes for binary manipulators of highly actuated struc-
ture. The approximation describes not only the shape of
the workspace, but also its local point density, i.e. the dis-
tribution of the number of points per unit area/volume.
This characteristic of manipulator workspaces and work
envelopes is of great practical importance for binary ma-
nipulators for a variety of problems, e.g., inverse kine-
matics and obstacle avoidance.

The method extends naturally to the continuous range-
of-motion case for any manipulator that can be approx-
imated as a binary manipulator with a sufficiently large
number of bits. This is particularly useful for manipula-
tors with low resolution, since the point density provides
a measure for the local positional accuracy of the end-
effector.

1 Introduction

The traditional assumption in robotics is that mecha-
nisms are actuated with continuous-range-of-motion ac-
tuators such as d.c. motors. However, there are many ap-
plications of mechanisms and robotic manipulators that
require only discrete motion. For these tasks, continuous-
range-of-motion machines are overkill.

A Dbinary actuator is one type of discrete actuator
which has only two stable states (denoted ‘0’ and ‘1°).
As a result, binary manipulators have a finite number
of states. Major benefits of binary actuation are that
extensive feedback control is not required, task repeata-
bility can be very high, and two-state actuators are gen-
erally very inexpensive (e.g., solenoids, pneumatic cylin-
ders, etc.), thus resulting in low cost robotic mechanisms.

In principle, an analogy can be made between con-
tinuous vs. binary manipulators and analog vs. digital
circuits. In the history of electronics and computing,
digital devices replaced many of their analog counter-
parts because of higher reliability and lower cost - ex-

*Graduate Student
t Assistant Professor, Presidential Faculty Fellow

actly the same reasons for developing a binary paradigm
for robotics [1].

The goal of this paper is to develop an efficient al-
gorithm for the approximation of binary manipulator
workspaces and work envelopes for highly actuated struc-
tures. The workspace, W C IRY, is the set of all posi-
tions reachable by the end-effector. A work envelope is
the boundary of the smallest simply connected subset of
IRN which contains the whole manipulator structure un-
dergoing all configurations of the manipulator.

The importance of manipulator workspace properties
for design considerations is well known, e.g., [2, 3], as is
the importance of manipulator work envelopes, especially
in the context of obstacle avoidance.

In this paper, we explicitly consider binary manipu-
lator workspaces and work envelopes. The methodology
can be adjusted to analyze general discrete manipulators,
and extends to the continuous range-of-motion manipula-
tors if they can be approximated as binary manipulators
with a large number of bits. Note that the approximation
describes not only the shape of the workspace, but also
its local point density (precise definition to follow). For
manipulators with low resolution this is useful, since the
point density provides a measure for the local positional
accuracy of the end-effector, in this context see [4, 5].

The number of configurations that a binary manipula-
tor can attain is of the form 2" where n is the number
of binary actuators. In order to reach a large number of
points n tends to be large for binary manipulators. It
is easy to see that for n large enough (e.g., n & 40) the
explicit computation and storage of all workspace points
becomes impractical. Therefore an algorithm to deter-
mine binary manipulator workspaces and work envelopes
for large n becomes necessary.

A schematic of a highly actuated prototype is shown in
Figure 1 for two of its almost thirty three thousand (2'9)
end-effector positions. This particular design is a variable
geometry truss manipulator. As currently configured,
this manipulator consists of 15 identical prismatic actu-
ators, each with two stable states: completely retracted,
0, or completely extended, 1. The actuator lengths here
are respectively 3/20 and 5/20. The platform widths are
each 1/5. For this protoype it is still possible to calculate
all points of the workspace explicitely by enumerating all
configurations (Figure 2). This workspace will be used

001110001110001 110001110001110

Figure 1: Sample configurations for a manipulator
with 5 cascaded platforms

Figure 2: Workspace for a manipulator with 5 cas-
caded platforms

for a comparison with the output of the algorithm pre-
sented in this paper.

The remainder of this paper is organized as follows:
Section 2 presents the necessary background and def-
initions needed to formalize our approach. Section 3
presents the workspace mapping algorithm (our approx-
imation algorithm for binary manipulator workspaces).
Section 4 presents numerical examples and applies the
algorithm to the development of work envelopes. Section
5 is the conclusion.

2 Background Concepts and Def-
initions

The goal of this section is to provide background needed
to develop an efficient algorithm for the approximation
of binary manipulator workspaces and work envelopes.
Intuitively, the approach presented here is to break up
the workspace into pixels, and calculate how many end-
effector positions in each one are reached. This is done
efficiently with an algorithm that superposes the contri-
butions of each section of the manipulator by performing
recursive homogeneous transformations starting at the
end-effector and terminating at the base. In a sense, the

whole workspace is generated by repeatedly performing
a discrete convolution product of the workspaces associ-
ated with individual segments of the manipulator. The
computation of the work envelope is also a superposition
of the workspaces of subsections of the manipulator, but
these computations start at the base and work upwards.

The computations required by our algorithm to gen-
erate the workspace for a manipulator composed of m
concatenated modules of a given module design, are of
order O(m), where the slope depends on the design of
the module. The work envelope is generated using m
runs of the workspace algorithm, and therefore requires
O(m?) computations.

The quantity calculated by the algorithm is called the
point density of the workspace and will be represented
by something called a density array (precise definitions
to follow). The latter is a computer representation of
the number of end-effector points for each pixel of the
workspace.

The following subsections present the necessary back-
ground and definitions to formalize our approach. This
background is necessary because the workspace descrip-
tion for a binary manipulator is different from that of
standard continuous range-of-motion manipulators. Sub-
section 2.1 presents notation and definitions. Subsection
2.2 discusses the storage of information needed for the
mapping algorithm.

2.1 Concepts for Discrete Workspaces

The workspace of a continuous range-of-motion manipu-
lator is often described by its boundary, all points in the
interior of which can be reached. For a binary manip-
ulator the situation is quite different since only a finite
number of points can be reached. Therefore not only the
boundary of the workspace is important, but also the
distribution of the points inside this boundary.

From now on we assume that the manipulator
workspace W (a subset of IRY) is divided into blocks
(pixels) of equal size. The distribution of the points is
described as follows: The point density p assigns each
block of W C RN the number of points within the block
that are reachable by the binary manipulator, normalized
by the volume of the block:

reachable points in block

p(block) =

unit volume/area

The point density serves as a probabilistic measure of
the positional accuracy of the end-effector in a certain
area of the workspace. The higher the density in the
neighborhood of a point, the more accurately we expect
to be able to reach the point.

The density arrayis an N-dimensional array of integers
(D(,7) for N =2 or D(¢,j, k) for N = 3) in which each
element corresponds to one block of the workspace and
contains the number of reachable points in this block.
The density array provides a discretized version of the

workspace from which point density is trivially calculated
(multiplication with a constant). Furthermore, the shape
of a workspace is approximated by all blocks for which
the corresponding entry in the density array is not zero.

The following definition specifies the type of manipula-
tor for which our algorithm is used. A macroscopically-
serial manipulator is a manipulator that is serial on a
large scale, i.e. it can be represented by a serial collec-
tion of modules where each module is mounted on top of
the previous one. Modules are numbered 1 to B, from
the base to the end of the manipulator. Closed loops may
exist in each module, but macroscopic loops are not per-
mitted. Note: any module partitions a macroscopically-
serial manipulator into distinct segments.

The " (upper) intermediate workspace, Wi, of a
macroscopically serial manipulator composed of B mod-
ules is the workspace of the manipulator segment from
module i + 1 to the end-effector. The i** (lower) par-
tial workspace, W, of the same manipulator is the
workspace of the segment from the base to module 7. To
visualize this, imagine that the manipulator arm is cut
between module ¢ and module i+ 1. The upper part (the
most distal B —i modules) are considered as a manipula-
tor on its own, with its base in the separating plane. The
workspace generated by this manipulator segment is the
1th intermediate workspace of the whole structure. The
lower part (the first i modules) determine the ** partial
workspace.

The workspace mapping algorithm is based on the
sequential calculation of the intermediate workspaces,
starting at the end-effector and ending at the base. The
fact that these workspaces are the intermediate results
of the algorithm is responsible for the naming. The par-
tial workspaces are only used for the generation of work
envelopes.

Each module has a frame attached to its top. The
frames are numbered such that frame 7 is on top of mod-
ule 7, and frame 0 is the frame at the manipulator base.
The number of independent binary actuators in module
i is denoted J;. Therefore there exist 27¢ different com-
binations of binary actuator states (and corresponding
configurations) for the i*» module. Each module i with
Ji binary joint angles, forz = 1, ..., B will be represented
by the configuration set:

CZ' = {(Rl,bl), (Rg,bz), ey (RZmeZJz)}a

where R; € SO(N) are rotation matrices and b; € RY
are translation vectors for j = 1,...,27¢. These pairs
describe all possible relative orientations and positions
of frame ¢ with respect to frame i — 1.

2.2 Efficient Representation of Work-
spaces
Our algortihm is based on determining intermediate

workspaces in sequence. Therefore a conceptual tool is
needed to efficiently store intermediate workspaces for

future use. Efficient representation is critical because in-
termediate workspaces may contain many points, e.g., in-
termediate workspaces generated by modules composed
of binary Stewart platforms can easily have millions of
points.

We use the point density array defined in Subsection
2.1 to store all intermediate workspaces. To restore or
generate a workspace from a given density array some ad-
ditional information, e.g. size and volume of each block,
is needed. For this purpose, we define the following: The
density set associated with an intermediate or partial ma-
nipulator is a computational structure containing the fol-
lowing information:

e A reference point x¢ € IR™ which defines a point of
the workspace in real coordinates. Here xq is chosen
to represent the middle point of a workspace. That
is, each component of xg is the middle of the interval
bounded by minimal and maximal coordinate values
of the workspace.

block di-

e The resolution of the discretization, i.e.
mensions given by Ax = [Az, Ay, Az]T,

e The dimensions/length of the array in each direc-
tion, either in real (workspace) coordinates, xr =
[z1,yr,z.]T, or as integers, ir,jr,kr, giving the
numbers of pixels for the particular resolution,

o The density array, D(3, j, k), of the workspace, which
is a N-dimensional array of integers representing the
point density of the workspace multiplied by block
volume.

We denote a density set as
D ={D,x0, Ax,xL}.

Note that the orientation of the end effector is not stored
since we only discretize in the workspace translational
coordinates.

We denote the density set of the i*" intermediate
workspace as D!, and the density set of the i'* partial
workspace as DF. In the special case when the manip-
ulator is composed of identical modules, D! = DF | but
generally this will not be the case.

3 The Workspace Mapping Algo-
rithm

The generation of manipulator workspaces and work en-
velopes is primarily a matter of generating the partial
and intermediate workspaces and convolving them in the
appropriate way. In this section, the workspace mapping
algorithm, which is an efficient way of generating these in-
termediate and partial workspaces, is presented. Subsec-
tion 3.1 presents an overview of the workspace mapping
algorithm. Subsection 3.2 describes the implementation

of one iteration of the algorithm in detail. Further details
of the implementation, an analysis of the computational
complexity of the algorithm in terms of time and mem-
ory and the error resulting from the discretization can be

found in [6].

3.1 An Overview of the Algorithm

The workspace mapping algorithm determines intermedi-
ate workspaces starting at the end-effector and ending at
the base. At each step we climb down one module, main-
taining an approximation of the intermediate workspace
corresponding to the segment of all modules above the
current one. In this subsection we explain how the inter-
mediate workspace at a given level has to be transformed
to yield the next intermediate workspace including one
more module.

Throughout this section B denotes the number of
modules of the manipulator under consideration. Index
s denotes the sth iteration of the mapping algorithm,
(s =1,2,...,B), index m denotes the mth module con-
sidered in the sth step. The algorithm starts with the
last module and propagates backwards. Hence the mod-
ule number m considered at step s of the algorithm is
m(s)=B—s+1, s=1,2,...,B,ie. mis decreasing,
while s is increasing.

By our definition W7 denotes the intermediate
workspace from the top of module m and W/ _, is the
intermediate workspace from the bottom of module m.
These two workspaces are related to each other through
the set Cy, of all possible configurations of module m:
Cr = {(R{™. (™), (RE™, B, . (RET) D))
One iteration of workspace mapping determines the
density set DI _, (representing the point density of
workspace W, _,) from given point density D2, and con-
figuration set Ch,.

A schematic of this procedure is shown in Figure 3.
To simplify the graphical representation a manipulator
with only four states per module is considered. Figure
3(a) shows at the left the four configurations (Cy,) of the
module under consideration in iteration s in terms of the
translation and rotation of a frame. The second input
to the procedure is the density set D} . It is represented
by one rectangle that is divided into blocks of equal size
with an integer associated to each of them. An additional
reference point represents the position of the center of
the rectangle with respect to the origin. The way the
density sets (rectangles) are superposed depends on the
configurations of the module, as shown on the right of
Figure 3(a). An introduction of a wider grid on top of
the superposed density sets is shown in Figure 3(b). It
only remains to add all entries in each pixel of the new
grid to get the output of this iteration: density set DI ;.

As can be seen in the picture one iteration only con-
sists of a set of homogenous transformations and the su-
perposition of the results. On a more abstract level this
can be seen as a discrete convolution determined by the

configurations C,,, applied to the input D] .

(a) Configurations of one module and resulting overlay
of density sets

e e
5

=
o
A

o
o

—

(b) Summing the points in the new grid leads to the
next density set

Figure 3: Schematic of one recursion of the workspace
mapping algorithm

3.2 Implementation

We start the discussion of the details with a summary
of the algorithm: The algorithm starts with the density
set Dé. The first iteration determines DJIB_I, the second
determines DJIB_2, etc. After B iterations the algorithm
terminates providing the point density D} of the com-
plete manipulator arm.

The first implementation detail is the question of the
intermediate workspace to start with: Workspace W} is
the first workspace to be considered. It describes the
location of the end-effector relative to the top of the
most distal module. In general this is simply one point,
typically the location of the center of the end-effector.
However, for the purpose of work envelope generation we

(Z»(Lm—l) 7 j(Lm—l) 7 k(Lm—l)) .

(e) Determine the array indices, (iém_l),jo ,

1. Estimate size and location of intermediate workspace W7 _,. Based on this information:
(a) Choose the dimensions of a block in the new density array: (Ax(m_l),Ay(m_l) , Az(m_l)).

(b) Based on these dimensions determine the number of fields of the density array in each direction:

(c) Allocate sufficient memory for this density array and initialize it with zeros.

(d) Determine the coordinates of the middle point of the new workspace: (xo Yo

(m—1) k(()m—l)

(m—1)

(m—1) 7 Zém—l)) .

), of the middle point of the new array.

transformation to the density array D,

2. For all configurations (Rl(m),bl(m)) ECH, (I=1,..., 2J’”,) apply the corresponding homogeneous

For all indices (i,7,k) for which the entry DJ,(i,5,k) of the density array Dy, is mnot zero:

(
(

a) Calculate the vector x = (z(1), y(j), z(k))T from the array indices (1, j, k).
b) Calculate the coordinate vector x = Rl(m)x + bl(m) eWwli_,.

)
)

(c) Find the array indices (il,jl, kl) of x in the new array.
)

(d) Increment the entry of the block of the new array by the corresponding entry of the old array:

Dl i k) e (DR K + DGR

Figure 4: Implementation of one recursion of the workspace mapping algorithm

choose W} to be the discretized shape of the end-effector
including the upper part of the last module. In any case
density set Dé can easily be determined from this infor-
mation.

A schematic of one iteration is given in Figure 3 and
was explained in the previous subsection. Figure 4 lists
the major steps of the implementation of one iteration
and is further explained below.

The first block in Figure 4 describes the administra-
tional part of an iteration: an estimate of size and lo-
cation of the intermediate workspace to be calcaluted is
needed, the resolution has to be chosen and memory has
to be allocated accordingly. For details we again refer
the reader to [6].

To estimate size and location of workspace WL _; all
27m homogeneous transforms are applied to the eight cor-
ners of the density array DI (four for the planar case).
The resulting maximal and minimal values in each coor-
dinate axis provide a conservative estimate for the bound-
aries of the next density array, D! _,. An additional
reduction procedure is implemented to reduce a result-
ing memory overhead after the workspace is calculated.
The computational complexity for the estimate and the
reduction procedure are not significant compared to the
essential mapping process described in the second block.

The second block in Figure 4 describes the implemen-
tation of the homogenous transformations. They are im-
plemented by steps (a) - (d), in the interior of the lower

block, which are performed for each configuration and
for all indices corresponding to non-zero entries in DY .
Hence it is the main contribution to the computational
complexity of the algorithm. It is therefore worthwhile
to discuss these steps in more detail:

We consider only one iteration. To eliminate indices
that complicate the presentation the following notation
is used. All variables belonging to workspace W/ or den-
sity set DI have names without superscript, while vari-
ables belonging to WL _, or D, _; have a superscript ’.
Furthermore we restrict the description to one particular
configuration (R,b) = (Rl(m),bl(m)) € Cp.

Now we consider one particular block of the input den-
sity set DI, specified by the indices (i,j, k). The cor-
responding entry of the density array is denoted d =
DI (i, j, k). The operations to be performed are:

(a) The middle point of block with index (2, j, k) is taken
as the refernce for the block. Its coordinates in the
workspace are:

Az 0 0 1 Xo — 1gAx
X = 0 Ay 0 J 1+ vo—JoAy
0 0 Az k 20 — koAz

(b) The homogenous transformation corresponding to
configuration (R, b) is applied to this reference point:

'
x
! '

=Rx+b

i

z

(c) The indices ('l , jl,kl) of x' for the output density set
DI are:
m—1 .

il(:vl) round (ZEJ + ()/Aml)
i) | = | round (Jé +(y - yo)/Ay')
k(z) round (ké) + (E))/Azl)

(d) Finally the entry of block (i’,jl,kl) in density set
DE _| is incremented by d = DI, (i, j, k).

Note, that the entries of the same density array D! _;
are changed while handling all { = 1,...,27™ configura-
tions, without reinitializing. This implements the super-
position (or convolution) of all parts of workspace W, _;.

Steps (a)-(c) are affine transformations, the last one
followed by a rounding procedure. This can be repre-
sented as one composite affine transformation followed by
rounding which considerably improves the performance
of the operation. The described procedure is performed
in constant time for each block. Choosing a fixed number
of pixels for all intermediate workspaces, has shown good
performance. As a result the error grows quadratically in
the number of modules B with a very small factor. The
amount of required memory is linear in the number of
modules as is the time requirement, see [6].

4 Applications and Examples

In this section we present examples of workspaces gener-
ated using the workspace mapping algorithm, and show
how the algorithm has to be altered to generate work en-
velopes. In these examples the algorithm is applied to
a binary truss manipulator. Each module has the same
structure as the modules of the manipulator described in
Section 1 and illustrated in Figure 1 and 2. Only the
number of modules varies.

Figure 5 (a)-(c) show the results for a binary truss ma-
nipulator with 5,8 and 14 platforms respectively, each
with actuator strokes stated earlier. Figure 5 (a), which
presents the workspace of the manipulator with 5 plat-
forms, can be compared to the exact results shown in
Figure 2. Note, that the length scales of the figures differ
for different numbers of platforms.

In order to generate the work envelope, we modify the
algorithm by choosing a different start workspace than
before. Previously a single point was used representing
the center of the end-effector. Now we choose a contour
that represents the shape of the end-effector. Here we
simply use a line representing the upper base of the most
distal module. Application of the algorithm sweeps this
line (contour) through the plane in discrete steps corre-
sponding to all possible configurations. The algorithm
can also be modified to allow smaller steps of the sweep-
ing procedure than given by the discrete configurations.
This way a continuous sweeping contour is generated. A

j* 0.016853

y=
°
o
2

-1.17 -0.84 -0.50 -0.16 0.17 0.51 0.

x=1i*0.016853

Figure 5(a): Density of a manipulator with 5 mod-
ules (15 Bits), r5 = 0.018858

78

1.99

1.52

j * 0.029404

y=

18 T1.39 0,80 021 0.38 0.97 T

X =i* 0.029404

Figure 5(b): Density of a manipulator with 8 mod-
ules (24 Bits), rg = 0.041790

55

j * 0.059319

y=

-3.44 -2.25 -1.06 0.12 1.31

Xx=1i%* 0.059319

2.50 3.09

Figure 5(c): Density of a manipulator with 14 mod-

ules (42 Bits), r14 = 0.146833

further simplification is that the number of points for
each pixel is not stored, but instead whether or not it is
empty (0 or 1).

To calculate the work envelope of a manipulator con-
sisting of m modules, this modified version of the map-
ping algorithm is applied to the partial manipulators
composed of m, m — 1, ..., 1 modules and the result-
ing partial workspace are superposed. The result will be
a fairly reliable representation of the work envelope. Fur-
thermore, if the modules are all the same, the algorithm
has to be applied only once, since DI = DP .

Figure 6 shows the work envelope for the case when
the joint stops are closer together than in the previous
examples, (3/20,4/20), and the width of each platform is
chosen as before (4/20).

5 Conclusions

This paper has presented an efficient algorithm for gen-
erating approximate workspaces and work envelopes of
robotic manipulators with binary (two-state) actuators.
Examples were provided for the case of a planar binary
variable geometry truss with up to 20 modules. While the
focus of this paper was binary manipulators, the method
is applicable to general manipulatorsif their joint range is
discretized and represented using an appropriate number
of bits.

j * 0.050000

y=

-1.43 -0.93 -0.43 0.08 0.58 1.07 1.48
x=i* 0.050000

Figure 6: Work envelope of a manipulator with 9
modules (27 Bits)

References

[1] G.S. Chirikjian. A binary paradigm for robotic ma-
nipulators. In Proceedings of the 1994 IEEE Interna-
tional Conference on Robotics and Automation, San

Diego, CA, May 1994.

[2] J. Rastegar and P. Deravi. The effect of joint motion
constraints of the workspace and number of configura-
tions of manipulators. Mech. Mach. Theory, 22(5):401
- 409, 1987.

[3] R. G. Selfridge. The reachable workarea of a manip-
ulator. Mech. Mach. Theory, 18(2):131 — 137, 1983.

[4] Alok Kumar and Kenneth J. Waldron.
plotting of surfaces of positioning accuracy of manip-

ulators. Mech. Mach. Theory, 16(4):361 — 368, 1980.

Numerical

[5] Dibakar Sen and T.S. Mruthyunjaya. A discrete state
perspective of manipulator workspaces. Mech. Mach.

Theory, 29(4):591 — 605, 1994.
[6] I. Ebert-Uphoff and G.S. Chirikjian. Efficient

workspace generation for binary manipulators with
many actuators. Journal of Robotic Systems, June
1995 (in press).

