
Goal-Guided Reinforcement Learning: Leveraging Large Language
Models for Long-Horizon Task Decomposition

Ceng Zhang1, Zhanhong Sun1, Gregory S. Chirikjian1,2

Abstract— Reinforcement learning (RL) has long struggled
with exploration in vast state-action spaces, particularly for
intricate tasks that necessitate a series of well-coordinated
actions. Meanwhile, large language models (LLMs) equipped
with fundamental knowledge have been utilized for task plan-
ning across various domains. However, using them to plan
for long-term objectives can be demanding, as they function
independently from task environments where their knowledge
might not be perfectly aligned, hence often overlooking possible
physical limitations. To this end, we propose a goal-based RL
framework that leverages prior knowledge of LLMs to benefit
the training process. We introduce a hierarchical module that
features a goal generator to segment a long-horizon task into
reachable subgoals and a policy planner to generate action
sequences based on the current goal. Subsequently, the policies
derived from LLMs guide the RL to achieve each subgoal
sequentially. We validate the effectiveness of the proposed
framework across different simulation environments and long-
horizon tasks with complex state and action spaces. The LLM
prompts we use and more details can be found at https:
//chirikjianlab.github.io/G2RL-LM/.

I. INTRODUCTION

Reinforcement learning algorithms are beneficial for ad-
dressing novel unseen tasks as they do not depend on hand-
crafted policies or labeled trajectories, instead, the agent
learns from reward signals through iterative interactions with
the task environment [1]. However, this characteristic is
effective only for tasks with simple state spaces and brief
action sequences. For complex long-term tasks, exploring
the environment in the early stage of training becomes
problematic, since most RL algorithms rely on random action
selection such as ϵ-greedy [2] or policy noise addition [3],
which fails to consistently produce successful trajectories,
especially in environments with large or continuous state or
action spaces, as shown in Fig. 1. Therefore, a key challenge
in RL is reducing the searching space for efficient early-
stage exploration and logically defining short-term goals that
match the present states of complex tasks for step-by-step
learning.

On the other hand, with extensive pretraining on vast
amounts of open source knowledge, LLMs have shown

This work was supported by NUS Startup grants A-0009059-02-00, A-
0009059-03-00, CDE Board account E-465-00-0009-01, and National Re-
search Foundation, Singapore, under its Medium Sized Centre Programme -
Centre for Advanced Robotics Technology Innovation (CARTIN), sub award
A-0009428-08-00.

1 Ceng Zhang, Zhanhong Sun and Gregory S. Chirikjian are with the
Department of Mechanical Engineering, National University of Singapore,
Singapore.

2 Gregory S. Chirikjian is with the Department of Mechanical Engineer-
ing, University of Delaware, Newark, DE 19716, USA.

Address all correspondence to G. S. Chirikjian: mpegre@nus.edu.sg,
gchirik@udel.edu

Fig. 1. Overview. When presented with a complex long-horizon task,
making decisions for the next step can be challenging from a large number
of available options. Instead, it is intuitive to divide the task objective to
several manageable subgoals and achieve them sequentially.

reasoning abilities on par with humans across numerous
domains, including robotics and automation. Using abstract
task descriptions as input, they can apply common sense rea-
soning to devise policies that guide towards task objectives
[4]–[6]. However, while these generated policies appear to
be feasible, adhering strictly to them and performing actions
may introduce potential hazards. This is primarily because
LLMs are not connected to the task environment, which
hinders their ability to accurately assess environmental in-
formation about current state. Although advanced foundation
models are capable of processing multimodal information
[7], [8], representations that fully depict the environmental
state remains a challenge, rendering it partially observable
for these large pretrained models. As a result, when the task
goal is distant from the present state, the planning process
might neglect possible restrictions within the environment,
such as that shown in Fig. 2. Without an understanding of
these constraints, it is unsafe to execute the generated plans
reliably as the policies may not be applicable to the state.

To bridge the gaps mentioned above, in this study we
introduce an LLM-enhanced RL framework for efficient ex-
ploration and training. For complex novel tasks that require a
long sequence of actions to reach the target, we utilize LLMs
to break down distant task objectives into smaller, manage-
able goals and encourage RL agents to reach them sequen-
tially. Rather than rely solely on LLM-generated policies,
we integrate them with RL algorithms to facilitate guided
exploration and subgoal achievement, thereby significantly
accelerating the training process and enabling convergence
to optimal policies that take environmental constraints into
account.

Overall, the main contribution of this work includes:
• Investigation on suboptimality of LLM policies when

neglecting environmental constraints and enhancement

Fig. 2. Examples of Environment Constraints. Explicit (above) and implicit
(below) types that might be overlooked when directly using LLMs for long-
term goals planning.

through decomposition of distant objectives.
• An LLM-based hierarchical module with brief prompt

to perform subgoal proposing and policy generation for
complex long-horizon task planning.

• An adaptive goal-conditioned RL framework that incor-
porates LLMs to guide actions for enhanced exploration
in early stages and automatically adjusts the loss weight
as training proceeds.

II. RELATED WORK

A. Exploration Issue in RL

The exploration-exploitation dilemma in reinforcement
learning questions how agents should balance the act of
exploring new possibilities against utilizing known profitable
strategies [1]. Recent advances in exploration strategies
include the Intrinsic Curiosity Module (ICM) [9], which
generates intrinsic rewards based on the prediction error of
the environment dynamics, encouraging exploration in sparse
reward settings. Similarly, Random Network Distillation
(RND) [10] enhances exploration by rewarding agents for en-
countering unpredictable states, using the novelty measured
by a fixed random neural network as a benchmark. However,
most of these methods introduce additional network models
for online update during training, which greatly increases the
computational complexity of RL algorithms and adds to the
manual cost of network design. Instead, our method achieves
efficient exploration by querying policies from a pretrained
LLM to narrow down the searching range in the state-action
space with prior knowledge.

B. Task Planning with Pretrained LLMs

Pretrained on diverse datasets to handle various scenarios
[11], [12], LLMs offer notable benefits in handling queries
across multiple disciplines, drastically reducing the time and
data required for task-specific training [13]–[15]. However,
a significant challenge is their propensity to adhere to the
dataset on which they are trained, potentially leading to

improper outcomes in novel task environments. This lim-
itation can be particularly problematic in robotics, where
environmental uncertainty is common. To this end, recent
approaches, such as online learning, allow robots to update
their strategies based on human feedback [16], [17], thus im-
proving adaptability and long-term performance in changing
conditions at the expense of introducing human intervention.
However, their disconnection from the task environment
remains unsolved. Despite the advancement on multimodal
large models that can process information in different forms
other than text [7], [18], [19], there is inevitable loss in the
conversion that leads to inaccurate information about the en-
vironment state, thus ignoring potential physical constraints
and adopting risky or unavailable actions. To this end, we
use LLMs to break down long-horizon tasks and provide
guidance in exploration for the RL agent, by which it learns
optimal policies from grounded information obtained through
iterative interaction with the task environment.

C. Combining LLMs with Reinforcement learning

Recent studies have highlighted the advantages of inte-
grating LLMs and RL to accelerate the training process
by providing accurate environment information to LLMs,
thus, in return, facilitating effective exploration through their
reasoning capabilities [20], [21]. However, this typically
requires concurrent weight updates for these large models.
Although there are new methods [22] that allow fine-tuning
by modifying a small fraction of parameters, the complexity
and task generalization have not been sufficiently mitigated.
On the other hand, there are works that use pretrained LLMs
to help with the RL training expedition [23]–[25], but most of
them require complex prompt engineering and seldom focus
on task simplification. In this study, we employ a hierarchical
LLM architecture for goal-policy generation using concise
prompts, which assists the RL agent in exploring efficiently
with common sense and accelerates the training process for
intricate long-horizon tasks.

III. PROBLEM FORMULATION

For a long-horizon task within a complex environment,
we model the solution process as a Partially Observable
Markov Decision Process (POMDP) defined by the tuple
(S,A,O, T,R, γ) [26]. Here, S and A refer to the state and
action spaces, O indicates the observations from the task
environment, and T captures the state transitions described
by T (s′ | s, a), where s′ is the subsequent state following
action a in state s. The reward signal from the environment
for each state-action pair is represented by R, with γ serving
as the discount factor. The objective of RL is to learn
the optimal policy π∗ that maximizes the expectation of
cumulative return at time t as

π∗ = argmax
π

E

[∞∑
k=0

γkRt+k+1 | (st, at)

]
. (1)

In this work, the applied RL algorithm Proximal Policy
Optimization (PPO) [27], based on policy gradient, mini-

Fig. 3. Method Framework. As mentioned in Section III and IV, the goal generator breaks down the complex task into several subgoals in text using the
task description and initial state of the environment as inputs. Subsequently, the policy generator produces actions based on the caption of a given state
from the LLM policy πl. The disparity between the agent’s policy πa and πl is calculated as an additional policy loss for RL algorithms. In addition, a
goal inspector measures the cosine similarity between the encoded embeddings of the subgoal and the state caption to check if the subgoal is reached.

mizes the loss L(θ) and updates the parameters θ in the
actor-critic network.

On the other hand, autoregressive LLMs receive input
natural language as prompt p and output content c∗ from
corpus V with maximum probability based on previous
tokens:

c∗ = argmax
c∈V

P (c | (p, c1:t)). (2)

In our case, the prompt ptask for LLM includes a brief
language description on the task and environmental infor-
mation, the output is a sequence of generated subgoals g1:t
or policies composed of action sequences to reach the current
subgoal at state st.

IV. GOAL-CONDITIONED RL WITH LLMS

Our proposed LLM-assisted RL framework consists of two
hierarchically connected modules, as shown in Fig. 3. This
part sequentially introduces each module and elucidates their
interaction in improving the performance of RL training.

A. Subgoal Generation with LLMs

Although pretrained LLMs exhibit strong reasoning skills
in high-level task planning, they can often neglect poten-
tial environmental constraints when it comes to low-level
decision making, resulting in risky policies or even invalid
actions. When tasked with a complex long-term objective,
planning from the start to completion of the task, LLMs are
prone to encountering situations where the proposed policy
appears conducive to task objective but is impractical in the
current scenario; e.g., in the cases shown in Fig. 2, the agent
must ensure that one hand is available before attempting to
turn on the TV if both hands are currently occupied.

To this end, our approach utilizes an LLM module to
segment a long-horizon task objective into multiple, more
attainable subgoals. Rather than directly querying action
sequences from LLMs, we define these goals as different
stages of task completion that describe the state of the task

environment. In this way, LLMs are employed to characterize
the world model and comprehend state transitions instead
of formulating action policies, as depicting the world state
proves to be more effective when there are numerous action
options, thereby potentially enhancing the reasoning perfor-
mance of LLMs [28].

Given the brief task description, the subgoals generated
can appear in countless forms as the distribution becomes
as extensive as the entire language vocabulary [23]. To this
end, we impose constraints on the generation by inserting
in the prompt information about the initial state of the task
environment. This serves two purposes: First, understanding
the initial state helps LLMs avoid repeating subgoals that are
already completed and focus on future objectives; second,
the caption acts as a response template, assisting LLMs
in generating subgoals in a uniform format and facilitating
verification of goal achievement by comparing with captions
of other states. Therefore, we denote the subgoals generated
as

g1:k = MG(d,C(s0)), (3)

where d represents the task description and C(s0) denotes
the textual caption of the initial environmental state. Through
the subgoal generation module MG, k subgoals are proposed
by the LLM to achieve in order and the number of goals
depends on the difficulty of the task.

Once subgoals are generated, the RL agent is antici-
pated to accomplish the subgoal for the current state. To
assess whether a subgoal has been achieved, the current
state caption and the subgoal are encoded using pretrained
Paraphrase-MiniLM [29] and the cosine similarity between
their embeddings is calculated as

Scos(C(st), gt) =
E(C(st)) · E(gt)

∥E(C(st))∥∥E(gt)∥
, (4)

and the subgoal is regarded accomplished if the outcome
surpasses the threshold ϵ, prompting the agent to pursue the

next subgoal gt+1.

B. Goal-based Policy Generation and Adaptive Improvement

By dividing the intricate task into multiple subgoals, the
agent can focus on an immediate target at the moment, which
allows environmental constraints to be considered within a
restricted planning horizon, thereby greatly enhancing the
precision of policy generation by LLMs. Building on this,
for a specific state st and its related subgoal gt, another
LLM module MP is employed to produce policies in the
form of an action sequence aimed at achieving the goal as

at:t+n = MP (C(st), gt, Ie) (5)

with Ie denoting information about the task environment,
which is fixed throughout the training process. Following the
chain-of-thought principle (CoT) [30], rather than performing
the entire action sequence, we choose the first planned action
at in the sequence as the policy generated from the LLM and
repeat the procedure at the next step. This allows for real-
time adjustment and re-planning, consequently improving the
performance of the policy generator.

With the subgoals generated and the associated policies to
achieve them, we aim to enhance the RL learning process
through action guidance, leveraging prior knowledge from
LLMs. One method is to introduce additional rewards by giv-
ing positive feedback when the agent reaches these subgoals.
However, this can lead to instability in the learning process
due to variations in goal distribution and reward scaling. To
address this, we adopt the concept of minimizing divergence
from the target policy [25], [31], [32]. We choose the policy
generated by MP as our target and incorporate an additional
policy term into the loss function to minimize during each
update. Specifically, we choose the policy loss as

Lθ(πa, πl) = DKL(πa(st)∥πl(st, gt)) (6)

in which DKL(·) calculates the KL divergence between the
agent policy πa and LLM policy πl, θ denotes the parameters
in the actor-critic network. Because the probability distribu-
tion of LLM generation is unavailable, we approximate πl

by repeatedly querying the LLM for m times, with m an
adjustable hyperparameter.

Then we add term (6) to the total loss in the RL algorithm
by multiplying a constant coefficient λ and a weight w
that decays with the training process. Instead of manually
designed decaying pattern [25], which introduces additional
hyperparameters to finetune, we find it is natural to define
w’s value to be the entropy H(st) of the action proba-
bility distribution of the state st. This is intuitive since
the entropy is large due to the significant uncertainty in
states during the early stage of training, promoting the agent
to follow the policy from MG for effective exploration.
As training progresses, states become more predictable and
entropy diminishes. Therefore, reducing the loss weight aids
in stabilizing learning, enabling the agent to adjust to the
environment’s inherent rewards and optimal pathways to
reach the task objective.

Fig. 4. VirtualHome task environments. (a) FoodPreparation. The task is
to fetch the pancake from the kitchen and place it in the microwave for
heating. (b) Entertainment. The task is to grab the milk and chips from the
kitchen and then relax on the sofa in the living room to watch TV.

V. EXPERIMENT

We evaluate the effectiveness of our proposed LLM-
assisted RL framework across two task environments, en-
compassing both discrete and continuous action spaces with
extensive state spaces for exploration. We opt for challenging
long-horizon tasks characterized by sparse rewards, where
the agent only receives a reward of +1 upon completion of
the entire task. In our framework, we use GPT-4 [12] for goal
generation and GPT-4-turbo to generate policies for quick
response during training. To demonstrate the advantages of
our method, we compare it with different baselines and
carry out ablation studies to examine the impact of specific
hyperparameters and components within the framework on
the training results.

A. Task Environments

VirtualHome [33] models a domestic setting with an
agent figure to perform various everyday activities. This
environment presents difficulties in decision making be-
cause the state space encompasses multiple rooms and a
large number of household items that can be interacted
with, considering physical restrictions. Building on settings
established by TWOSOME [20], we choose two partic-
ular tasks, Food Preparation and Entertainment, depicted
in Fig. 4, to evaluate the presented method. Besides the
long action sequence required to complete the whole tasks,
the environment constraints also impose challenges on the
learning process, these factors pose significant challenges to
conventional RL algorithms.

ROMAN [34] depicts a simulated scene in a laboratory
where a robotic arm needs to manipulate and transfer objects
in a clustered and constrained environment using of a set
of available action primitives, which are pretrained through
imitation learning combined with RL. In a given state, the
observations of the environment are input into a master
manipulation network and the action decision is output for
controlling the end effector, for visualization purpose, we
use Final IK [35] to perform inverse kinematics for joints
controlling of the robot arm, shown in Fig. 5. And based
on the original setting, we develop two task variations that
feature distinct horizon lengths with discrete and continuous
action spaces, respectively. After completing training, we
evaluate the trained RL agents in this environment with and
without a noise of 1 cm in state observations to test their
robustness in environments with uncertainty.

Fig. 5. ROMAN Task Environment. The complex task that requires a long
action sequence: (1) pull the drawer where the box containing the vial is
stored; (2) remove the box cover; (3) rotate the door of the cabinet where
the rack is stored; (4) pick the rack and place it on the table; (5) insert the
vial from the box into the rack; (6) push the rack onto the conveyor; (7)
press the button to start the conveyor.

In the first task ROMAN-Short, we define a timestep as:
the robot executes a deterministic action in a given state
until the action is completed. The sequence of actions in this
setup is relatively short; however, the task remains difficult
due to the continuous and highly dimensional nature of
the state space. Based on this, ROMAN-Long synchronizes
each timestep with the real-time frequency of the robot
controller. As a result, completing the entire task requires
more than 1k timesteps. Moreover, in this scenario, the
master manipulation network outputs the weight for each
action primitive at every timestep, introducing substantial
uncertainty and increasing the task’s difficulty. Since learning
from scratch in this case presents a substantial challenge
for all tested learning-based methods, to mitigate early-stage
exploration issues, we use the provided demonstration data
for imitation learning as an initial warm-up by annealing
Behavior Cloning (BC) for 1.5 million timesteps.

B. Baselines and Ablation Studies

In this study, we evaluate the effectiveness of our method
against three baseline approaches and carry out ablation
studies to examine the importance of specific elements within
our proposed framework.

RL-Base: This refers to the standard RL approach without
any alterations. All RL-based techniques discussed in this
paper employ Proximal Policy Optimization (PPO) [27] for
training, and our approach utilizes the same actor-critic
network architectures.

RL-Mask: This method is built on conventional RL al-
gorithms and filters invalid actions for the current state,
thereby reducing the exploration space and increasing the
likelihood of success in the initial phase. We implement this
by applying an action mask to the actor network’s output and
re-normalizing the masked action probability distribution.
In cases of continuous action space like ROMAN-Long, the
invalid actions are assigned a weight of 0. To validate the
effectiveness of our method, we do not mask invalid actions

for it and retain the original action space when making state-
based decisions.

LLM-CoT: This method aims to improve the reasoning
abilities of LLMs by employing a step-by-step logical rea-
soning approach, resulting in more credible output. Instead
of directly generating whole trajectories, the model produces
the intermediate steps involved in problem solving, making
complex issues understandable to LLMs. Our implementa-
tion queries LLMs the next action to take based on the
current state and task objective, then repeating this for each
subsequent state. For evaluation, we run it for 1k episodes
for each task environment to calculate its success rate.

In addition to the baseline methods mentioned above, we
also perform three studies to investigate the importance of
certain components in our proposed framework. First, we
experiment with three weight coefficients λ1 = 0.1, λ2 = 1,
and λ3 = 10 to determine whether our method can work
with robustness on different scales of the extra policy loss.
Besides, to investigate the impact of different modules in the
framework, we assess two ablated variations, one is termed
Ours-NoSub that skips goal generation and directly instructs
LLMs to devise policies targeting the final task objective,
while Ours-NoTrain omits the RL module, retaining the
LLM components to explore the role of the applied learning
techniques.

VI. RESULTS

In this section, we analyze the experimental results and
compare the performance of different methods. First, we
focus on the learning curves during training to illustrate the
different learning speeds of the algorithms, and we examine
how the parameter settings impact the performance of our
proposed framework. Subsequently, we evaluate the trained
agents in the ROMAN task environment under perception
noise by running 1,000 episodes and calculating the success
rates to assess the robustness of the algorithms.

A. Training Result Analysis

We train agents in various task environments, as illustrated
by the learning curves of the approaches tested in Fig. 6. For
tasks with huge action-state spaces, the standard RL-Base
algorithm fails to achieve satisfactory performance, unable to
obtain any rewards during training in complex scenarios such
as Entertainment and ROMAN-Long. By filtering out invalid
actions, RL-Mask demonstrates enhanced performance due
to the reduced action space, though it introduces instability
during training and shows limited improvement in intri-
cate environments. LLM-CoT excels in simple task plan-
ning, achieving high performance in FoodPreparation and
ROMAN-Short. However, its performance drops when longer
action sequences are required, due to ignored environmental
constraints during decision-making.

Compared to other methods, our method consistently
demonstrates superior performance in all evaluated tasks.
Not only learns quickly during the initial training phase, it
also maintains stable progress, eventually achieving almost
100% of the reward for each episode in VirtualHome tasks.

Fig. 6. Training results. Each method runs for n = 3 seeds, with each seed LLM-CoT and Ours-NoTrain are evaluated for 1000 episodes.

Analyzing the results for different coefficients λ, we observe
that a higher loss weight improves early stage learning
speed by prompting the agent policy to quickly follow the
LLM policy. However, this greater loss induces performance
fluctuations in complex tasks. In contrast, selecting a smaller
weight stabilizes the training but extends the convergence
time. Consequently, we find that a weight of λ = 1 is
reasonable, balancing learning speed with training stability
and achieving high performances. When the goal generation
module is removed, Ours-NoSub directly targets at the task
objective. Despite this removal, it still performs well in
FoodPreparation, though it struggles with tasks requiring
lengthy action sequences due to inaccurate LLM policies.
The significance of subgoals is also highlighted by compar-
ing the two learning-free approaches, which shows that Ours-
NoTrain achieves better performance compared with LLM-
CoT across all tasks. However, in contrast to the combined
method, its reduced effectiveness indicates that, due to lack
of the learning module, it is hindered by suboptimal policies
from LLMs that are not connected with task environments.

B. Evaluation on Robustness

In addition to the aforementioned results, we also evaluate
our trained agent (λ = 1) against other methods in terms
of task success rates in ROMAN task environment, as the
results shown in Tab. I. RL-Base and RL-Mask struggle with
these intricate tasks, leading to the result that the agent robot
fails in achieving the objective, especially in the presence of
noises. On the other hand, LLM-CoT exhibits a high task
success rate in the simple ROMAN-Short scenario, but its
reasoning performance is hindered in ROMAN-Long due to
a higher propensity for errors when dealing with a target far
from the initial state and requires long action sequences.

In contrast, our approach achieves the highest success rates
in both tasks. Despite the presence of observation noise in
the environment, it demonstrates robustness and is slightly
affected by uncertainty. On the other hand, Ours-NoSub
without subgoal generation shows performance similar to
LLM-CoT in ROMAN-Short but a significant improvement
in ROMAN-Long. We propose the reason is that the agent
learns the constraints of the environment by interacting with
the task world, which leads to better performances than

TABLE I
EVALUATION ON TASK SUCCESSFUL RATE

Method
ROMAN-Short ROMAN-Long

w/o Noise w/ Noise w/o Noise w/ Noise

Ours (λ=1) 0.958 0.884 0.952 0.864

Ours-NoSub 0.781 0.697 0.764 0.705

Ours-NoTrain 0.824 0.751 0.697 0.602

LLM-CoT 0.794 0.743 0.635 0.593

RL-Mask 0.536 0.422 0.023 0.002

RL-Base 0.382 0.224 0.015 0

relying on the LLM policy. This is also confirmed by Ours-
NoTrain, which sorely depends on the output of LLMs and
results in a reduced success rate. We suggest that this is
because the agent falls into suboptimal policies generated
by LLMs. These policies are not aligned with the physical
task environment and may cause missed observations.

VII. CONCLUSION AND FUTURE WORK

In this work, we introduce an automated LLM-assisted
RL framework designed to accelerate learning and enhance
exploration. By incorporating a subgoal generation module,
intricate tasks are divided into more manageable phases,
thereby enhancing the decision-making with LLMs. The
goal-based policy generation module integrates the discrep-
ancy between agent and LLM policies as an additional
loss to minimize, allowing the agent to assimilate distilled
prior knowledge while considering potential environmental
constraints. We evaluated our framework in various task en-
vironments and the results indicate that it facilitates efficient
training with a high success rate and remains resilient to
state observation noises. For further studies, we consider
there are spaces to enhance some modules in the frame-
work. For instance, the hardcoded state captioner could be
substituted with autoregressive generation using vision-based
foundation models. Additionally, since subgoals for a task
are predetermined, feedback and online regeneration could
be explored to ensure relevant and appropriately distributed
goals throughout task completion.

REFERENCES

[1] R. S. Sutton, “Reinforcement learning: an introduction,” A Bradford
Book, 2018.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[3] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[4] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay,
D. Fox, J. Thomason, and A. Garg, “Progprompt: Generating situated
robot task plans using large language models,” in 2023 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 11523–
11530, IEEE, 2023.

[5] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence,
and A. Zeng, “Code as policies: Language model programs for em-
bodied control,” in 2023 IEEE International Conference on Robotics
and Automation (ICRA), pp. 9493–9500, IEEE, 2023.

[6] K. Rana, J. Haviland, S. Garg, J. Abou-Chakra, I. Reid, and N. Suen-
derhauf, “Sayplan: Grounding large language models using 3d scene
graphs for scalable robot task planning,” in 7th Annual Conference on
Robot Learning, 2023.

[7] J. Li, D. Li, C. Xiong, and S. Hoi, “Blip: Bootstrapping language-
image pre-training for unified vision-language understanding and
generation,” in International Conference on Machine Learning,
pp. 12888–12900, PMLR, 2022.

[8] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg, “Text2motion:
From natural language instructions to feasible plans,” Autonomous
Robots, vol. 47, no. 8, pp. 1345–1365, 2023.

[9] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” in International conference
on machine learning, pp. 2778–2787, PMLR, 2017.

[10] Y. Burda, H. Edwards, A. Storkey, and O. Klimov, “Exploration by
random network distillation,” arXiv preprint arXiv:1810.12894, 2018.

[11] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

[12] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat, et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[13] R. Firoozi, J. Tucker, S. Tian, A. Majumdar, J. Sun, W. Liu, Y. Zhu,
S. Song, A. Kapoor, K. Hausman, et al., “Foundation models in
robotics: Applications, challenges, and the future,” arXiv preprint
arXiv:2312.07843, 2023.

[14] J. Wang, Z. Wu, Y. Li, H. Jiang, P. Shu, E. Shi, H. Hu, C. Ma, Y. Liu,
X. Wang, et al., “Large language models for robotics: Opportunities,
challenges, and perspectives,” arXiv preprint arXiv:2401.04334, 2024.

[15] S. Yang, O. Nachum, Y. Du, J. Wei, P. Abbeel, and D. Schuurmans,
“Foundation models for decision making: Problems, methods, and
opportunities,” arXiv preprint arXiv:2303.04129, 2023.

[16] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray, et al., “Training language
models to follow instructions with human feedback,” Advances in
neural information processing systems, vol. 35, pp. 27730–27744,
2022.

[17] Z. Wu, Y. Hu, W. Shi, N. Dziri, A. Suhr, P. Ammanabrolu, N. A.
Smith, M. Ostendorf, and H. Hajishirzi, “Fine-grained human feedback
gives better rewards for language model training,” Advances in Neural
Information Processing Systems, vol. 36, 2024.

[18] M. G. Arenas, T. Xiao, S. Singh, V. Jain, A. Z. Ren, Q. Vuong,
J. Varley, A. Herzog, I. Leal, S. Kirmani, et al., “How to prompt your
robot: A promptbook for manipulation skills with code as policies,”
in Towards Generalist Robots: Learning Paradigms for Scalable Skill
Acquisition@ CoRL2023, 2023.

[19] Z. Zhang, L. Zhou, C. Wang, S. Chen, Y. Wu, S. Liu, Z. Chen,
Y. Liu, H. Wang, J. Li, et al., “Speak foreign languages with your own
voice: Cross-lingual neural codec language modeling,” arXiv preprint
arXiv:2303.03926, 2023.

[20] W. Tan, W. Zhang, S. Liu, L. Zheng, X. Wang, and B. An,
“True knowledge comes from practice: Aligning llms with em-
bodied environments via reinforcement learning,” arXiv preprint
arXiv:2401.14151, 2024.

[21] T. Carta, C. Romac, T. Wolf, S. Lamprier, O. Sigaud, and P.-Y.
Oudeyer, “Grounding large language models in interactive environ-
ments with online reinforcement learning,” in International Conference
on Machine Learning, pp. 3676–3713, PMLR, 2023.

[22] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
and W. Chen, “Lora: Low-rank adaptation of large language models,”
arXiv preprint arXiv:2106.09685, 2021.

[23] Y. Du, O. Watkins, Z. Wang, C. Colas, T. Darrell, P. Abbeel, A. Gupta,
and J. Andreas, “Guiding pretraining in reinforcement learning with
large language models,” in International Conference on Machine
Learning, pp. 8657–8677, PMLR, 2023.

[24] E. Triantafyllidis, F. Christianos, and Z. Li, “Intrinsic language-guided
exploration for complex long-horizon robotic manipulation tasks,”
arXiv preprint arXiv:2309.16347, 2023.

[25] Z. Zhou, B. Hu, C. Zhao, P. Zhang, and B. Liu, “Large language model
as a policy teacher for training reinforcement learning agents,” in 33rd
International Joint Conference on Artificial Intelligence (IJCAI), 2024.

[26] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial intelli-
gence, vol. 101, no. 1-2, pp. 99–134, 1998.

[27] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[28] Z. Zhao, W. S. Lee, and D. Hsu, “Large language models as common-
sense knowledge for large-scale task planning,” Advances in Neural
Information Processing Systems, vol. 36, 2024.

[29] W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou, “Minilm:
Deep self-attention distillation for task-agnostic compression of pre-
trained transformers,” Advances in Neural Information Processing
Systems, vol. 33, pp. 5776–5788, 2020.

[30] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V.
Le, D. Zhou, et al., “Chain-of-thought prompting elicits reasoning in
large language models,” Advances in neural information processing
systems, vol. 35, pp. 24824–24837, 2022.

[31] T. Brys, A. Harutyunyan, H. B. Suay, S. Chernova, M. E. Taylor,
and A. Nowé, “Reinforcement learning from demonstration through
shaping,” in Twenty-fourth international joint conference on artificial
intelligence, 2015.

[32] X. B. Peng, P. Abbeel, S. Levine, and M. Van de Panne, “Deepmimic:
Example-guided deep reinforcement learning of physics-based char-
acter skills,” ACM Transactions On Graphics (TOG), vol. 37, no. 4,
pp. 1–14, 2018.

[33] X. Puig, K. Ra, M. Boben, J. Li, T. Wang, S. Fidler, and A. Tor-
ralba, “Virtualhome: Simulating household activities via programs,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 8494–8502, 2018.

[34] E. Triantafyllidis, F. Acero, Z. Liu, and Z. Li, “Hybrid hierarchical
learning for solving complex sequential tasks using the robotic ma-
nipulation network roman,” Nature Machine Intelligence, vol. 5, no. 9,
pp. 991–1005, 2023.

[35] RootMotion, “Final ik plugin for unity.” Unity Asset Store, 2024.

