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Abstract—A quantity of importance in coherent optical com-
munications is the probability density of a filtered signal in the
presence of phase noise (PN). The Fokker–Planck (FP) approach
has been recognized as a rigorous way to describe these statistical
properties. However, computational difficulties in solving these
FP equations have prevented their widespread application. In
this paper, we present a new and simple computational solution
method based on techniques from noncommutative harmonic
analysis on motion groups. This proposed method can easily solve
all the PN FP equations with any kind of intermediate frequency
filter. We also present a new derivation of PN FP equations from
the viewpoint of stochastic processes.

Index Terms—Coherent optical communications, Fokker–
Planck (FP) equations, motion groups, phase noise (PN), sto-
chastic processes.

I. INTRODUCTION

LASER phase noise (PN) puts strong limitations on the
performance of coherent optical communication systems.

Evaluating the influence of laser PN is essential in the system
design and optimization, and has been studied extensively in
the literature. Analytical models that describe the relationship
between PN and the filtered signal are found in [1], [6], [7],
[10], [13], [18], and [22]. In particular, the Fokker–Planck (FP)
approach represents the most rigorous description of PN effects
[5], [10], [18], [22]. In this approach, the probability density
function (PDF) of the filtered signal can be obtained as the
solution of FP equations.

There are two types of PN FP equations. One is a three-state-
variable (i.e., 3-D) FP equation which provides complete statis-
tical information on both the filtered signal and PN. According
to the literature cited above, it is extremely hard to solve this
3-D FP equation. To circumvent this computational complexity,
a two-state-variable (i.e., 2-D) FP equation is derived by sup-
pressing the dimension on PN. By only considering a finite
time integrator (integrate-and-dump filter), a number of papers
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have attempted to solve this 2-D FP equation using a variety of
techniques, including series expansions [6], numerical methods
based on discretizing the domain [19], approximation methods
[18], and analytical methods [22]. All of them are based on clas-
sical partial differential-equation solution techniques and have
difficulties to solve the FP equations for other types of interme-
diate frequency (IF) filters. The computational difficulty of this
FP approach has prohibited its effective and broad application.

In this paper, we present a new computational method that
can easily solve both 2-D and 3-D FP equations with any
kind of IF filters. Our method relies on techniques from group
theory (and, in particular, noncommutative harmonic analysis
on groups, as developed in [3]). Using these techniques, these
FP equations are converted into a system of linear ordinary
differential equations (ODEs) with constant or time-varying
coefficients in a generalized Fourier space. These ODEs can
be easily solved by either a matrix exponential (for constant
coefficients) or Runge–Kutta integration (for time-varying
coefficients). Our method removes the computational difficulty
of the FP approach.

We believe that the powerful techniques of noncommutative
harmonic analysis are efficient and natural for this problem. We
also believe that by introducing the community of researchers
working on optical communication systems to techniques of
noncommutative harmonic analysis, other computational and
analytical problems which currently appear to be intractable
may also lend themselves to straightforward solution.

II. PHASE NOISE FOKKER–PLANCK EQUATIONS

The phase of the light emitted from a semiconductor laser ex-
hibits random fluctuations due to spontaneous emissions in the
laser cavity. This phenomenon is commonly referred to as PN.
Because there are only about photons in the active region
of a semiconductor laser, the phase of the light is significantly
perturbed by just one spontaneous photon. To evaluate the in-
fluence of PN on coherent optical communication systems, the
main issue is to find the statistical characterization of the output
of the IF filter corrupted by PN [6], [10]. The FP approach is an
accurate way to provide such information.

The FP approach has been proposed by [1], [6], [8], [9],
and [22]. They derived FP equations for a specified IF filter,
the finite-time integrator. Using stochastic methods, we derive
generalized equations for any IF filter with a bounded impulse
response.

The IF filter part of a coherent receiver is shown in Fig. 1,
where is the input signal to the IF filter which is corrupted
by PN, is the impulse response of the IF filter, and is
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Fig. 1. IF part of a coherent receiver.

the output of the IF filter. Using the equivalent baseband repre-
sentation and normalizing it to unit amplitude, the input signal
can be written as [10]

where is the PN with zero mean and variance of . The
parameter is the phase-diffusion coefficient, and related to the
laser linewidth by . is usually modeled as
a Brownian motion process [13]

(1)

where is unit-strength white noise. The output of the IF
filter, , is

(2)

Since PN is a random process, the reversal of the time di-
rection in does not affect the statistics of . can
be replaced by . Equation (2) can be rewritten as

(3)

Let us expand into its real and imaginary parts,
or its magnitude and phase as

(4)

From (3) and (4), we can get

(5)

(6)

In the following, we will derive the stochastic differential
equations (SDEs) first. Then we write the corresponding FP
equations.

A. 3-D SDE

Though , , and are not Markov processes, the
three-component vector process, is a Markov
vector process. From (1), (5), and (6), we can derive the SDEs
as

(7)

with initial conditions , , .

B. 2-D SDE

In many applications, the joint statistics of and [or,
in polar coordinates, and ] are of interest. It is possible
to suppress the dimension in (7) by a slight modification
of the process (3). Using a similar strategy as in [1], it can be
shown that

(8)

Let us rewrite (8) in polar coordinates as the system of equations

(9)

C. Derivation of FP Equations

Consider a system with SDEs of the form

(10)

where and . is a Wiener process.
Each component of has zero mean, are taken to be zero
at time zero, and are stationary and independent processes. The
notation is defined by

Let be the PDF for . The derivation of the FP
equation governing the evolution of for a system of the
form in (10) forced by a Wiener process can be obtained as in
[2] and [3]

(11)

is metric tensor with for Cartesian coordinates and
for polar coordinates.

1) 3-D FP Equation: Comparing (10) with (7), we see that

and
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Using (11), we can derive the 3-D FP equation for (7) as

(12)

with initial condition , being the
Dirac delta function.

2) 2-D FP Equation: Comparing (10) with (9), we see that

in polar coordinates.
The 2-D FP equations can then be derived using (10). They

are explicitly written in polar coordinates as

(13)

The initial condition is .
Equation (12) is the so-called 3-D PN FP equation, which has

never been solved by other authors. It provides complete statis-
tical information of the output of the IF filter. Equation (13) is
the simplified 2-D PN FP equation. Solving these two equations
for any type of IF filter in a general form is the main target of
this paper. The involved mathematics will be introduced first in
the next section.

III. NONCOMMUTATIVE HARMONIC ANALYSIS

Noncommutative harmonic analysis is a generalization of
Fourier analysis for functions of group-valued argument. This
mathematical tool was developed for the case of rigid-body mo-
tions by and for pure mathematicians and theoretical physicists
in the 1960s [14]. It is rarely known by engineering scholars.
In this paper, it is successfully applied to formulate and solve
problems in the field of optical communications. This section
introduces this powerful mathematical tool and some new
results that we derived.

A. Euclidean Motion Group

The Euclidean motion group is the semidirect
product of with the special orthogonal group, .1

We denote elements of as
where and . For any
and , the group law is written as

, and .
It is often convenient to express an element of as a

homogeneous transformation matrix of the form

1The group SO(N) consists ofN�N matrices with the propertiesRR =
I and detR = +1. The group law is matrix multiplication.

For example, each element of parameterized using polar
coordinates can be written as

where , , and . is a 3-D
manifold much like . We can integrate over using the
volume element [3].

B. Differential Operators Defined on the Motion Group

A function of motion takes elements of the motion group as its
arguments. The partial derivatives of a function of motion
(or the differential operators acting on functions on the motion
group) are defined as [14]

Here is the th natural basis element for the Lie algebra as-
sociated with a motion group. For the case of

For small values of , the infinitesimal motion is the
matrix exponential function. In our notation, the superscripts
and denote whether the infinitesimal motion is on
the right or the left of . Hence, is invariant under left shifts,
and is invariant under right shifts. Explicitly, we can derive
the differential operators in polar coordinates as [21]

(14)

(15)

(16)

and in Cartesian coordinates as

(17)

(18)

(19)
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The differential operators in polar coordinates are

(20)

(21)

(22)

C. Motion-Group Fourier Transform

The Fourier transform of a function of motion is an in-
finite-dimensional matrix defined as [3]

where is a volume element at , and is an infinite-
dimensional matrix function of and a “frequency” parameter

. The corresponding inverse Fourier transform (IFT) is

where is the space of all values called the dual of the group
, and is an appropriately chosen integration measure in a

generalized sense on .
For the case of , the matrix elements of are

expressed explicitly as [3]

(23)
where is the th-order Bessel function. The IFT can be
written in terms of elements as

(24)

D. Operational Properties

In analogy with the classical Fourier transform, which con-
verts derivatives of functions of position into algebraic opera-
tions in Fourier space, there are operational properties for the
motion-group Fourier transform (MGFT).

By the definition of the the MGFT and differential oper-
ators and , we can derive the Fourier transform of the
derivatives of a function of motion as [3]

(25)

where

The explicit expression of for can be derived as
follows.

The matrix elements of can be obtained from
(23) by setting , , and

The fact that

for
for

is used in the above calculation. It then follows that

(26)

The matrix elements of can be obtained from
(23) by setting , , and

It is known that

Hence

(27)

The matrix elements of can be obtained from
(23) by setting , ,

and so

(28)

IV. SOLUTIONS TO FOKKER–PLANCK EQUATIONS

The general procedure to solve FP equations is as follows.
Step 1) Restate the FP equation using the differential opera-

tors defined on the motion group.
Step 2) Apply the MGFT to convert the equation into a

system of linear ODEs.
Step 3) Solve these ODEs.
Step 4) Recover the PDF of the filtered signal using the in-

verse MGFT.
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A. Solutions to the 3-D FP (12)

Using differential operators given in (17) and (18), the 3-D
FP (12) can be rewritten as

(29)

Applying the MGFT to (29) and using the result of (25), we
can convert it to an infinite system of linear ODEs

(30)

where the coefficient matrix is

The explicit expressions for the above have been de-
rived in (26) and (27). The elements of the matrix can be
written explicitly as

Once we get the solution to the ODE (30), we can then sub-
stitute it into the Fourier inversion formula (24) for the motion
group to recover the PDF of . To get the joint
PDF is just an integration, with respect to , as

(31)

Integrating (31) over will give us the marginal PDF of
as

(32)

Equation (32) gives us a simple and compact expression for the
marginal PDF for the output of the IF filter.

B. Solutions to the 2-D FP (13)

Using differential operators given in (14), (20), and (21), the
2-D FP (13) can be rewritten as

(33)

Applying the MGFT to (33) and using the result of (25), we
can convert them to an infinite system of linear ODEs

(34)

where the matrices , , and are

The explicit expressions for the above have been de-
rived in (26) and (27).

Though numerical methods can be applied to solve (34), we
can further simplify (34) to the simplest format as [21]

(35)

where . The elements of
are of the form

The reader may notice that the coefficient matrices and
are the same. Substituting the solution to (35) into the motion-
group Fourier inversion formula (24), we can obtain the PDF

of . Equations (31) and (32) can then be used to get
the joint PDF and the marginal PDF of ,
respectively.

V. NUMERICAL RESULTS

For comparison, we first generate some results for a finite-
time integrator which has a bounded time response

otherwise
(36)

where is the bit duration. This is the case that has been ad-
dressed by other authors.

We can get the PDF of the filtered signal by solving either the
3-D FP equation or the 2-D FP equation. There is no difference
in the computational procedure when using our method. How-
ever, no other works in the literature have solved the 3-D FP
equation, so far.

Three situations are illustrated. They are expressed in terms of
the value of . reflects the amount of PN. It is the variance
of PN over the integration time of the IF filter. Increasing
implies an increase in PN. A small value of can be obtained
either by reducing the laser linewidth , or by decreasing the
integration time . The 3-D FP (12) is used for , and the
2-D FP (13) is used for and .

For the finite-time integrator, the coefficient matrix of
ODE (30) corresponding to the 3-D FP equation becomes a con-
stant matrix whose -element is
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Fig. 2. Contour plot of the joint PDF, f(r; �; t), using the 3-D FP equation
with Dt = 6.

In this case, ODE (30) is a simple linear time-invariant system.
It can be easily solved, subject to the given initial conditions by
matrix exponential as

(37)

The joint and marginal PDF of can then be obtained by
substituting (37) into (31) and (32), respectively. Fig. 2 shows
the contour plot of the joint PDF of with .

Similarly, the coefficient matrix of ODE (35) corre-
sponding to the 2-D FP equation becomes a constant matrix
whose -element is

By matrix exponential, we can get the solution to this ODE.
Using (31) and (32), we can get the joint PDF and the marginal
PDF. Figs. 3 and 4 show the contour plots of the joint PDF of

for having the values 1 and 8. Fig. 5 shows the marginal
PDF of for different amounts of PN, indicated by the values
of . These plots are the same as those given by [10]. These
identical results verify our proposed computational method.

Using our method, we can also easily obtain the results for
the time-varying filters which other methods have difficulty in
solving. In these cases, our method converts FP equations into
time-varying linear ODEs. For illustration, we apply our method
to a raised cosine filter and an RC filter. Since the time-normal-
ized axis is usually adopted by other authors in considering filter
impulse responses of different shapes, we use the time-normal-
ized impulse responses as given in [7] and [12]. Whether the
time axis is normalized or not will not affect the effectiveness

Fig. 3. Contour plot of the joint PDF, f(r; �; t), using the 2-D FP equation
with Dt = 1.

Fig. 4. Contour plot of the joint PDF, f(r; �; t), using the 2-D FP equation
with Dt = 8

of our method. The impulse response of the raised cosine filter
is defined as [12]

otherwise
(38)

and the impulse response of the RC filter [7] is

otherwise.
(39)
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Fig. 5. Marginal PDF jzj for different values of Dt.

Fig. 6. Contour plot of the joint PDF for a raised cosine filter with Dt = 3.

There is no big difference for applying our method to either
the 3-D FP equation or the 2-D FP equation. Here, we use (12)
for the raised cosine filter and (13) for the RC filter.

For the raised cosine filter, the coefficient matrix of ODE
(30) corresponding to the 3-D FP equation is a time-varying
matrix whose th element is

For the RC filter, the coefficient matrix of ODE (35) corre-
sponding to the 2-D FP equation is a time-varying matrix whose

th element is

Runge–Kutta integration can be used to solve this simple linear
time-variant system. Figs. 6 and 7 show the contour plots of the
joint PDF of for the raised cosine filter and the RC filter
with , respectively.

The application and interpretation of these PDFs have been
well addressed in [5]–[8], [10], and [12]. In these papers, these
PDFs have been used to study the optimum threshold setting,

Fig. 7. Contour plot of the joint PDF for an RC filter with Dt = 3.

TABLE I
TRUNCATION LIMIT

bit rate error, IF bandwidth, detection strategies, and receiver
performance for coherent optical communication systems. We
will not discuss this aspect here, due to the main goal of this
paper and page limits.

For the above computations, the infinite-dimensional matrix
function in the Fourier transform is truncated. The ban-
dlimited approximation still gives us very accurate results, be-
cause the magnitude of the Fourier transform of a function can
be ignored beyond a certain cutoff frequency. The upper bound
of the frequency parameter is chosen to be rather than in-
finity when performing integration in . The dimension of the
truncated is chosen to be for the forward
Fourier transform and for the IFT. Values of and

are listed in Table I. The truncation of potentially
makes the outer elements (values of with , )
have errors. This is why we impose a second truncation on

of when substituting into the Fourier inverse for-
mula. For small amounts of PN, we need larger values of
and . If is not large enough, it will cause Gibbs-like os-
cillations in the marginal PDF near the origin.

VI. COMPARISON WITH OTHER METHODS

While the purpose of this paper is to introduce the method of
noncommutative harmonic analysis (i.e., Fourier transform on

) to solve the PN FP equations, a comparison between the
results obtained by using this method and those obtained from
existing statistical methods provides a basis for comparison in
the evaluation of the performance of the proposed method.
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As discussed in the previous section, the instantaneous state
of the system, denoted as , is a
random variable at time . This paper’s interest is in estimating
the time evolving PDF of , denoted as . Besides the
category of analytical methods such as the one proposed in this
paper, the category of data-driven methods has been widely used
in density estimation [4], [16], [17]. In our case, “data-driven”
can be understood as generating a PDF of a random variable
from a set of its sample values, which is a set of possible values
of at time in the context of this paper. Among the most ac-
cepted methods to generate smooth and continuous PDFs are
the kernel-density estimation methods [4], [16], [17]. Let be
an by matrix of random vectors , where

are independent samples from a PDF of dimen-
sion . Let be a vector of dimension . The kernel estimator
of is given by

(40)

where is the th component of , is the th entry of
, is the same 1-D kernel function used in each dimension,

and is the smoothing parameter for the th dimension. In
addition, the methods to select optimal smoothing parameters
for kernel-density estimation have been studied, among which
the bootstrap method, the least-squares (LS) (unbiased) cross-
validation method, and the biased cross-validation method are
widely used [15]–[17], [20].

To estimate by using a data-driven density-estimation
method, a set of sample values of at time need to be gener-
ated. Recently, a Monte Carlo approach, the Euler–Maruyama
method, was introduced and explained in detail by Higham as
a numerical method for SDEs [11]. The SDE under current
discussion is given as (7), with initial conditions ,

, . With the Euler–Maruyama method, a
sample value of at time can be calculated by doing numer-
ical integration to (7), along a discretized Brownian path in the
following form:

(41)

where , ,
, denotes a Wiener process, and

. In this way, a number of sample values
of at time can be calculated from a number of discretized
Brownian paths which are generated with a random number
generator. Then the desired PDF can be estimated by using the
method described in the last paragraph.

In the following, we use the method of Gaussian kernel-den-
sity estimation together with the Euler–Maruyama method to
estimate . Then we compare the resulting with
the ones obtained from the method of the Fourier transform on

. The whole procedure consists of the following steps.
1) Use the Euler–Maruyama method to generate a set of

reachable values of at time by performing the integrals
in (41).

2) Search for the optimal smoothing parameters for Gaussian
kernel-density estimation by using the LS cross-validation
method. The smoothing parameters are indeed the standard
deviations along all Cartesian and rotational axes.

3) Use the Gaussian kernel-density estimation method to
evaluate .

4) Root mean square (RMS) error of the resulting
is calculated, and the time taken to finish steps 1–3 is
recorded.

5) Repeat steps 1–3 with different numbers of sample values
of , and record a set of values of RMS error and corre-
sponding computation time. We plot the RMS error of the
data-driven method as a function of computation time.

6) Compare the resulting curve with the one obtained from
the method of the Fourier transform on , which is
discussed in detail in previous sections.

One may notice that we use the LS cross-validation method
to search for the optimal smoothing parameters. The choice
is based on the test of all three methods mentioned above,
i.e., the bootstrap, the LS cross-validation, and the biased
cross-validation. For the PN problem described by (7), when

is large enough, the Gaussian kernel-density estimation can
generate smooth PDFs with the optimal smoothing parameters
obtained from all three optimization methods. However, when

is small, such as , the resulting PDFs with the
smoothing parameters obtained from the bootstrap and the
biased cross-validation methods are over-smoothed, and, as a
result, cannot show the “crescent shape” feature (Fig. 3). As we
tested, in the case of this PN problem, only the LS cross-vali-
dation method works stably at any time , given a constant .
Therefore, we choose the LS cross-validation method to do the
optimal smoothing parameter searching.

As a data-driven method, with a chosen automatic searching
method for optimal smoothing parameters, the precision of
the Gaussian kernel-density estimation completely depends on
the number of samples. With the Euler–Maruyama method,
the time to generate the set of sample values of increases
linearly with respect to the number of values. As we tested,
the searching process of the optimal smoothing parameters
consumes most of the total computation time. Moreover, it
increases nearly quadratically with respect to the number of
sample values, and therefore, as a result, it occupies a larger
portion of the overall computation time.

On the other side, since the Fourier transform on the
method deals with the infinite domain of and infinite-dimen-
sional Fourier matrices in principle, it is necessary to truncate
them to the finite domain of and the finite-dimensional ma-
trices, so that it can be implemented numerically. In addition, the
infinitesimal in the involved integration must be replaced by
the finite increment . Therefore, the precision of the Fourier
transform on the method depends on the truncated ma-
trix width, the upper bound of , and the step in . These factors
also determine the time complexity of this method.

Based on the above analysis, we compare both methods under
the same conditions. First, following the discussion in previous
sections, we compute the joint PDF . Second, to set a
reasonable time frame for comparison, we choose . In
general, as increases, the required computation time for the
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Fig. 8. Comparison between the Fourier transform onSE(2) and the Gaussian
kernel-density estimation.

data-driven density-estimation method increases, while the time
for the method of the Fourier transform on decreases,
because a truncated matrix with a relatively small width can be
used. Third, we limit the computation to 50 50 points on the
PDF surface. Clearly, different numbers of surface points re-
quire different computation times. While the number of the sur-
face points will not cause much difference when using the data-
driven density estimation, the computation time of the method
of the Fourier transform on is proportional to it. All of the
computation is done on a Pentium 4 2-GHz Desktop PC. Under
these equal conditions, we followed the above steps and did a se-
ries of computations. The comparison between the two methods
is shown in Fig. 8. In the plot, the horizontal axis is the allowed
computation time, and the vertical axis is the reachable RMS
error of the resulting PDF. Therefore, the plot in fact shows the
relationship between the reachable precision of both methods
and the allowed computation time. Clearly, as the allowed com-
putation time increases, the precision of both methods can be
improved monotonically, but the method of the Fourier trans-
form on shows a much quicker rate of improvement.
As one can see, there is a breakeven at a small time limit. The
reason is that for a small time limit, the computation can be im-
plemented by the kernel method with a small number of sam-
ples, and the cross-validation method can adjust the smoothing
parameters to provide an optimal PDF. Meanwhile, the com-
putation can only be realized by the Fourier transform on the

method with a small domain of or a large , which
impairs the precision of the results for small values of . In
practice, with a reasonable time limit, a certain large domain
of and a certain small are always used. Therefore, we can
conclude that with a reasonable time limit, the Fourier transform
on provides a more accurate density estimation than the
Gaussian kernel-density estimation method.

Meanwhile, as another comparison in the quality of the re-
sulting PDF, one can see that the PDF generated by the Fourier
transform on the method (Fig. 4) is much smoother than
the one generated by the Gaussian kernel-density estimation

Fig. 9. PDF generated by Gaussian kernel-density estimation with the
smoothing parameters chosen by the LS cross-validation (8000 samples, about
51 hours).

method with the smoothing parameters chosen by LS cross-val-
idation (Fig. 9).

VII. CONCLUSION

In this paper, we have derived generalized FP equations from
stochastic processes and shown that concepts from noncommu-
tative harmonic analysis are useful in the numerical solution
of these equations that arise in the analysis of PN in coherent
optical communication systems. In particular, we used the op-
erational properties of the MGFT to transform these FP equa-
tions into a system of linear ODEs in a generalized Fourier
space. These ODEs are solvable by matrix exponentiation or
Runge–Kutta integration, depending on the type of IF filters.
The straightforward solution of these equations leads to a sys-
tematic method for solving the original equation of interest.
Since this new computational method removes the computa-
tional difficulty which previously existed in solving the PN FP
equations, we hope that the FP approach can become a more
widely used design and analysis tool in coherent optical com-
munication systems.
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